A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.19Keywords:
Deregulations, LS-Local source, MPFO-Modified pathfinder, RSDS-Radial Structure distribution system, RFO-Red fox optimization, GA–GeneticDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Indian power sector is a large and complex network. Maintaining that complex network with the present regulatory format is very difficult for the government as well as transco and discom companies in terms of cost, efficiency, and reliability. That is why the government encourages deregulation in the power sector. One of the deregulation concepts is the integration of local sources into the distribution network. While integrating local sources into the system, several challenges come up, like voltage fluctuations and losses, safety and stability, protection coordination, and mitigation strategies. From those problems, one of the problems is deciding ‘the right place with the right size’ for the local source in RSDS. This work proposes a modified pathfinder optimization algorithm that has a fast convergence rate and the best balance between exploration and mining ability compared to other methods and previous PFOs. Applying MPFO to the IEEE-12 and IEEE-33 test systems to find the optimal place and size of the local source with the help of VSI and LSF. Compare other traditional methods.Abstract
How to Cite
Downloads
Similar Articles
- Maria D. Roopa, Nimitha John, Bayesian Optimization Phase I Design of Experiment Models , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Dhirender ., Histoenzymological Observations on Acid Phosphatase Activity in the Posterior Intestine of HGCL2–Treated Fish, Channa striatus , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- Rahul ., Naveen Sharma, Effect of Suspended Particles on a Couple-Stress Rivlin-Ericksen Ferromagnetic Fluid Heated from Below in a Porous Medium, with Varying Gravity and Magnetic Field. , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Neetu Singh, Ravindra Kumar Singh, Diazinon Effect on Behavior and Morphology of Catfish Clarias batrachus (Linnaeus, 1758) , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- AMIR ALI, PERWEZ AHMAD, STUDIES ON TOTAL PLASMA VOLUME, CORPUSCULAR VOLUME AND BLOOD WEIGHT IN RELATION TO BODY WEIGHT IN A FRESH WATER TELEOSTEAN FISH MYSTUS CAVASIUS (HAM.) , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V. Parimala, D. Ganeshkumar, Solar energy-driven water distillation with nanoparticle integration for enhanced efficiency, sustainability, and potable water production in arid regions , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Ashfaq Pathan, Ketan Desai, Direct selling laws and regulations in India: A comprehensive study , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 26 27 28 29 30 31 32 33 34 > >>
You may also start an advanced similarity search for this article.