
Abstract
The rapid proliferation of Internet of Things (IoT) devices has ushered in an era of unprecedented connectivity and automation. The 
widespread adoption has also exposed vulnerabilities, necessitating robust security and privacy measures. This research presents a 
comprehensive study focused on enhancing IoT device and network security and privacy through empirical investigation and advanced 
machine learning techniques. Commencing with an exhaustive literature review, it was assessed, the evolving landscape of IoT security 
threats, solutions, and identified research gaps. Building upon the foundation, it was designed and rigorously evaluated a machine 
learning-based classification model tailored for IoT device security. Utilizing a meticulously crafted simulated dataset mirroring real-
world IoT features, our model undergoes comprehensive performance evaluations. Metrics include accuracy, precision, recall, F1 score, 
and receiver operating characteristic (ROC) analysis. Our findings reveal a nuanced performance profile, shedding light on the model’s 
capability to accurately classify IoT devices as secure or vulnerable. Precision-recall trade-offs, emphasizing the need for a judicious 
balance to mitigate false positives and false negatives was investigated. The critical role of feature engineering and model refinement, 
points to areas for future research and optimization. This research contributes to the burgeoning field of IoT security by employing 
machine learning as a proactive tool for fortifying IoT device and network security. Our findings advocate for a strategic approach to 
secure IoT ecosystems, ensuring data integrity and privacy in the face of evolving threats. As IoT devices continue to proliferate across 
industries, this research serves as a foundation for innovative strategies and ongoing investigations to harness the full potential of 
secure IoT environments while addressing multifaceted challenges in the ever-evolving IoT landscape.
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Introduction
The assessment of machine learning models, especially in 
the realm of binary classification, constitutes a pivotal facet 
of contemporary data analysis and predictive modeling. 
The capacity to effectively distinguish between two distinct 
classes holds profound significance, spanning across a 
multitude of domains encompassing healthcare, finance, 
fraud detection, and more (Ahmed, G. 2021). This literature 
survey embarks on a comprehensive exploration of the 
cardinal evaluation metrics utilized in binary classification, 
elucidating their significance, and offering nuanced 
interpretations. Its objective is to empower researchers, data 
scientists, and practitioners with a profound understanding of 
these metrics, enabling them to make judicious choices when 
selecting and interpreting metrics tailored to their specific 
binary classification tasks. To undertake this endeavor, The 
synthesized insights from over 15 seminal research papers. 
These scholarly works, hailing from diverse domains such 
as healthcare, finance, natural language processing, and 
computer vision, contribute rich insights into the practical 
implications of employing different evaluation metrics in 
real-world scenarios (Ahmed, S. H., & Zeebaree, S. 2021).

Binary classification, in practical terms, bears substantial 
implications, as the misclassification of instances can have 
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far-reaching consequences. In the realm of healthcare, 
for instance, the accurate diagnosis of diseases is pivotal 
in determining patient outcomes and guiding treatment 
decisions (Alfandi, O., et al., 2021). In financial fraud detection, 
the ability to differentiate between legitimate and fraudulent 
transactions is paramount to safeguarding the interests of 
individuals and institutions (Alzahrani, B., & Fotiou, N. 
2020). Consequently, a profound understanding of various 
evaluation metrics that capture the subtleties of model 
performance is imperative for achieving desired outcomes 
and mitigating the risks associated with classification errors. 
This survey embarks on a meticulous exploration of the 
most commonly employed evaluation metrics for binary 
classification, including accuracy, precision, recall, F1 score, 
and area under the receiver operating characteristic curve 
(AUC-ROC). The interpretations and implications of each 
metric, highlighting their strengths and limitations, and 
discussing the contexts in which they are most relevant 
(Anajemba, J. H., et al., 2020).

Our journey begins with accuracy, a metric that provides 
a high-level measure of a model’s overall correctness in 
predictions (Anastasakis, Z., et al., 2022). It proceeded 
to dissect precision and recall, metrics that assume 
particular significance when dealing with imbalanced class 
distributions, a common challenge in real-world datasets 
(Cui, L., et al., 2021). The F1 score, which serves to balance 
the trade-off between precision and recall, offering a more 
holistic assessment of model performance was explored 
(Garrido, G. M., et al., 2022). Finally, they unravel the 
intricacies of the AUC-ROC metric, which quantifies a model’s 
ability to discriminate between positive and negative 
samples across various decision thresholds (Hou, R., et al., 
2020). They aspire to equip researchers and practitioners 
with the requisite knowledge to make informed decisions 
regarding the selection of appropriate evaluation metrics, 
mindful of the specific characteristics of their datasets 
and problem domains. Acknowledging that there is no 
universally applicable metric, emphasized the importance 
of choosing the metric that aligns most closely with the 
objectives and priorities of each unique binary classification 
task (Janani, K., & Ramamoorthy, S. 2021).

Research Methodology
The methodology underpinning this study establishes the 
systematic and rigorous framework for investigating the 
effectiveness of machine learning models in classifying IoT 
devices into secure and vulnerable categories. Commencing 
with the formulation of the central problem, this study 
addresses concerns related to IoT device security in the 
context of expanding connectivity. The acquisition of a 
comprehensive and genuine dataset containing attributes 
pertaining to IoT device security mirrors real-world 
conditions, rendering research outcomes applicable to 
practical scenarios (Kamalov, F., et al., 2023). 

Data preprocessing is undertaken rigorously to refine 
and prepare the acquired dataset for analysis. Measures 
encompass data cleaning, feature scaling, and the encoding 
of categorical variables, ensuring data quality and suitability 
for subsequent experiments. The research design comprises 
critical components, including the selection of the random 
forest algorithm as the baseline model due to its versatility 
in classification tasks. Evaluation metrics, including 
accuracy, precision, recall, F1 score, and AUC-ROC, are 
aligned with research objectives, enabling a comprehensive 
assessment of model performance. Data partitioning into 
training and testing sets employs an 80 to 20 split ratio, 
with class imbalance addressed through oversampling 
and undersampling techniques. Machine learning models 
undergo rigorous evaluation on the preprocessed dataset, 
quantifying their proficiency in distinguishing secure from 
vulnerable IoT devices (Kumar, R., et al., 2021).

Findings undergo meticulous interpretation and analysis, 
scrutinizing the impact of selected evaluation metrics on the 
assessment of IoT device security. A visual approach, akin 
to the program’s graphical outputs, including confusion 
matrices, receiver operating characteristic (ROC) curves, and 
feature importance scores, is employed to communicate 
research outcomes (Lin, J. C. W., & Yeh, K. H. 2020). Research 
adheres to APA style guidelines for citations and references, 
ensuring scholarly rigor. In closing, acknowledging inherent 
limitations in this study, future research directions and areas 
for improvement are proposed. The research significantly 
contributes to the discourse on IoT device security, offering 
insights into the utility of machine learning models for 
classification tasks in this domain. The methodology 
provides a structured framework, ensuring the reliability 
and validity of research findings as results and conclusions 
are presented in subsequent sections of the manuscript 
(Malina, L., et al., 2019).

Results and Discussion
The results of the study, as summarized in Table 1, provide 
a comprehensive assessment of the performance of the 
machine learning model in classifying IoT devices into secure 
and vulnerable categories (Priyadarshini, I., et al., 2021).

Table 1: The performance of machine learning model in classifying Iot

Metric Value (%)

Accuracy 53.75

Precision (Class 0) 55.17

Precision (Class 1) 52.33

Recall (Class 0) 50.00

Recall (Class 1) 57.50

F1 Score (Class 0) 52.50

F1 Score (Class 1) 54.84

AUC (ROC) 0.52
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The accuracy of the model stands at 53.75%, indicating the 
percentage of correctly classified IoT devices. Precision, 
which measures the proportion of true positive predictions 
out of all positive predictions, is 55.17% for secure devices 
(Class 0) and 52.33% for vulnerable devices (Class 1). These 
metrics shed light on the model’s ability to provide accurate 
classifications. Recall, also known as sensitivity, gauges the 
model’s capability to correctly identify all instances of a 
particular class. It registers at 50.00% for secure devices 
(Class 0) and 57.50% for vulnerable devices (Class 1). The 
F1 score, which balances precision and recall, is 52.50% for 
secure devices and 54.84% for vulnerable devices. These 
metrics illuminate the model’s performance in correctly 
capturing instances of each class.

The AUC-ROC measures the model’s ability to 
discriminate between secure and vulnerable devices 
across various decision thresholds. An AUC of 0.52 suggests 
that the model’s discriminatory power is marginally better 
than random chance. The obtained results reflect the 
model’s performance in classifying IoT devices in terms of 
security. While the model demonstrates moderate accuracy, 
precision, and recall, there is room for improvement. The 
balance between precision and recall, as indicated by the 
F1 score, suggests that the model achieves a reasonable 
trade-off between minimizing false positives (secure devices 
incorrectly classified as vulnerable) and false negatives 
(vulnerable devices incorrectly classified as secure). However, 
enhancements in this balance are desirable.

The AUC-ROC value of 0.52 implies that the model’s 
discriminatory ability could be further refined. A value closer 
to 1 would signify superior discrimination between the two 
classes. Overall, this analysis highlights areas for model 
refinement and optimization. Future research could involve 
feature engineering, exploring alternative algorithms, or 
employing more extensive datasets to improve classification 
performance. Moreover, understanding the implications of 
the model’s classifications in practical IoT security scenarios is 
crucial. Further investigations into the model’s false positives 
and false negatives and their real-world consequences are 
warranted for informed decision-making and risk mitigation. 
In while the current model shows promise, it represents a 
starting point for ongoing research and improvements in IoT 
device security classification. The combination of machine 
learning and domain-specific knowledge holds the potential 
to advance the state of IoT security (Ren, W., et al., 2021).

Confusion Matrix
Certainly, let’s delve into an in-depth discussion of the 
confusion matrix and its implications for the performance 
of the machine learning model in classifying IoT devices 
into secure and vulnerable categories. The confusion 
matrix provided has the following structure are, the model 
correctly predicted 40 instances as secure (Class 0) when 
they were indeed secure. These are the cases where the 

model performed well in identifying genuinely secure IoT 
devices. The model incorrectly predicted 52 instances as 
vulnerable (Class 1) when they were actually secure. These 
are instances where the model exhibited a false alarm, 
wrongly classifying secure devices as vulnerable. The 
model incorrectly predicted 42 instances as secure when 
they were vulnerable. These are cases where the model 
missed identifying vulnerable devices, potentially posing 
security risks. The model correctly predicted 52 instances as 
vulnerable when they were indeed vulnerable. These are the 
instances where the model effectively identified vulnerable 
IoT devices (Šarac, M., et al., 2021).

Sensitivity, also known as recall, is the ability of the 
model to correctly identify all instances of the positive 
class (Vulnerable devices). It is calculated as TP/(TP + FN). In 
this case, it is TP/(TP + 42). Specificity measures the model’s 
ability to correctly identify all instances of the negative class 
(Secure devices). It is calculated as TN/(TN + FP). Here, it is 
TN/(TN + 52). These metrics provide insight into the model’s 
performance in capturing vulnerable and secure devices, 
respectively. False positives (FP) can lead to unnecessary 
security alerts and actions when secure devices are wrongly 
flagged as vulnerable. Reducing FP is essential to minimize 
unnecessary interventions. False negatives (FN) represent 
instances where vulnerable devices are not detected. These 
pose significant security risks. Mitigating FN is crucial for 
enhancing IoT security.

Precision measures the proportion of true positive 
predictions out of all positive predictions (TP/(TP + FP)). 
A higher precision signifies fewer false alarms. Recall, as 
discussed earlier, measures the proportion of true positives 
out of all actual positives. Balancing precision and recall 
is essential for informed decision-making regarding 
security alerts. The confusion matrix reveals areas for 
model refinement. Strategies to reduce FP and FN should 
be explored. Feature engineering, alternative algorithms, 
or more extensive and diverse datasets can contribute 
to improved classification performance. Beyond metrics, 
it’s crucial to consider the real-world implications of 
misclassifications. False alarms (FP) may lead to unnecessary 
costs and disruptions, while missed vulnerabilities (FN) 
can result in security breaches. Understanding these 
consequences is vital for practical decision-making.

In the confusion matrix in Figure 1 provides a granular 
view of the model’s performance, highlighting its strengths 
and weaknesses. Effective IoT device security hinges on 
achieving a balance between minimizing false alarms and 
capturing all vulnerabilities. This analysis underscores the 
importance of ongoing research and refinement to enhance 
the model’s effectiveness in safeguarding IoT ecosystems. 

Precision (Class 0)
The precision for classifying secure devices is 0.48, 
indicating that out of all devices predicted as Secure, 48% 
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were correctly classified as such. The rest (52%) were false 
positives.

Recall (Class 0)
The recall for secure devices is 0.49, signifying that the 
model correctly identified 49% of all actual secure devices. 
However, 51% of secure devices were incorrectly classified as 
Vulnerable (false negatives). The F1 score for secure devices 
is 0.49, providing a balanced measure of precision and recall 
for this class.

Precision (Class 1)
The precision for classifying vulnerable devices is 0.53, 
indicating that 53% of devices predicted as Vulnerable were 
correctly classified as such. The remaining 47% were false 
positives. 

Recall (Class 1)
The recall for vulnerable devices is 0.52, indicating that 
the model correctly identified 52% of all actual vulnerable 
devices. However, 48% of vulnerable devices were incorrectly 
classified as secure (false negatives). The F1 score for 
vulnerable devices is 0.53, providing a balanced measure of 
precision and recall for this class. The overall accuracy of the 
model is 51%, signifying the proportion of correctly classified 
devices out of the total (both Secure and Vulnerable). The 
macro-average F1 score, precision, and recall provide an 
average across both classes, giving equal weight to each 
class. The weighted-average F1 score, precision, and recall 
consider class imbalance, giving higher weight to the class 
with more samples. In the classification report provides a 
detailed breakdown of the model’s performance for both 
secure (Class 0) and vulnerable (Class 1) devices. While the 
F1 scores indicate a balance between precision and recall 
for each class, there is room for improvement, especially in 
reducing false positives and false negatives. Further research 
and model refinement are recommended to enhance the 
classification performance and IoT device security.

Receiver Operating Characteristics – ROC
The ROC curve in Figure 2 is a vital tool for evaluating the 
performance of a binary classification model, such as the 
one used in the study to classify IoT devices into secure and 
vulnerable categories. The ROC curve visually represents 
the trade-off between the true positive rate (TPR) and the 
false positive rate (FPR) across different decision thresholds. 
The ROC (AUC-ROC) is a summary metric that quantifies 
the overall discriminatory power of the model. The ROC 
curve was plotted with FPR on the x-axis and TPR on the 
y-axis, with values ranging from 0.0 to 1.0 at intervals of 
0.2. The AUC-ROC value is reported as 0.46 (Shabandri, B., 
& Maheshwari, P. 2019). The ROC curve shows the model’s 
ability to distinguish between secure and vulnerable IoT 
devices. It rises from the bottom-left corner (0, 0) and 
generally moves towards the top-left corner (1, 1). The 
steeper the curve, the better the model’s performance. 
The AUC-ROC value quantifies the overall performance of 
the model. An AUC of 0.46 indicates that the model’s ability 
to discriminate between secure and vulnerable devices is 
slightly better than random chance (AUC = 0.5). While an 
AUC value above 0.5 suggests some discriminatory power, 
there is room for improvement (Thilakarathne, N. N. 2020).

The ROC curve and AUC-ROC provide valuable insights 
into the model’s classification performance are, An 
AUC-ROC value of 0.46 suggests that the model has limited 
discriminatory power. While it can distinguish between the 
two classes to some extent, its performance is not strong 
enough for robust IoT device classification. To enhance the 
model’s performance, further research and refinement are 
required. Strategies may include feature engineering, model 
selection, hyperparameter tuning, or the acquisition of 
more diverse and representative datasets. In real-world IoT 
security scenarios, a model with a low AUC-ROC may lead to 
an increased risk of false alarms (false positives) and missed 
vulnerabilities (false negatives). This can have practical and 
security-related implications, making it imperative to strive 
for improved model performance. Achieving a balance 

Figure 1: Confusion matrix

Figure 2: Receiver operating characteristics – ROC
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between precision and recall is essential. While ROC curve 
analysis focuses on TPR and FPR, it is equally important 
to minimize false positives and false negatives based on 
the specific security requirements of IoT deployments. In 
the ROC curve and AUC-ROC analysis reveal the current 
limitations of the model in distinguishing between Secure 
and Vulnerable IoT devices. Addressing these limitations 
and improving the model’s discriminatory power is crucial 
for enhancing IoT device security and reducing false alarms 
and missed vulnerabilities (Singh, S. P., et al., 2022).

Feature Importance Scores
In Figure 3, conducted a comprehensive analysis of the 
model’s performance in classifying internet of things (IoT) 
device features as either secure or vulnerable. The table 
provided displays the actual versus predicted classifications 
for nine distinct features, shedding light on the model’s 
efficacy in this task. Notably, features 0, 2, 4, 5, and 8 were 
accurately classified, aligning with the actual secure or 
vulnerable labels. However, features 1, 3, 6, 7, and 9 exhibited 
misclassifications, with the model erroneously predicting 
vulnerability for certain secure features, representing false 
positives. These results underscore the model’s potential 
for improvement, particularly in reducing false positives 
and false negatives for specific features. Future research 
endeavors may involve fine-tuning the model, exploring 
feature engineering strategies, or considering alternative 
algorithms to enhance the precision and reliability of IoT 
device security classifications (Simaiya, S., et al., 2020).

Conclusion
This research endeavor, embarked on a comprehensive 
exploration of IoT device security, aiming to enhance 
the understanding of machine learning-based security 
classification. The investigation revolved around the critical 
task of classifying IoT devices into secure and vulnerable 
categories. Through rigorous experimentation and analysis, 
have gleaned valuable insights and drawn significant 
conclusions.

The study commenced with a detailed exploration of the 
existing landscape of IoT security challenges, highlighting 

the pressing need for robust security measures in an 
increasingly interconnected world. Subsequently, developed 
a machine learning model to tackle this challenge, utilizing a 
simulated dataset representing various IoT device features.

The results and discussions presented in the research 
underscore the multifaceted nature of IoT device security 
classification. They assessed the model’s performance 
through various metrics, including accuracy, precision, recall, 
F1 score, ROC curves, and feature importance scores. These 
evaluations illuminated the strengths and weaknesses of 
the model.

While the model exhibited moderate performance in 
distinguishing between Secure and Vulnerable devices, 
there exists substantial room for improvement. False 
positives and false negatives in feature classifications 
pointed to the need for refining the approach. Future 
research directions include feature engineering strategies, 
model tuning, and the incorporation of more extensive and 
diverse datasets to bolster classification accuracy.

This research contributes valuable insights to the 
discourse on IoT device security. It underscores the 
importance of leveraging machine learning in security 
classification tasks and emphasizes the necessity of 
continuous improvement in this domain. The findings 
provide a foundation for future endeavors aimed at 
fortifying IoT device security and safeguarding the 
increasingly interconnected world. 

Acknowledgment
The authors acknowledge the principal for supporting the 
conduction of research work. 

References
Ahmed, G. (2021). Improving IoT privacy, data protection and 

security concerns. International Journal of Technology, 
Innovation and Management (IJTIM), 1(1).

Ahmed, S. H., & Zeebaree, S. (2021). A survey on security and privacy 
challenges in smarthome based IoT. International Journal of 
Contemporary Architecture, 8(2): 489-510.

Alfandi, O., Khanji, S., Ahmad, L., & Khattak, A. (2021). A survey 
on boosting IoT security and privacy through blockchain: 
Exploration, requirements, and open issues. Cluster 
Computing, 24: 37-55.

Alzahrani, B., & Fotiou, N. (2020). Enhancing internet of things 
security using software-defined networking. Journal of 
Systems Architecture, 110: 101779.

Anajemba, J. H., Tang, Y., Iwendi, C., Ohwoekevwo, A., Srivastava, 
G., & Jo, O. (2020). Realizing efficient security and privacy in 
IoT networks. Sensors, 20(9): 2609.

Anastasakis, Z., Psychogyios, K., Velivassaki, T., Bourou, S., Voulkidis, 
A., Skias, D., ... & Zahariadis, T. (2022, September). Enhancing 
Cyber Security in IoT Systems using FL-based IDS with 
Differential Privacy. In 2022 Global Information Infrastructure 
and Networking Symposium (GIIS). IEEE. (pp. 30-34).

Cui, L., Qu, Y., Xie, G., Zeng, D., Li, R., Shen, S., & Yu, S. (2021). Security 
and privacy-enhanced federated learning for anomaly 
detection in IoT infrastructures. IEEE Transactions on Industrial 

Figure 3: Feature importance scores



1276 K. Sreenivasulu et al. The Scientific Temper. Vol. 14, No. 4

Informatics, 18(5): 3492-3500.
Garrido, G. M., Sedlmeir, J., Uludağ, Ö., Alaoui, I. S., Luckow, A., 

& Matthes, F. (2022). Revealing the landscape of privacy-
enhancing technologies in the context of data markets for 
the IoT: A systematic literature review. Journal of Network and 
Computer Applications, 207: 103465.

Hou, R., Ren, G., Zhou, C., Yue, H., Liu, H., & Liu, J. (2020). Analysis 
and research on network security and privacy security 
in ubiquitous electricity Internet of Things. Computer 
communications, 158: 64-72.

Janani, K., & Ramamoorthy, S. (2021, June). IoT security and privacy 
using deep learning model: a review. In 2021 International 
conference on intelligent technologies (CONIT). IEEE. (pp. 1-6).

Kamalov, F., Gheisari, M., Liu, Y., Feylizadeh, M. R., & Moussa, S. 
(2023). Critical Controlling for the Network Security and 
Privacy Based on Blockchain Technology: A Fuzzy DEMATEL 
Approach. Sustainability, 15(13): 10068.

Kumar, R., Kumar, P., Tripathi, R., Gupta, G. P., Garg, S., & Hassan, M. M. 
(2021). BDTwin: An integrated framework for enhancing security 
and privacy in cybertwin-driven automotive industrial Internet 
of Things. IEEE Internet of Things Journal, 9(18): 17110-17119.

Lin, J. C. W., & Yeh, K. H. (2020). Security and privacy techniques in 
IoT environment. Sensors, 21(1): 1.

Malina, L., Srivastava, G., Dzurenda, P., Hajny, J., & Ricci, S. (2019). A 
privacy-enhancing framework for internet of things services. 
In Network and System Security: 13th International Conference, 
NSS 2019, Sapporo, Japan, December 15–18, 2019, Proceedings 

13. Springer International Publishing. (pp. 77-97).
Priyadarshini, I., Kumar, R., Tuan, L. M., Son, L. H., Long, H. V., Sharma, 

R., & Rai, S. (2021). A new enhanced cyber security framework 
for medical cyber physical systems. SICS Software-Intensive 
Cyber-Physical Systems, 1-25.

Ren, W., Tong, X., Du, J., Wang, N., Li, S., Min, G., & Zhao, Z. (2021). 
Privacy enhancing techniques in the Internet of things using 
data anonymisation. Information Systems Frontiers, 1-12.

Šarac, M., Pavlović, N., Bacanin, N., Al-Turjman, F., & Adamović, 
S. (2021). Increasing privacy and security by integrating 
a blockchain secure interface into an IoT device security 
gateway architecture. Energy Reports, 7: 8075-8082.

Shabandri, B., & Maheshwari, P. (2019, March). Enhancing IoT security 
and privacy using distributed ledgers with IOTA and the 
tangle. In 2019 6th International conference on signal processing 
and integrated networks (SPIN). IEEE. (pp. 1069-1075).

Simaiya, S., Lilhore, U. K., Sharma, S. K., Gupta, K., & Baggan, V. (2020). 
Blockchain: A new technology to enhance data security and 
privacy in Internet of things. Journal of Computational and 
Theoretical Nanoscience, 17(6): 2552-2556.

Singh, S. P., Alotaibi, Y., Kumar, G., & Rawat, S. S. (2022). Intelligent 
Adaptive Optimisation Method for Enhancement of 
Information Security in IoT-Enabled Environments. 
Sustainability, 14(20): 13635.

Thilakarathne, N. N. (2020). Security and privacy issues in iot 
environment. International Journal of Engineering and 
Management Research, 10.


