Predictive modeling of dropout in MOOCs using machine learning techniques
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.32Keywords:
Machine Learning, Predictive Modeling, Dropout Prediction, MOOCs, Learning AnalyticsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The advent of massive open online courses (MOOCs) has revolutionized education, offering unprecedented access to high-quality learning materials globally. However, high dropout rates pose significant challenges to realizing the full potential of MOOCs. This study explores machine learning techniques for predicting student dropout in MOOCs, utilizing the open university learning analytics dataset (OULAD). Seven algorithms, including decision tree, random forest, Gaussian naïve Bayes, AdaBoost classifier, extra tree classifier, XGBoost classifier, and multilayer perceptron (MLP), are employed to predict student outcomes and dropout probabilities. The XGBoost classifier emerges as the top performer, achieving 87% accuracy in pass/fail prediction and 86% accuracy in dropout prediction. Additionally, the study proposes personalized interventions based on individual dropout probabilities to enhance student retention. The findings underscore the potential of machine learning in addressing dropout challenges in MOOCs and offer insights for instructors and educational institutions to proactively support at-risk students.Abstract
How to Cite
Downloads
Similar Articles
- Rustam Gulomov, Khilolakhon Rakhimova, Avazbek Batoshov, Doniyor Komilov, Bioclimatic modeling of the species Phlomoides canescens (Lamiaceae) , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- O. Devipriya, K. Kungumaraj, Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Suprabha Amit Kshatriya, Arvind R Yadav, Early detection of fire and smoke using motion estimation algorithms utilizing machine learning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Santosh Kumar Sahu, B. R. Senthil kumar, Y. Aboobucker parvez, Ashish Verma, Assessment of noise levels by using noise prediction modeling , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- T. Malathi, T. Dheepak, Enhanced regression method for weather forecasting , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Selvakumar, A. Manimaran, Janani G, K.R. Shanthy, Design and development of artificial intelligence assisted railway gate controlling system using internet of things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.