
Abstract
This study employs an Internet of Things (IoT)-based simulation to investigate environmental parameters critical to sustainability and 
public health. Over a 10-hour period, temporal variations in air quality parameters, including carbon dioxide (CO2), nitrogen dioxide 
(NO2), and particulate matter (PM 2.5), were monitored. CO2 levels exhibited a decline from 400 to 375 ppm, suggesting improvements 
in ventilation and reduced emissions. NO2 levels consistently decreased from 25 to 22 ppm, indicative of effective emissions control 
measures, while PM 2.5 levels increased from 10 to 25 µg/m³, possibly influenced by transient factors. Water quality monitoring revealed 
fluctuations in dissolved oxygen (DO) levels (8.20–8.80 mg/L) and pH levels (7.00–7.35) over 10 hours, emphasizing the dynamic nature 
of aquatic ecosystems. Soil moisture levels stood at 29.48%, and energy consumption was recorded at 270 units, highlighting the 
importance of resource-efficient management. The significance of IoT-enabled monitoring in tracking and responding to environmental 
parameter changes, contributing to environmental sustainability and public health. Continuous data collection empowers stakeholders 
to make informed decisions for improved air and water quality, sustainable agriculture, and energy efficiency. Further research aims to 
enhance simulation realism and validate findings against real-world IoT deployments.
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Introduction
The Internet of Things (IoT), a transformative technological 
paradigm, has found substantial application in the realm 
of environmental sustainability and monitoring. As 
pressing challenges like climate change, resource scarcity, 
and ecosystem deterioration confront us, IoT emerges as 
a powerful ally, facilitating real-time data collection and 
analysis across various environmental parameters. This 
literature review embarks on a comprehensive exploration 
of IoT applications in the monitoring of air quality, water 
quality, soil moisture, and energy consumption, drawing 
from a wide-ranging body of research. Air quality represents 
a critical concern for public health and environmental well-
being. Low-cost IoT sensors have revolutionized air quality 
monitoring, making it more accessible and responsive. 
Research by (Almalki, F. A., et al., 2023) demonstrated IoT 
sensors’ potential to detect fine particulate matter, enabling 
real-time air quality assessments. (Amani, M., et al., 2020) 
further underlined the value of IoT-based monitoring in 
mitigating the adverse health impacts of air pollution, 
promising proactive interventions to address air quality 
issues at their source.

Water quality is fundamental to sustainable development, 
with implications for potable water safety and aquatic 



1080	 K. Sreenivasulu et al.	 The Scientific Temper. Vol. 14, No. 4

ecosystem health. (Awan, U., et al., 2021) illuminated 
IoT sensors’ role in monitoring water contaminants, 
providing solutions for safer drinking water. (Bates, A. E., 
et al., 2020) extended this discourse to the monitoring of 
aquatic ecosystems, emphasizing IoT’s capacity to protect 
fragile environments. These advancements enhance the 
understanding of water quality dynamics and empower 
timely responses to water-related crises. Efficient land and 
water resource management depends on accurate soil 
moisture data. IoT technologies have transformed precision 
agriculture by offering real-time insights into soil moisture 
levels. (Boursianis, A. D., et al., 2022) showcased the utility 
of IoT devices in optimizing water use for agriculture, 
contributing to resource conservation and sustainable 
farming practices. (Elavarasan, R. M., et al., 2020) delved 
into the broader implications of IoT-driven soil moisture 
monitoring, including its potential in sustainable land-use 
planning. IoT plays a pivotal role in optimizing energy usage 
and promoting energy efficiency. (Hajjaji, Y., et al., 2021) 
detailed how IoT-enabled smart grids enhance energy 
efficiency, reduce carbon emissions, and create more 
resilient energy systems. (Jia, M., et al., 2019) explored IoT’s 
role in developing energy-aware communities, and fostering 
sustainable consumption patterns.

Research Methodology
The research design is rooted in a simulation-based 
paradigm thoughtfully constructed to emulate IoT 
sensors’ intricate behaviors in diverse environmental 
monitoring scenarios (Kamble, S. S., et al., 2020). This 
methodological choice allows for the creation of a controlled 
environment conducive to the detailed examination of data 
generation and transmission dynamics, thereby enriching 
comprehension of IoT’s applicability to environmental 
sustainability. The core objectives of this study are 
meticulously delineated to guide research pursuits are, This 
study undertakes the task of authentically simulating the 
nuanced process of environmental data generation by IoT 
sensors, encompassing vital parameters such as air quality, 
water quality, soil moisture, and energy consumption 
parameters (Kumar, S., et al., 2019). In parallel, the intricate 
process of data transmission from virtual IoT sensors to a 
central server is faithfully replicated, mirroring real-world 
data communication protocols. To mirror real-world data 
collection practices, a meticulous implementation of a 
time-based data collection loop ensures data is gathered 
at regular intervals, akin to common practices observed in 
IoT deployments (Kashani, M. H., et al., 2021).

A systematic and structured data generation process 
is meticulously implemented. Four distinct IoT sensor 
types – air quality, water quality, soil moisture, and energy 
consumption – are considered, with each sensor type 
tasked with generating precise data relevant to its type and 
location. Sophisticated randomization techniques within 

predefined ranges introduce realistic variability into the 
generated data, closely approximating real-world conditions 
(Kouhizadeh, M., et al., 2020). To comprehensively evaluate 
IoT applications across a diverse range of environmental 
scenarios, four virtual sensor instances are thoughtfully 
deployed, representing distinct environmental contexts, 
including urban area, river, farm, and building. Upon data 
generation, each sensor instance authentically retrieves the 
generated data. Data transmission is faithfully simulated 
through the program, with sensor data accurately printed 
to the console. While the simulation approximates real-
world data communication processes, it is important to 
note that actual IoT deployments involve more complex 
network communication and data storage mechanisms. 
This research incorporates a time-based data collection 
loop, ensuring data is faithfully generated and transmitted 
at regular intervals, mirroring common data collection 
practices observed in genuine IoT deployments (Khan, I. 
S., et al., 2021).

Results And Discussion

Air Quality Parameters
This section presents the results of the IoT-based 
environmental monitoring simulation, focusing on the 
temporal variations in air quality parameters over a 10-hour 
period as shown in Figure 1. The analysis encompasses 
the levels of carbon dioxide (CO2), nitrogen dioxide (NO2), 
and particulate matter (PM2.5). These parameters are 
vital indicators of air quality and play a pivotal role in 
environmental sustainability and public health. The data 
collected is presented as a time series analysis, with time 
points ranging from 0 to 10 hours on the X-axis and pollutant 
levels in parts per million (ppm) or micrograms per cubic 
meter (µg/m³) on the Y-axis (Luo, L., et al., 2019).

Table 1 encapsulates the results obtained from 
environmental sensors measuring various parameters, 
including air quality (CO2, NO2, PM 2.5), water quality (pH, 
DO), soil moisture, and energy consumption. The recorded 
values, denoted as Value1, Value2, and Value3, represent 
distinct instances of sensor readings. In the context of 
air quality, the recorded concentrations of CO2, NO2, and 
PM 2.5 exhibit discernible fluctuations over the observed 
instances, reflecting the dynamic nature of atmospheric 
conditions. Water quality parameters, pH, and DO, display 
nominal variations, suggesting relative stability in the 
monitored aquatic environment. Notably, soil moisture 
content demonstrates a pronounced increase from 45.29 
to 47.12, indicating a shift in the hydration status of the 
soil at the specified locations as shown in Figure 2. The 
energy consumption parameter, though presented for 
two instances, exhibits values only for the first instance, 
emphasizing the intermittent nature of energy consumption 
data availability. This comprehensive presentation of sensor 



1081	 Investigating environmental sustainability applications using advanced monitoring systems

data serves as the basis for further investigation and analysis, 
fostering a nuanced understanding of the environmental 
dynamics under scrutiny.

Carbon Dioxide (CO2) Levels
The simulation reveals a noteworthy temporal pattern in CO2 
levels, starting at an initial concentration of 400 ppm and 
gradually decreasing to 375 ppm over the course of 10 hours. 
This decline in CO2 levels suggests dynamic changes in the 
monitored environment. Several factors could contribute 
to this trend. Firstly, improved ventilation systems or 
natural airflow may have increased air exchange, effectively 
reducing CO2 concentrations. Secondly, behavioral changes 
or reduced human activity during the simulation may have 
curbed CO2 emissions. Lastly, the introduction of cleaner 
energy sources or carbon reduction measures could have 
played a role in diminishing CO2 levels. The reduction in CO2 
levels highlights the dynamic nature of air quality within 
confined spaces or urban environments. It highlights the 
potential for IoT-enabled monitoring systems to capture 
and respond to changes in CO2 concentrations. The decrease 
in CO2 levels may be attributed to improved ventilation, 
reduced emissions, or cleaner energy sources (Nižetić, S., 
et al., 2020).

Table 2 data presents a comprehensive overview of 
sensor readings across various environmental parameters, 
including air quality (CO2, NO2, PM 2.5), water quality (pH, 
DO), soil moisture, and energy consumption. Notably, the 
air quality sensor deployed in the urban area recorded 
concentrations of CO2, NO2, and PM 2.5 at 418.91, 26.84, 
and 7.71, respectively. Concurrently, the water quality 
sensor situated in the river reported pH and DO values of 
6.78 and 6.56. The soil moisture sensor deployed in the 
farm registered a moisture content of 33.99. However, 
the energy consumption sensor in the building exhibited 
data solely for the consumption parameter, indicating 
a value of 229.06. The observed absence of values in 
certain instances highlights the intermittent nature of data 
collection for specific parameters, potentially influenced by 
environmental conditions or sensor calibration. This detailed 
presentation of sensor readings serves as a foundational 
dataset for subsequent analyses, enabling a nuanced 

exploration of environmental dynamics and facilitating 
informed decision-making in the realm of environmental 
monitoring and sustainability practices.

Nitrogen Dioxide (NO2) Levels
NO2 levels exhibit a consistent decline from 25 ppm at 
the beginning of the simulation to 22 ppm at the end of 
the 10-hour monitoring period. This consistent reduction 
in NO2 levels is indicative of effective emissions control 
measures. NO2 is commonly associated with vehicular 
traffic and industrial processes. The observed decrease 
in NO2 concentrations highlights the positive impact of 
environmental policies aimed at curbing emissions and 
improving air quality. The reduction in NO2 levels can be 
attributed to measures such as emission control regulations, 
the adoption of cleaner technologies, or a reduction in 
vehicular traffic. The consistent decline in NO2 concentrations 
highlights the efficacy of policies aimed at reducing this 
pollutant (Papa, A., et al., 2020).

Particulate Matter (PM 2.5) Levels
PM 2.5 levels exhibit an upward trend during the 10-hour 
monitoring period. Starting at 10 µg/m³, they gradually 
increase to 25 µg/m³. PM 2.5 consists of fine particles with 
diameters of 2.5 micrometers or smaller, which are known 
to pose health risks when inhaled. Several factors may 
contribute to this increase in PM 2.5 levels, including weather 
conditions, construction activities, or natural events such as 
dust storms. The increase in PM 2.5 levels may be attributed 
to transient factors influencing particle concentrations. 

Table 2: Environmental sensor data overview

Sensor CO2  NO2  PM
2.5 

pH DO Mois
ture

Consu
mption  

Air Quality 
(Urban Area)

418
.91

26.84  7.71  - - - -

Water Quality 
(River)  

- - - 6.78 6.56 - -

Soil Moisture 
(Farm)

- - - - - 33.99   

Energy 
Consumption     

- - - - - - 229.06    

Table 1: Analysis of air and water quality, soil moisture, and energy 
consumption parameters

Parameter  Value 1 Value 2 Value 3

Air quality (CO2)  421.57 415.84 -

Air quality (NO2)    27.32  21.94  -

Air quality (PM 2.5) 13.05  8.61   -

Water quality (pH)   7.82   7.98   -

Water quality (DO)   7.45   7.12   -

Soil moisture        - - 45.29  

Soil moisture        - - 47.12  

Energy consumption   328.17 413.49

Figure 1: Air quality monitoring
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These factors can include weather patterns that disperse 
particles, localized construction activities, or natural events 
such as dust storms. PM 2.5 levels are influenced by a 
wide range of environmental and human-related factors 
(Razmjoo, A., et al., 2021).

IoT sensors provide real-time data that can inform 
responses to changes in air quality. By continuously 
monitoring PM 2.5 levels, authorities and individuals 
can take timely actions to mitigate health risks. This 
may involve issuing air quality advisories, implementing 
dust control measures at construction sites, or adjusting 
ventilation systems in response to varying pollutant levels. 
The results of the simulation provide valuable insights 
into the temporal variations of key air quality parameters. 
The data reveals temporal changes in CO2, NO2, and PM 2.5 
levels, indicating the dynamic nature of air quality within 
monitored environments. The observed trends in CO2 and 
NO2 levels can be attributed to factors such as improved 
ventilation, reduced emissions, or policy-driven changes 
in environmental practices. In contrast, the increase in 
PM 2.5 levels may be linked to transient factors such as 
weather conditions and local activities. IoT sensors empower 
continuous monitoring, enabling real-time responses 
to fluctuations in air quality. This data-driven decision-
making facilitates informed actions to maintain or improve 
air quality, contributing to environmental sustainability 
and public health. The findings highlight the significance 
of IoT-based environmental monitoring in tracking and 
responding to changes in air quality over time (Ullo, S. L., & 
Sinha, G. R. 2020). 

Water Quality Monitoring
This section presents the results of IoT-based water quality 
monitoring simulation, focusing on two crucial parameters: 
Dissolved oxygen (DO) levels and pH levels as shown in 
Figure 3. These parameters are fundamental in assessing 
water quality, especially in the context of aquatic ecosystem 
health and potable water safety. The data collected is 
plotted against time periods ranging from 1 to 10 hours on 
the X-axis, while the Y-axis represents the corresponding 
values in milligrams per liter (mg/L) for DO and pH levels 
(Yigitcanlar, T., et al., 2020).

Dissolved Oxygen Levels
The simulation data reveals temporal variations in DO levels 
over the 10-hour monitoring period. The DO levels range 
from 8.20 to 8.80 mg/L as shown in Figure 4. This variation 
suggests dynamic changes in water quality, which can be 
influenced by various factors. The data illustrates fluctuations 
in DO levels, reflecting changes in water quality over time. 
The observed variations in DO levels can be attributed to 
natural processes such as photosynthesis and respiration 
of aquatic organisms. Increased DO levels may result from 
photosynthetic activity, while decreased levels could be due 
to high respiration rates or organic matter decomposition. 
Human activities, such as industrial discharge or nutrient 
runoff, can also influence DO levels. Continuous monitoring 
of DO levels using IoT sensors enables the real-time 
assessment of aquatic ecosystem health. Understanding 
these fluctuations allows for the identification of stressors 
on aquatic life and the implementation of remediation 
measures (Zheng, T., et al., 2021).

pH Levels
The simulation data also highlights temporal variations 
in pH levels over the 10-hour monitoring period, ranging 
from 7.00 to 7.35. pH is a critical parameter that determines 
the acidity or alkalinity of water, impacting aquatic life and 
water suitability for various purposes. The data showcases 
fluctuations in pH levels, indicating changes in water acidity 
or alkalinity. pH variations are influenced by a range of 
natural and anthropogenic factors. Natural processes like 
the weathering of minerals, organic matter decomposition, 
and the presence of aquatic vegetation can alter pH levels. 
Human activities such as industrial discharges or agricultural 
runoff can introduce pollutants that affect pH. IoT-enabled 
pH monitoring allows for the continuous assessment of 
water suitability for aquatic life and human use. It provides 
insights into potential pollution sources and informs water 
treatment strategies (Zhou, X., et al., 2021).

The data reveals fluctuations in DO and pH levels, 
indicating the dynamic nature of water quality in aquatic 
ecosystems. Variations in DO levels can be attributed to 
natural processes, such as photosynthesis and respiration, 

Figure 2: Air quality monitoring over time
Figure 3: Water quality monitoring over time
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as well as human-induced factors like pollution. pH 
fluctuations are influenced by both natural processes and 
human activities, which can impact aquatic ecosystems 
and water quality. IoT-based water quality monitoring 
offers continuous data collection, enabling real-time 
assessments of aquatic ecosystem health. This data-driven 
approach aids in identifying stressors, pollution sources, 
and necessary remediation actions. The findings emphasize 
the significance of IoT-based water quality monitoring in 
tracking and responding to changes in aquatic ecosystems 
and water sources. 

Soil Moisture and Energy Consumption
This section presents the results of IoT-based simulation, 
focusing on soil moisture levels and energy consumption 
data. Soil moisture is a critical parameter in agriculture and 
land resource management, while energy consumption is 
vital for sustainable infrastructure and resource optimization.

Soil Moisture Levels
The simulated data reveals a soil moisture level of 29.48%. 
Soil moisture is a key determinant of soil health and 
agricultural productivity. The observed value falls within 
the typical range for soil moisture, indicating a moderately 
moist soil condition as shown in Figure 5. The data reflects 
a specific soil moisture percentage, signifying the current 
soil condition in the monitored area. Soil moisture levels 
are influenced by factors such as precipitation, irrigation, 
evaporation, and plant water uptake. The observed value 
could be the result of recent weather patterns, irrigation 
practices, or natural soil properties. Continuous monitoring 
of soil moisture using IoT sensors assists farmers and land 
managers in making informed decisions about irrigation 
scheduling and crop management.

Energy Consumption
The simulation data indicates an energy consumption 
level of 270 units. Energy consumption is a crucial 
metric for assessing the efficiency of energy use in 
buildings and infrastructure as shown in Figure 6. The data 
represents the amount of energy consumed within the 
monitored infrastructure during the specified period. Energy 
consumption can vary based on factors like occupancy, 

temperature control, lighting, and equipment usage. The 
observed consumption level may be influenced by the 
operational patterns and energy-efficient measures in place. 
IoT-based energy monitoring enables real-time tracking of 
energy usage, aiding in the identification of opportunities 
for energy conservation and efficiency improvements.

In the results of the simulation provide insights into the 
current soil moisture condition and energy consumption 
within the monitored environment. The data presents 
specific values for soil moisture and energy consumption, 
offering a snapshot of the environmental parameters 
being monitored. Soil moisture levels are subject to natural 
and human-driven factors, while energy consumption 
depends on operational patterns and energy efficiency 
measures. IoT-enabled monitoring of soil moisture and 
energy consumption supports data-driven decision-making, 
facilitating efficient resource management and sustainability 
efforts. These findings highlight the importance of IoT-
based monitoring in diverse applications, from agriculture 
to energy management. Continuous data collection and 
analysis empower stakeholders to make informed decisions 
that enhance resource efficiency and sustainability.

Conclusion
•	 IoT-based environmental monitoring simulation 
revealed dynamic changes in air quality parameters over a 
10-hour period. CO2 levels decreased from 400 to 375 ppm, 
indicating potential improvements in ventilation and 
reduced emissions. NO2 levels consistently declined from 25 
to 22 ppm, reflecting effective emissions control measures. 

Figure 4: Water quality monitoring
Figure 5: Soil moisture monitoring

Figure 6: Energy consumption monitoring
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PM 2.5 levels increased from 10 to 25 µg/m³, possibly due to 
transient factors like weather conditions and local activities.
•	 Water quality monitoring showed fluctuations in DO 
levels from 8.20 to 8.80 mg/L and pH levels from 7.00 to 
7.35 over 10 hours. These variations indicated the dynamic 
nature of aquatic ecosystems and water suitability. DO 
changes were influenced by natural processes and human 
activities, while pH fluctuations were due to both natural 
and anthropogenic factors.
•	 Soil moisture levels stood at 29.48%, reflecting 
moderately moist soil conditions. Energy consumption 
was recorded at 270 units, emphasizing the importance of 
energy-efficient resource management.
•	 IoT-enabled monitoring facilitates real-time data 
collection and informed decision-making for environmental 
sustainability and resource conservation.
•	 Continuous monitoring empowers stakeholders 
to respond to changes in air quality, water quality, soil 
conditions, and energy consumption, contributing to 
improved environmental outcomes.
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