Ensuring ethical integrity and bias reduction in machine learning models
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.31Keywords:
Algorithmic performance, Bias mitigation, Demographic analysis, Ethical concerns, Task-specific challenges, Machine learning applications.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research focused on the multifaceted realm of machine learning algorithms, focusing on the pivotal themes of ethical concerns and bias mitigation (Zeba G. et al., 2021). Employing a dual-pronged research methodology, the study first evaluates algorithmic performance across diverse tasks, such as audio transcription, content moderation, and system implementation. The research uses quantitative assessments and visual comparisons to highlight nuanced improvements in algorithmic efficiency and accuracy. The second dimension involves an in-depth analysis of demographic contributions in tasks like image categorization and content moderation. By scrutinizing the geographical distribution of contributors and demographics like age and gender, the study aims to unravel potential correlations between algorithmic effectiveness and contributor demographics. The graphical representations provide valuable visual insights, including bias distribution across categories, evolution over time, and baseline and improved performance comparisons. The findings contribute to the discourse on responsible AI development, emphasizing the need for tailored enhancements and inclusive participant recruitment strategies. Complemented by comprehensive results and discussions, this research methodology lays a robust foundation for addressing ethical concerns and advancing bias mitigation strategies in machine learning algorithms.Abstract
How to Cite
Downloads
Similar Articles
- Sabana Backer, Prasanth A.P, The influence of attitude on green-cosmetics purchase intention (pi) in central Kerala , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Santima Uchukanokkul, Bijal Zaveri, Impact of emerging global educational trends on overseas education programs for aspiring students in South East Asia and South Asia: A decadal analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Chirag Darji, Rajesh Chauhan, Views of undergraduates on Vikshit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Shantanu Kanade, Anuradha Kanade, Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Joji John Panicker, Ancy Elezabath John, Nair Anup Chandrasekharan, A tapestry of tradition: Revitalization of Indian Heritage and Folk Art , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Dave Bansariben Chhellashankar, Anil Kashyap, Tracing the origins and evolution of yoga darshana: A critical historical analysis , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Virendra Chavda, Bhavesh J. Parmar, Urvi Zalavadia, Assessment of Omni channel retailing characteristics and its effect on consumer buying intention , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Appu A, Does shopping values influence users behavioral intentions? Empirical evidence from Chennai malls , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Indrani Sengupta, Merilyn Gomes, Unveiling the divide: Analyzing critical thinking skills in literature and commerce students , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- E. J. David Prabahar, J. Manalan, J. Franklin, A literature review on the information literacy competency among scholars of co-education colleges and women’s colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 30 31 32 33 34 35 36 37 38 39 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Arvind K Shukla, Balaji V, Dharani R, M Ananthi, R Padmavathy, Romala V. Srinivas, Precision agriculture predictive modeling and sensor analysis for enhanced crop monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper