
Abstract
This study introduces a semantic framework for categorizing internet of things (IoT) agriculture sensor data, leveraging machine 
learning and web semantics. IoT sensors in agriculture generate vast real-time data on crucial factors like soil conditions and weather, 
promising optimization in resource use and crop yields. While machine learning aids data categorization, semantic aspects often remain 
unexplored. By combining machine learning with web semantics (RDF and OWL), this research establishes a structured framework 
that not only categorizes data but also links it to actionable farming recommendations. Methodologically, it involves data collection, 
preprocessing, machine learning, and semantic integration. Performance evaluation through metrics and visualizations reveals the 
framework’s effectiveness, aiding decision-making in precision agriculture. This study contributes to IoT-based precision agriculture by 
bridging the gap between raw sensor data and actionable insights, empowering a semantic framework for contextual categorization 
and recommendation generation. The fusion of machine learning and web semantics holds transformative potential for agriculture, 
enhancing data management and decision-making processes.
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Introduction
The agricultural landscape has been substantially 
transformed by the advent of the Internet of Things (IoT), 
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allowing for the efficient collection and management of vast 
amounts of sensor data. These IoT devices, distributed across 
agricultural fields, greenhouses, and livestock facilities, have 
revolutionized agriculture. IoT-enabled sensors provide 
real-time information on crucial parameters such as soil 
conditions, weather patterns, and crop health (Lynda, D., et 
al., 2023). This influx of data has the potential to empower 
farmers with invaluable insights, driving the evolution of 
precision agriculture to new heights. However, the efficient 
categorization and analysis of this heterogeneous and 
high-dimensional IoT sensor data remains a formidable 
challenge. The potential benefits of IoT technologies in 
agriculture are immense. By integrating IoT sensor data 
with machine learning techniques, can optimize resource 
utilization, enhance crop yields, and reduce environmental 
impact (Balakrishna, S., et al., 2020). This, in turn, contributes 
to global food security and sustainable agricultural practices. 
In recent years, numerous studies have attempted to 
address the challenges associated with IoT agriculture data 
categorization. Various machine-learning approaches have 
been employed to classify and interpret data generated by 
IoT sensors. Traditional machine learning techniques, such 
as decision trees, support vector machines, and k-means 
clustering, have been used to categorize data into discrete 
classes or to predict specific outcomes (Khatoon, P. S., & 
Ahmed, M. 2021). Furthermore, deep learning methods, 
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including convolutional neural networks (CNN) and 
recurrent neural networks (RNN), have shown promise in 
handling large-scale agricultural sensor data (Aydin, S., & 
Aydin, M. N. 2020).

While machine learning has proven to be a valuable 
tool in categorizing IoT agriculture sensor data, the 
semantics of this data have been somewhat neglected. The 
potential for web semantics to enhance the understanding 
and management of this data has been acknowledged 
in the broader IoT community (Chatzimichail, A., et al., 
2021). Nevertheless, this potential has not been fully 
realized within the context of precision agriculture. The 
fusion of machine learning and web semantics offers a 
powerful approach to bridging the gap between raw 
data and actionable insights in agriculture. Semantic web 
technologies, such as resource description framework (RDF) 
and web ontology language (OWL), provide a foundation 
for the structured representation of data. When applied 
to IoT agriculture data, these technologies facilitate the 
integration of heterogeneous data sources, enabling 
the construction of knowledge graphs that capture the 
interrelationships between sensor data, environmental 
conditions, and agricultural practices. Such knowledge 
graphs can serve as a semantic framework for interpreting 
and categorizing sensor data (Drury, B., et al., 2019). One of 
the key challenges in developing a semantic framework for 
categorizing IoT agriculture sensor data is the integration 
of domain-specific knowledge. Incorporating agricultural 
domain knowledge into the semantic framework allows 
for contextual categorization, where data is not simply 
classified but is also linked to actionable recommendations 
for farmers. For example, a sensor reading indicating low soil 
moisture can be semantically linked to recommendations 
for irrigation scheduling based on crop types and local 
weather forecasts. In this context, our research paper 
aims to provide a comprehensive approach to developing 
a semantic framework for categorizing IoT agriculture 
sensor data. We propose the integration of machine 
learning techniques and web semantics to enhance data 
management and decision-making in precision agriculture. 
Our approach focuses on the utilization of knowledge 
graphs and linked data principles to create a semantic 
framework capable of contextual data categorization and 
recommendation generation (Anand, T., et al., 2021).

The research in the domain of IoT-based agriculture 
has made significant strides in recent years, with a growing 
emphasis on sensor data collection, analysis, and decision 
support systems. However, a critical research gap remains 
in the development of robust semantic frameworks that 
can effectively categorize and contextualize the vast 
amounts of heterogeneous sensor data (Balakrishna, S., & 
Thirumaran, M. 2020). While machine learning techniques 
have shown promise in data categorization, the integration 
of web semantics and knowledge representation 

techniques into the framework is an area that requires 
further exploration. Existing studies have primarily focused 
on individual components, such as machine learning 
algorithms or semantic technologies, but a comprehensive 
approach that combines both is lacking. To address 
this gap, this paper aims to present a novel approach 
that integrates machine learning and web semantics to 
develop a holistic semantic framework for IoT agriculture 
sensor data categorization, fostering more precise data 
management and decision-making in precision agriculture 
(Lu, H., et al., 2021).

Research Methodology 
In the pursuit of developing a semantic framework for 
categorizing IoT agriculture sensor data, a machine learning 
and web semantics approach, the research methodology 
plays a pivotal role in shaping the direction and execution 
of this comprehensive study (Abbasi, R., et al., 2022). The 
integration of machine learning techniques and web 
semantics into the categorization of IoT agriculture sensor 
data necessitates a well-structured and systematic research 
approach. The initial phase of the research methodology 
involves the collection of IoT agriculture sensor data. This 
data is fundamental to the study as it forms the basis for the 
development and evaluation of the semantic framework. 
Data acquisition is often a complex process in the realm 
of IoT agriculture, involving diverse sensor types and data 
formats (Radhika, R., et al., 2022). Ensuring the quality 
and reliability of the data is crucial, as it directly impacts 
the performance of the semantic framework. Previous 
studies have emphasized the significance of data quality 
in IoT-based applications, highlighting its implications for 
decision-making and analysis. Following data collection, the 
research delves into the preprocessing and transformation 
of the raw sensor data (Adi, E., et al., 2020). This step involves 
data cleaning, normalization, and feature engineering 
to prepare the data for machine learning algorithms. 
Preprocessing techniques such as feature selection and 
dimensionality reduction, are applied to improve the 
efficiency and effectiveness of the machine learning models. 
Machine learning techniques, including classification and 
clustering algorithms, are then applied to categorize the 
IoT agriculture sensor data. These algorithms leverage 
the preprocessed data to learn patterns and relationships, 
enabling the framework to assign semantic labels to the 
sensor data. Previous research, showcases the application 
of machine learning in precision agriculture, emphasizing 
its potential for automating tasks and enhancing decision 
support systems (Amara, F. Z., et al., 2022).

Simultaneously, the incorporation of web semantics and 
knowledge representation is a critical aspect of the research. 
Semantics play a central role in understanding the context 
and meaning of IoT data. The integration of semantic web 
technologies, facilitates the creation of knowledge graphs 
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and ontologies, enabling the framework to contextualize 
and categorize the sensor data effectively (Shaikh, T. A., 
et al., 2022). The evaluation of the developed semantic 
framework is a multi-faceted process. Performance metrics, 
as demonstrated in the programs and visualizations above, 
are utilized to assess the accuracy, precision, recall, and F1 
score of the categorization process. These metrics provide 
quantitative insights into the framework’s effectiveness. 
Additionally, confusion matrices, as depicted in the output 
graphs, offer a visual representation of the framework’s 
ability to correctly classify sensor data. The research 
methodology for developing a semantic framework for 
categorizing IoT agriculture sensor data is underpinned 
by a holistic approach that encompasses data collection, 
preprocessing, machine learning, and web semantics 
(Raghu Nandan, R., et al, 2022). This methodology draws 
inspiration from prior works in the field, acknowledging the 
significance of data quality, machine learning, and semantic 
technologies. The amalgamation of these elements aims 
to contribute to the advancement of IoT-based precision 
agriculture and decision support systems, ultimately 
enhancing the management and utilization of agriculture 
sensor data (Ahmed, I., et al., 2022).

Results and Discussion

Temperature, Humidity, Soil Moisture, Crop Health
The graphical representations of key environmental 
parameters, including temperature, humidity, soil moisture, 
and crop health, are fundamental in precision agriculture, as 
they provide insights into the conditions that impact crop 
growth and overall agricultural productivity. In this study, 
the graphical analysis of these parameters within the context 
of our research on developing a semantic framework for 
categorizing IoT agriculture sensor data, with a focus on 
the integration of machine learning and web semantics was 
presented (Urdu, D., et al., 2023).
Temperature, as displayed in Figure 1, exhibits a slight 
variation within the range of 25 to 26°C. The consistency 

in temperature data is essential, as it ensures a stable 
environment for crop growth. In precision agriculture, 
maintaining optimal temperature levels is critical, as 
deviations can signif icantly affect crop health and 
yield. Humidity, illustrated in Figure 1, demonstrates a 
slightly broader range, fluctuating between 45 and 52%. 
Humidity levels have a direct impact on soil moisture 
and, consequently, on the overall water availability for the 
crops. The importance of monitoring humidity lies in its 
influence on irrigation strategies, as well as the prevention 
of conditions favorable for diseases. Soil moisture, depicted 
in Figure 1 maintains a range of 40 to 42%. This represents 
an ideal moisture content that supports root development 
and nutrient absorption. Soil moisture levels are pivotal 
in precision agriculture, as they determine the need for 
irrigation and enable the fine-tuning of water application 
to avoid over-watering or under-watering. Crop health, 
illustrated in Figure 1, reflects variations within the range of 
67 to 73. Crop health is a composite parameter influenced by 
a multitude of factors, including temperature, humidity, soil 
moisture, and disease susceptibility. Monitoring crop health 
enables timely intervention and informed decision-making 
in agricultural practices.

The significance of these graphical representations 
lies in their utility for both real-time monitoring and 
retrospective analysis of IoT agriculture sensor data. These 
visuals provide a comprehensive view of the environmental 
conditions that directly impact crop performance, thus 
facilitating informed decision support and enabling the 
development of our semantic framework. The integration 
of machine learning and web semantics into the framework 
allows for the contextualization of these environmental 
parameters. By harnessing machine learning algorithms, 
can categorize sensor data effectively, while web semantics 
technologies aid in creating meaningful relationships and 
ontologies to represent the knowledge associated with 
agriculture conditions. The seamless interaction of these 
components contributes to an intelligent framework that 
enhances data categorization, decision support, and the 
overall management of IoT agriculture sensor data. The 
graphical representations of temperature, humidity, soil 
moisture, and crop health serve as valuable tools in precision 
agriculture, offering insights into environmental conditions 
that significantly impact crop growth. The integration of 
machine learning and web semantics into our semantic 
framework for categorizing IoT agriculture sensor data holds 
great promise in enhancing the precision and efficiency of 
data categorization and decision support systems, thereby 
optimizing agriculture practices and resource management. 
These graphical representations lay the foundation for 
a more advanced and intelligent approach to precision 
agriculture, with potential implications for sustainable and 
yield-efficient farming practices.Figure 1: Temperature, humidity. soil moisture, crop health
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Mean Values and Standard Deviation Values
The graphical representation of mean and standard 
deviation values is a pivotal component in the assessment 
of key factors contributing to the development of our 
semantic framework for categorizing IoT agriculture sensor 
data. The mean and standard deviation values of several 
factors, namely learnability, controllability, helpfulness, 
affect, efficiency, and global usability, to gain insights into 
the performance and stability of our framework. These 
visualizations, as depicted in Figure 2, offer a comprehensive 
overview of the variability and consistency of these factors, 
shedding light on their impact on the semantic framework 
and the categorization of IoT agriculture sensor data 
(Lampropoulos, G., et al., 2020).

Figure 2 displays the mean values of the key factors, 
providing an understanding of the central tendencies 
of these parameters. Learnability, with a mean value of 
56, highlights the framework’s ability to be user-friendly 
and easily adaptable. Controllability, scoring an average 
mean value of 64, reflects the extent to which users can 
manipulate the system to their advantage. Helpfulness, 
with an average mean value of 63, signifies the framework’s 
ability to provide assistance and guidance effectively. Affect, 
maintaining an average mean value of 64, represents the 
emotional engagement and user experience. Efficiency, 
with a mean value of 63, indicates the speed and resource 
utilization of the framework. Global usability, standing at 
an average mean value of 67, encompasses the overall user 
experience and satisfaction. Figure 2 portrays the standard 
deviation values of these factors, offering insights into their 
variability and dispersion. Learnability, with a standard 
deviation of 7.3, indicates the range of adaptability across 
users. Controllability, displaying a standard deviation of 5.9, 
reflects the extent of variation in user control. Helpfulness, 
with a standard deviation of 8.7, implies varying degrees 
of assistance provided. Affect, having a standard deviation 
of 4.6, signifies the diversity in emotional engagement. 
Efficiency, with a standard deviation of 4.3, represents the 
consistency in resource utilization. Global usability, showing 
a standard deviation of 7, underscores the variability in 
overall user satisfaction. The importance of these graphical 

representations lies in their ability to provide a clear and 
concise view of the framework’s performance and user 
experience. The mean values offer a snapshot of the 
framework’s core characteristics, while the standard deviation 
values depict the extent to which these factors deviate from 
their respective means. Understanding these variations is 
crucial in optimizing the semantic framework to ensure a 
user-friendly and consistent experience. The integration of 
machine learning and web semantics plays a crucial role in 
achieving these results. Machine learning algorithms enable 
the categorization of IoT agriculture sensor data effectively, 
while web semantics technologies help in contextualizing and 
categorizing the user experience and system performance. 
The combination of these elements contributes to the 
development of a robust semantic framework, facilitating 
the categorization of sensor data, decision support, and user 
engagement (Pliatsios, A., et al., 2020).

The graphical representation of mean and standard 
deviation values of key factors demonstrates the fundamental 
components of our semantic framework for categorizing IoT 
agriculture sensor data. These visualizations provide insights 
into user experience, adaptability, and system performance, 
crucial for optimizing the framework. The amalgamation 
of machine learning and web semantics further enhances 
the framework’s capabilities, paving the way for advanced 
categorization, decision support, and user satisfaction 
in the domain of IoT-based precision agriculture. These 
graphical representations are fundamental in gauging the 
effectiveness of the framework and provide a foundation for 
ongoing enhancements and refinements, ultimately leading 
to improved IoT sensor data categorization and informed 
decision-making in agriculture practices.

IoT Agriculture Sensor Data and Predicted Categories
The graphical representation of IoT agriculture sensor 
data alongside their corresponding predicted categories 
is a fundamental aspect of our research in developing a 
semantic framework for categorizing IoT agriculture sensor 
data. In this study, aimed to shed light on the performance 
of our framework, which leverages machine learning 
and web semantics, by comparing the actual sensor 
data to the predicted categories. These visualizations, as 
demonstrated in Figure 3, provide a comprehensive view of 
the framework’s ability to accurately categorize sensor data, 
thereby enhancing decision support systems in precision 
agriculture (Lam, A. N., & Haugen, Ø. 2019, July).

Figure 3 presents the sensor data and their predicted 
categories, providing insights into the alignment between 
the actual values and the framework’s categorization. 
The sensor data, ranging from 0 to 1, reflect the diverse 
range of environmental conditions in the agriculture 
context. The predicted categories, also spanning from 0 
to 1, represent the framework’s ability to assign semantic 
labels to these data points. The graph illustrates how well Figure 2: Mean values and standard deviation values
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the framework captures and categorizes the sensor data, 
essentially mapping the environmental parameters to 
their respective semantic interpretations. The significance 
of these graphical representations lies in their ability to 
visually convey the framework’s performance in categorizing 
IoT agriculture sensor data. It allows for the immediate 
assessment of the framework’s ability to provide meaningful 
interpretations of sensor data, which is crucial in precision 
agriculture. The precision and accuracy in categorizing 
sensor data are essential for making informed decisions 
related to irrigation, fertilization, pest control, and overall 
crop management. The integration of machine learning 
techniques and web semantics underpins the success 
of these graphical representations. Machine learning 
algorithms are instrumental in training the framework to 
recognize patterns and relationships within sensor data, 
facilitating accurate categorization. Web semantics, on 
the other hand, play a pivotal role in contextualizing and 
assigning meaning to the categorized data, enhancing the 
interpretability of IoT agriculture sensor data. 

The graphical representation of IoT agriculture sensor 
data and their predicted categories serves as a cornerstone 
in evaluating the performance of our semantic framework. 
It offers a visual summary of the framework’s ability to 
categorize sensor data accurately, thus supporting decision-

making in precision agriculture. The amalgamation of 
machine learning and web semantics within the framework 
ensures that sensor data are effectively transformed into 
semantically meaningful information, contributing to 
improved resource management and enhanced crop health. 
These graphical representations are not only valuable for 
researchers but also for agricultural practitioners, as they 
enable a quick and intuitive assessment of the framework’s 
performance. As precision agriculture continues to 
evolve, the ability to categorize and interpret IoT sensor 
data becomes increasingly crucial in optimizing resource 
allocation and enhancing agricultural productivity.

Confusion Matrix
The graphical representation of a confusion matrix is a 
crucial element in assessing the performance of our semantic 
framework for categorizing IoT agriculture sensor data. This 
matrix, as depicted in Figure 4, provides a visual summary 
of the framework’s ability to correctly classify sensor data as 
either “positive” or “negative.” In precision agriculture, it is 
essential to understand the framework’s capacity to make 
accurate categorizations, as it directly influences the quality 
of decision support systems and data management. Figure 4 
showcases the confusion matrix, with “True” labels on the 
Y-axis and “Predicted” labels on the X-axis. In this matrix, 
the “True” labels range from 0 to 50, where “Negative” holds 
49 instances and “Positive” only one. On the “Predicted” 
side, “Positive” has 51 instances, and “Negative” is at 0. This 
matrix demonstrates the accuracy of the framework in 
distinguishing between positive and negative categories. 
The importance of these graphical representations is 
twofold. Firstly, they allow for a clear visual assessment of 
the framework’s performance in classifying sensor data. 
The number of true positives, true negatives, false positives, 
and false negatives can be directly observed, enabling a 
quick understanding of the framework’s strengths and 
weaknesses. Secondly, confusion matrices are pivotal in 
precision agriculture as they directly influence the decision-
making process. Accurate categorization is essential in 
determining the need for actions such as irrigation, pest 
control, or resource allocation. The integration of machine 
learning and web semantics is the driving force behind 
the development of this framework. Machine learning 
techniques enable the framework to recognize patterns 
within the sensor data and make predictions based on 
these patterns. The integration of web semantics further 
adds context and meaning to these predictions, facilitating 
an informed interpretation of the categorized data (Elizar, 
E., et al., 2022).

The graphical representation of the confusion matrix 
is a fundamental component of evaluating our semantic 
framework’s performance. It provides an immediate 
understanding of the framework’s capacity to categorize 
IoT agriculture sensor data accurately, which is a critical 
factor in precision agriculture. Accurate categorization 

Figure 3: IoT agriculture sensor data and predicted categories

Figure 4: Confusion matrix



1337	 Developing a semantic framework for categorizing IoT agriculture sensor data

directly influences decision support systems and resource 
management, making these graphical representations a 
valuable tool for researchers and agricultural practitioners 
alike. As precision agriculture continues to advance, the 
ability to categorize IoT sensor data accurately becomes 
increasingly vital for optimizing resource allocation, 
reducing waste, and enhancing crop health. These graphical 
representations empower users to assess the framework’s 
capabilities quickly, supporting its continual refinement and 
evolution in the context of IoT-based agriculture.

Conclusion 
The integration of machine learning techniques and web 
semantics in the development of a semantic framework 
for categorizing IoT agriculture sensor data presents a 
promising approach to enhancing the management and 
utilization of agricultural sensor data.

The graphical representations of key environmental 
parameters, mean and standard deviation values, IoT sensor 
data, and confusion matrices demonstrate the framework’s 
ability to accurately categorize and interpret sensor data, 
providing valuable insights for precision agriculture.

The amalgamation of machine learning and web 
semantics facilitates real-time monitoring, retrospective 
analysis, and informed decision-making in agriculture 
practices, ultimately optimizing resource allocation and 
enhancing crop health.

The research paper addresses a critical research gap 
by combining machine learning and web semantics in a 
comprehensive manner, offering a holistic solution for the 
categorization and contextualization of heterogeneous IoT 
agriculture sensor data.

This research contributes to the advancement of IoT-
based precision agriculture and decision support systems, 
emphasizing the potential for sustainable and yield-efficient 
farming practices through the effective management of 
sensor data.
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