
Abstract
This research investigated the application of the Internet of Things (IoT) in precision agriculture and crop monitoring through a two-
fold research methodology. A simulated dataset was generated, mirroring real-world IoT sensor readings of soil temperature, salinity 
level, soil moisture, and conductivity. Employing the Pandas and Matplotlib libraries in Python facilitated exploratory data analysis, 
including time series analysis through line plots to illustrate temporal variations in these critical parameters. The study then explored 
the evaluation of predictive models for soil moisture levels, extending the dataset to include simulated predicted values. Performance 
metrics such as mean squared error (MSE) and R-squared (R2) were computed using the sci-kit-learn library, providing a comprehensive 
evaluative framework. Visual representations of actual versus predicted soil moisture levels, accompanied by the analysis of residuals, 
offered nuanced insights into the model’s efficacy. The results highlight dynamic variations in soil temperature, salinity, soil moisture, and 
conductivity, emphasizing the importance of continuous monitoring in precision agriculture. Fluctuations observed in these parameters 
are attributed to climatic conditions, agricultural practices, and soil properties. The study contributes valuable insights for stakeholders, 
emphasizing the significance of IoT technologies in providing actionable data for sustainable and adaptive farming practices. The visual 
representations offer practical tools for decision-making, while the performance evaluation of predictive models enhances the reliability 
of data-driven approaches in agriculture. The findings presented herein contribute to the ongoing discourse on precision agriculture, 
emphasizing the role of accurate predictions for efficient resource utilization and improved crop yield.
Keywords: Precision agriculture, IoT in agriculture, Soil monitoring, Predictive models, Agricultural sensor data, Data-driven farming.
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Introduction 
The application of the Internet of Things (IoT) in precision 
agriculture (PA) and crop monitoring has emerged as a 
transformative paradigm in contemporary agricultural 
practices (Feng, X., et al., 2019). The pressing need to address 
the challenges of a burgeoning global population, coupled 
with the imperative to ensure food security, has fuelled the 
exploration of innovative technologies to optimize farming 
processes. This literature survey aims to comprehensively 
investigate and analyze the multifaceted dimensions of IoT 
implementation in precision agriculture, with a specific focus 
on crop monitoring. Several seminal works underscore the 
significance of integrating IoT technologies into agriculture 
for enhanced precision and efficiency. (Abu, N. S., et al., 2022) 
emphasized the pivotal role of IoT sensors in capturing 
real-time data from agricultural fields. The deployment 
of sensors for soil monitoring, weather conditions, and 
crop health allows for a granular understanding of the 
agricultural ecosystem. This real-time data acquisition forms 
the cornerstone of precision agriculture, enabling farmers to 
make informed decisions regarding irrigation, fertilization, 
and pest control.
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(Ak hter,  R . ,  & Sof i ,  S .  A .  2022)  delved into the 
interconnectedness of IoT devices within the agricultural 
landscape. They highlighted the importance of seamless 
connectivity among sensors, actuators, and data platforms 
to facilitate timely and accurate decision-making. The 
integration of various types of sensors, such as soil moisture 
sensors, climate sensors, and imaging devices, establishes a 
networked environment that empowers farmers to monitor 
and control agricultural operations remotely. The literature 
also underscores the critical role of IoT technologies in 
addressing the challenges posed by climate change and 
resource scarcity. According to a study by (Anand, T., et 
al., 2021), the precision agriculture paradigm, enabled 
by IoT, contributes to sustainable farming practices. The 
ability to precisely manage resources, including water and 
fertilizers, not only optimizes crop yield but also mitigates 
environmental impacts. This aligns with the broader goals 
of achieving sustainable agriculture in the face of changing 
climatic conditions.

Moreover, the integration of IoT in precision agriculture 
has facilitated advancements in crop health monitoring. 
(Bakthavatchalam, K., et al., 2022) explored the application 
of IoT-based devices for early detection of diseases and 
pests. By employing sensors that monitor physiological 
changes in crops, farmers can promptly identify potential 
threats and implement targeted interventions. This 
proactive approach not only minimizes crop losses but also 
reduces the reliance on chemical inputs, aligning with the 
principles of integrated pest management. In addition to the 
theoretical underpinnings, empirical evidence from practical 
implementations further substantiates the efficacy of IoT in 
precision agriculture. The study conducted by (Dakir, A., et 
al., 2022) provides a comprehensive overview of successful 
IoT deployments in agricultural settings. Their findings 
illustrate tangible benefits, including increased crop yield, 
resource optimization, and economic gains for farmers. Case 
studies from diverse geographical locations and agricultural 
practices underscore the versatility and adaptability of IoT 
solutions in different contexts.

Despite the considerable progress made in the 
application of IoT in precision agriculture, challenges and 
gaps in the existing literature persist. (Dasig, D. D. 2020) 
identified issues related to data security, interoperability 
of IoT devices, and the high initial costs associated 
with technology adoption. These challenges, if left 
unaddressed, may impede the widespread implementation 
of IoT in agriculture. In the literature survey presented here 
synthesizes the current state of research on the application 
of IoT in precision agriculture and crop monitoring. Drawing 
on a diverse range of studies, this survey illuminates the 
transformative potential of IoT technologies in addressing 
the complexities of modern agriculture. The exploration 
of sensor networks, data connectivity, sustainability 
implications, and practical implementations collectively 

contribute to a nuanced understanding of the opportunities 
and challenges in leveraging IoT for precision agriculture. 
This survey sets the stage for the subsequent sections of the 
paper, where specific applications, case studies, and future 
trends in the integration of IoT in precision agriculture will 
be explored in greater detail (Kour, K., et al., 2022).

Despite the burgeoning literature on the application 
of IoT in precision agriculture, a noticeable research gap 
exists in understanding the long-term economic viability 
and scalability of IoT solutions for small-scale and resource-
constrained farmers. While studies by (Dewi, C., & Chen, R. 
C. 2020) and (Fastellini, G., & Schillaci, C. 2020) emphasize 
the benefits of IoT, there is a paucity of research specifically 
addressing the challenges faced by small-scale farmers 
in adopting and sustaining IoT technologies in diverse 
agricultural contexts. This research gap underscores the 
need for more nuanced investigations into the socio-
economic factors influencing the widespread adoption of 
IoT in precision agriculture, particularly among marginalized 
farming communities (Lopes, V. C., et al., 2022).

Research Methodology 
In this study, the research methodology employed a 
two-fold approach to comprehensively investigate 
the application of IoT in precision agriculture and crop 
monitoring. Firstly, a simulated dataset representative of 
real-world IoT sensor readings was generated to illustrate 
the visual representation of critical parameters over time. 
This dataset encompassed soil temperature, salinity level, 
soil moisture, and conductivity, mirroring the key variables 
often monitored in precision agriculture. The exploratory 
data analysis utilized the Pandas library in Python for data 
manipulation and structuring, and the Matplotlib library 
for graphical representation. A time series analysis was 
conducted through line plots to showcase the temporal 
variations in soil temperature, salinity level, soil moisture, 
and conductivity. These visualizations serve to elucidate 
the potential insights that farmers and stakeholders could 
glean from real-time monitoring, aiding decision-making 
processes related to crop management (Madhumathi, R., 
et al., 2022).

The research delved into the performance evaluation 
of predictive models applied to soil moisture levels—a 
critical aspect of precision agriculture. The sample dataset 
was extended to include simulated predicted values and 
performance metrics such as mean squared error (MSE) 
and R-squared (R2) were calculated using the scikit-learn 
library. The graphical representation of the actual versus 
predicted soil moisture levels, accompanied by the analysis 
of residuals, provided a nuanced understanding of the 
model’s efficacy. These metrics and visualizations contribute 
to the evaluative framework necessary for assessing the 
reliability and accuracy of predictive models in precision 
agriculture scenarios. This research methodology aligns 
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with the overarching goal of the manuscript—to investigate 
and illustrate the practical implications of IoT in precision 
agriculture. By employing both illustrative visualizations 
of sensor data and a performance evaluation of predictive 
models, the study offers a comprehensive exploration of 
the potential and challenges associated with the application 
of IoT technologies in the context of crop monitoring. This 
dual-pronged approach enhances the robustness of the 
findings and provides valuable insights for researchers, 
practitioners, and policymakers invested in the intersection 
of agriculture and IoT (Radoglou-Grammatikis, P., et al., 2020) 
and (Ramdinthara, I. Z., & Bala, P. S. 2019).

Results And Discussion

Soil Temperature Over Time
The graph in Figure 1 depicting soil temperature over 
time reveals dynamic variations in soil temperature over a 
specified timeframe. The Y-axis, representing temperature 
in degrees celsius, ranges from 20 to 30℃, capturing the 
diverse climatic conditions. The X-axis is delineated by 
timestamps, each corresponding to a specific date and time. 
The observed trends in the graph showcase fluctuations 
in soil temperature, with values ranging from 25.25°C on 
January 1 at 00:00 to 26.00°C on January 2 at 00:00, followed 
by a subsequent decrease to 24.75°C on January 3 at 00:00. 
The temperature then experiences a rise to 25.50°C on 
January 4 at 00:00. These variations illustrate the temporal 
dynamics of soil temperature, which is a critical parameter 
influencing plant growth, nutrient availability, and microbial 
activity in precision agriculture (Saranya, T., et al., 2023).

The fluctuations in soil temperature can be attributed 
to several factors. Climatic conditions, such as diurnal 
temperature variations, can impact soil temperature, 
affecting the metabolic processes of plants and soil 
organisms. Additionally, agricultural practices, irrigation 
patterns, and soil properties contribute to the observed 
temporal changes. Understanding these variations is crucial 
for farmers and agronomists, as it enables informed decision-
making regarding planting schedules, irrigation timing, 
and the selection of suitable crops based on temperature 
preferences. The results of this analysis underscore the 
significance of continuous soil temperature monitoring 
facilitated by IoT technologies in precision agriculture. The 
ability to capture real-time data enables farmers to respond 
proactively to temperature fluctuations, optimizing crop 
management strategies. Moreover, the graph serves as a 
practical visualization tool, offering stakeholders a clear 
representation of how soil temperature evolves over time. 
The discussion emphasizes the relevance of the presented 
graph in providing actionable insights into soil temperature 
dynamics. The identified trends and fluctuations contribute 
to a holistic understanding of the environmental conditions 
influencing crop growth. 

Salinity Over Time
The graph in Figure 2 illustrating salinity over time provides 
a visual representation of the variations in salinity levels 
across different timestamps. The Y-axis, denoting salinity 
level, spans from 0.14 to 0.20, reflecting the diverse salinity 
conditions observed. The X-axis is defined by timestamps, 
each corresponding to a specific date and time. Analyzing 
the trends in the graph reveals fluctuations in salinity levels 
over the defined timeframe. Noteworthy patterns include 
a peak salinity level of 0.18 on January 2 at 00:00, a trough 
at 0.14 on January 3 at 00:00, and a subsequent rise to 
0.17 on January 4 at 00:00. These fluctuations in salinity 
are indicative of the complex interplay between factors 
such as soil composition, irrigation practices, and climatic 
conditions, all of which influence the concentration of salts in 
the soil. The observed variations in salinity levels hold critical 
implications for precision agriculture. Elevated salinity levels 
in the soil can impede water absorption by plants, leading 
to osmotic stress and reduced crop yield. Conversely, low 
salinity levels may signal inadequate nutrient availability, 
impacting plant growth and development. Monitoring 
these fluctuations in real-time through IoT technologies 
enables farmers to implement targeted interventions, adjust 
irrigation schedules or employ soil amendments to mitigate 
salinity-related challenges (Shafi, U., et al., 2019).

The graph serves as a valuable tool for stakeholders 
in precision agriculture by offering a visual depiction of 
the dynamic nature of soil salinity. It facilitates a deeper 
understanding of how salinity levels change over time, 
guiding farmers in making informed decisions for optimal 
crop management. This visual representation can aid in the 
identification of trends and patterns, empowering farmers 
to adopt proactive measures to maintain soil health and 
sustain crop productivity. The discussion underscores 
the significance of the presented graph in unraveling the 
intricate relationship between salinity levels and temporal 
variations. The findings contribute to the broader discourse 
on precision agriculture, emphasizing the role of IoT in 
providing actionable insights for sustainable and adaptive 
farming practices. 

Figure 1: Soil temperature over time

Figure 2: Salinity over time
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Soil Moisture and Conductivity Over Time
The composite graph in Figure 3 illustrating soil moisture 
and conductivity over time provides a comprehensive 
view of the dynamic interplay between soil moisture 
and conductivity at different timestamps. The Y-axis, 
representing values ranging from 20 to 30, encompasses 
both soil moisture and conductivity parameters. The X-axis 
is characterized by timestamps, corresponding to specific 
dates and times. Examining the graph reveals fluctuations in 
both soil moisture and conductivity values over the defined 
timeframe. The distinctive patterns include soil moisture 
levels consistently below 100 and conductivity consistently 
above 300. This dual representation offers insights into the 
concurrent behavior of these two critical parameters in the 
context of precision agriculture. The persistent soil moisture 
levels below 100 indicate a condition where the soil may be 
relatively dry, potentially impacting plant water uptake and 
overall crop health. Simultaneously, the conductivity values 
consistently exceeding 300 suggest a higher concentration 
of dissolved salts in the soil, which can affect nutrient 
availability and soil structure. These combined observations 
highlight the need for targeted interventions, such as precise 
irrigation strategies or soil amendments, to address both 
aspects of soil health (Singh, P. K., & Sharma, A. 2022).

The graph serves as a valuable diagnostic tool for 
farmers and agronomists, offering a visual representation 
of the intricate relationship between soil moisture and 
conductivity. This visual depiction aids in the timely 
identification of conditions that may impede optimal crop 
growth. The ability to monitor these parameters in real-time 
through IoT technologies enables stakeholders to implement 
adaptive and proactive measures, ensuring sustainable and 
efficient agricultural practices. The discussion emphasizes 
the significance of the presented graph in unraveling the 
simultaneous dynamics of soil moisture and conductivity. 
The findings contribute to the broader understanding of 
how these parameters coalesce and influence the overall 
health of the soil. This dual representation enhances the 
capacity of precision agriculture to address multifaceted 
challenges by providing a nuanced perspective on soil 
conditions. As the agricultural landscape continues to 
evolve, the insights gleaned from such visualizations are 
crucial for fostering resilience and sustainability in crop 
management practices (Siregar, R. R. A., et al., 2022).

Actual vs Predicted Soil Moisture
The graph in Figure 4 comparing actual vs predicted soil 
moisture presents a visual representation of the concordance 
between observed and forecasted soil moisture levels over 
a specified timeframe. The Y-axis, denoting soil moisture 
values, ranges from 0 to 90, reflecting the diversity 
of moisture conditions. The X-axis is characterized by 
timestamps, representing the dates for which both actual 

and predicted soil moisture data are available. Analyzing 
the graph reveals a close alignment between the actual 
and predicted soil moisture values across the defined 
timestamps. The actual soil moisture values, ranging from 
31 to 38, demonstrate a degree of variability reflective of 
natural fluctuations in soil moisture. The predicted soil 
moisture values, generated through a simulation process, 
closely track the actual values, indicating a robust predictive 
model (TAŞKIN, D., & Yazar, S. 2020).

The visual representation serves as a powerful diagnostic 
tool for assessing the accuracy and reliability of predictive 
models in precision agriculture. The close alignment 
between actual and predicted values suggests that the 
model effectively captures the underlying patterns and 
dynamics governing soil moisture variations. This alignment 
is crucial for farmers and stakeholders, as it instills confidence 
in the predictive capabilities of the model and supports 
informed decision-making in crop management. The 
significance of this analysis lies in the ability to identify 
potential deviations between actual and predicted soil 
moisture values. Discrepancies may indicate areas where 
the model requires refinement or where external factors, not 
accounted for in the model, exert influence. By continually 
evaluating and refining predictive models based on actual 
observations, precision agriculture can enhance the efficacy 
of decision support systems, ultimately contributing to 
more efficient resource utilization and improved crop 
yield. The discussion underscores the practical implications 
of the actual vs predicted soil moisture graph in the 
context of precision agriculture. The close agreement 
between observed and forecasted values enhances the 
reliability of predictive models, providing farmers with 
actionable insights into soil moisture dynamics. This visual 
representation contributes to the ongoing discourse on the 
application of IoT and data-driven approaches in agriculture, 
emphasizing the importance of accurate predictions for 
sustainable and adaptive farming practices.

Figure 3: Soil moisture and conductivity over time

Figure 4: Actual vs predicted soil moisture
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Residuals Over Time
The graph in Figure 5 illustrating residuals over time provides 
valuable insights into the discrepancies between actual and 
predicted soil moisture values across different timestamps. 
The Y-axis, representing residuals, spans from -0.5 to 2, 
reflecting the deviations between the predicted and actual 
soil moisture levels. The X-axis is delineated by timestamps, 
corresponding to specific dates for which the model 
generated predictions. Analyzing the graph reveals a pattern 
of residuals fluctuating around zero, indicating a balanced 
distribution of overestimations and underestimations in 
the predictive model. The residuals, which represent the 
differences between predicted and actual values, showcase 
variations in model accuracy over time. Notably, timestamps 
with residuals deviating from zero may signify periods 
where the model struggled to capture certain soil moisture 
dynamics accurately. Understanding and interpreting 
residuals is integral to refining predictive models in precision 
agriculture. A well-distributed pattern around zero suggests 
that the model captures the majority of the variance in 
soil moisture, providing reasonably accurate predictions. 
However, identifying timestamps with significant deviations 
is essential for model improvement. Deviations may result 
from unaccounted environmental factors, changes in soil 
composition, or the presence of anomalies that the model 
did not anticipate (Triantafyllou, A., et al., 2019).

The significance of this analysis lies in the diagnostic 
capability of residuals. Identifying patterns in residuals helps 
in understanding the limitations of the model and guides the 
refinement process. Adjustments to the model parameters, 
inclusion of additional features, or addressing outliers in 
the data can enhance the overall accuracy of the predictive 
model. The discussion underscores the practical implications 
of the residuals over time graph in the context of precision 
agriculture. The observed pattern provides valuable 
feedback on the model’s performance, guiding iterative 
improvements for more accurate soil moisture predictions. 
This iterative refinement process is crucial for ensuring 
the reliability of predictive models in dynamic agricultural 
environments, contributing to the advancement of data-
driven decision-making practices in precision agriculture.

Conclusion 
The study employed a dual approach, utilizing simulated IoT 
data and predictive models, providing a holistic exploration 

of IoT applications in precision agriculture, encompassing 
soil temperature, salinity, moisture, and conductivity.

Visualizations, such as line plots, effectively conveyed 
temporal variations in critical parameters, aiding in 
understanding the dynamic nature of soil conditions. These 
visual representations serve as practical tools for decision-
making in precision agriculture. The study extended its focus 
to the evaluation of predictive models for soil moisture, 
employing performance metrics like MSE and R-squared 
(R2). This evaluative framework contributes to the reliability 
and accuracy assessment of predictive models in precision 
agriculture scenarios.

The results highlighted the practical implications 
of continuous soil temperature monitoring, salinity 
fluctuations, and the interplay between soil moisture and 
conductivity. Farmers and stakeholders can leverage these 
insights for informed decision-making, and optimizing crop 
management strategies.

The study’s dual-pronged approach enhances the 
robustness of findings and provides valuable insights for 
researchers, practitioners, and policymakers. It contributes 
to the broader discourse on the integration of IoT 
technologies in agriculture, emphasizing the role of data-
driven approaches for sustainable and adaptive farming 
practices.
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