A resilience framework for fault-tolerance in cloud-based microservice applications
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.23Keywords:
Bulkhead, little law, Fault tolerance, Auto Retry Circuit Breaker (ARCB), Resilience, framework, microservicesDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cloud-distributed systems offer significant opportunities for fault-tolerant applications. Microservices have gained significant acceptance as a cloud-based architecture for building fault-tolerant cloud applications. The primary aim of this study is to develop a dependable resilience framework, incorporating appropriate design patterns, that can be applied to any cloud applications. This framework combines a bulkhead utilizing a little law approach and an auto-retry circuit breaker, which can be seen as a fault tolerance pattern. This will eliminate the need for manual setting of design patterns, resulting in maximum throughput, availability of resources and the performance can be increased up to 55.3% from the average execution duration.Abstract
How to Cite
Downloads
Similar Articles
- V. Baby Deepa, R. Jeya, Dynamic resource allocation with otpimization techniques for qos in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Gulshan Makkad, Lalsingh Khalsa, Vinod Varghese, Fractional thermoviscoelastic damping response in a non-simple micro-beam via DPL and KG nonlocality effect , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Prerna Khanna, Satinder Kumar, Exploring the expansion trajectory of the Indian automobile sector , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Deepika M, Antonitte Vinoline I, An integrated inventory system for profit maximization considering partial demand satisfaction , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Pratik Ghosh, Sriram M, A systematic review of social media communication with respect to fashion brands , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Nalini S., Ritha W, Sustainable inventory model with environmental factors using permissible delay in payments , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- A. Appu, How does brand equity influence the intent of e-bike users? Evidence from Chennai city , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.

