Adoption of artificial intelligence and the internet of things in dental biomedical waste management
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.21Keywords:
Artificial Intelligence, Biomedical Waste Management, Dental hospital, Internet thingsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The production of waste is an ongoing activity that must be managed efficiently to protect both the environment and the health of the general population. Therefore, proper management of waste from dental care is essential in protecting the environment's health, and it should become an inherent part of dental services. This study’s primary objective was to use artificial intelligence in dental biomedical waste management. The goal of this project was to develop an automated technique for categorizing dental trash to enhance the process of managing biological waste. In the proposed research, the Support Vector Machine classifier has been regarded as the most effective method of classification for a dataset of Euclidean size. The most effective classifier used in the model is a support vector machine (with an accuracy of 96.5%, 95.9% specificity, and 95.3% sensitivity) when classifying the different types of garbage. The categorization is accomplished through machine learning techniques, to accurately separate waste into recycling categories, precisely four categories for dental biomedical waste. Based on the findings of these trials, This method has the potential to be used for garbage sorting and classification on different scales, which might aid in the scientific disposal of biological waste.Abstract
How to Cite
Downloads
Similar Articles
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Arvind K Shukla, Balaji V, Dharani R, M Ananthi, R Padmavathy, Romala V. Srinivas, Precision agriculture predictive modeling and sensor analysis for enhanced crop monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V. Parimala, D. Ganeshkumar, Solar energy-driven water distillation with nanoparticle integration for enhanced efficiency, sustainability, and potable water production in arid regions , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, Inclusive education for children with learning difficulties in Mauritius: An analytical study among select stakeholders , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Aditi Mishra, Manish Dev Sharma, Archna Tandon, Farah Ahsan, Rajesh Rayal, Naveen Gaurav, Pankaj Pant, Impacts and Causes of Female Infertility: An Observational Study , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.

