Algorithmic material selection for wearable medical devices a genetic algorithm-based framework with multiscale modeling
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.03Keywords:
Wearable medical devices, Material selection framework, Genetic algorithm, Multiscale modeling, Performance assessment, Computational material scienceDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research presents a novel algorithmic material selection framework for wearable medical devices, utilizing a genetic algorithm-based approach with multiscale modeling. The study employs a comprehensive research methodology encompassing computational modeling, data visualization, and performance assessment. Initially, a diverse set of materials is defined, and their performance scores are assigned to establish a baseline for evaluation. The ensuing data visualization includes a bar chart, a scatter plot, and a line chart, providing insights into material performance, cost-performance relationships, and the convergence of the genetic algorithm, respectively. Performance metrics such as accuracy, precision, and recall are calculated to gauge the algorithm’s efficacy, presented in a bar chart for a nuanced evaluation. Furthermore, a receiver operating characteristic (ROC) curve and a confusion matrix are employed for discriminative ability assessment and detailed classification performance analysis. The results showcase the algorithm’s proficiency in material selection, emphasizing the importance of accuracy, precision, and recall in the complex landscape of wearable medical device development. The abstract concludes with a summary of the implications drawn from each visualization, highlighting the potential of the proposed algorithmic framework to enhance the precision and efficiency of material selection processes for wearable medical devices. This research contributes to the advancement of materials science in healthcare applications, presenting a holistic approach that integrates computational techniques and data-driven methodologies for optimized material selectionAbstract
How to Cite
Downloads
Similar Articles
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Shaik Abdulla P., Abdul Razak T., Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- L. Vamsi Narasimha Rao, P.S.Prakash, M.Veera Kumari, Improvement of power system operation using a novel hybrid optimization method for optimal allocation of facts devices in radial transmission line , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Susithra N, Rajalakshmi K, Ashwath P, Performance analysis of compressive sensing and reconstruction by LASSO and OMP for audio signal processing applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- D. Padma Prabha, C. Victoria Priscilla, A combined framework based on LSTM autoencoder and XGBoost with adaptive threshold classification for credit card fraud detection , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Vijaykumar S. Kamble, Prabodh Khampariya, Amol A. Kalage, Application of optimization algorithms in the development of a real-time coordination system for overcurrent relays , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper

