Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ)
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.16Keywords:
Smart grid sensors, Hybrid Horse based Zebra optimization, Weighted ensemble based attention-residual network, Power quality, Stacked gated recurrent units, K-Fold cross-validation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The aim of the proposed method is to solve the difficulties associated with anomaly detection and real-time data processing in complex network systems. The process begins by collecting data from internet of things (IoT) devices and smart grid sensors. Advanced interpolation techniques are used in pre-processing methods to deal with missing data, while the Isolation Forest algorithm is used to find outliers. Ensures data normalization through robust scaling, reducing the impact of outliers. Higher-order statistics such as skewness, kurtosis, and entropy measures, as well as various statistical metrics such as mean absolute deviation (MAD), interquartile range (IQR), and coefficient of variation (CV) are extracted in the feature extraction process. A unique method called hybrid horse-based zebra optimization (HHZO) is used to select features. It combines the zebra optimization algorithm (ZOA) and the horse herd optimization algorithm (HHO). Weighted ensemble energy quality residual attention network (WEARN-PQ) architecture is proposed for deep learning-based detection, which integrates extended recurrent neural networks (Stack-RNN) and stack-gated recurrent units (GRU) with attention layers and convolutional neural networks (CNN) with residual connections and attention mechanisms. To ensure reliability, split-sampling K-Fold cross-validation is used during training and validation.Abstract
How to Cite
Downloads
Similar Articles
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Elangovan G. Reddy, Anjana Devi V, Subedha V, Tirapathi Reddy B, Viswanathan R, A smart irrigation monitoring service using wireless sensor networks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Deena Merit C K , Haridass M, Analysis of multiple sleeps and N-policy on a M/G/1/K user request queue in 5g networks base station , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Advancements in image quality assessment: a comparative study of image processing and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.