An optimized cardiac risk levels classifier based on GMM with min- max model from photoplethysmography signals
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.70Keywords:
Gaussian mixture model, Min-max decision model, Cardiovascular disease, Photoplethysmography, Singular value decomposition.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
As per a latest study, coronary artery disease and hemorrhagic stroke are the predominant factors contributing to over 80% of cardiovascular diseases (CVDs). To reduce the mortality rate due to CVDs, researches are proposing the techniques for early detection of these CVDs. For the preliminary investigation on cardiovascular disease Photoplethysmography (PPG) can be used. Using PPG signals, it is possible to infer the risk levels like CVD with low risk, CVD with medium risk and respiratory disorder. To classify the risk levels of CVD, a model incorporating Gaussian mixture model (GMM) classifier with min-max decision model has been implemented. The proposed model resulted in better performance than existing classifiers like Logistic regression-GMM (LR-GMM), Detrend fluctuation analysis (DFA) and Cuckoo search algorithm (CSA) using min-max model. Based on the results GMM reflects a peak 95.9% classification accuracy with minimal false alarm of 7.1% and 0.99% miss classification when compared to other post classifiers.Abstract
How to Cite
Downloads
Similar Articles
- P. Rajkumar, B. Vijay Bhaskar, Assessing the impact of indoor air pollution on respiratory health: A survey of home residents in rural area , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rajeev P. R., K. Aravinthan, A novel approach for metrics-based software defect prediction using genetic algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sivasankar G. A, Study of hybrid fuel injectors for aircraft engines , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, Fuzzy inventory model with warehouse limits and carbon emission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Akshay J., G. Mahesh Kumar, B. H. Manjunath, Optimizing durability of the thin white topping applying Taguchi method using desirability function , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Karan Berry, Shiv Kumar, Exploring the mediating role of gastronomic experience in tourist satisfaction: A multigroup analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Archana Verma, Role of artificial intelligence in evaluating autism spectrum disorder , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Archana Verma, Application of metaverse technologies and artificial intelligence in smart cities , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.