
Abstract
This paper characterizes the periodic points of additive cellular automata such as, arbitrary union and arbitrary intersection, the 
relationship between periodic sets and the existence of additive cellular automata with cardinality of periodic points one and two and 
existence for higher cardinality more than two.
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Introduction
Knowing about the periodic properties of dynamical systems 
is a useful area of research and got attention after Sarkovski’s 
paper (Sarkovski, 2019), mathematician became actively 
focusing on dynamical systems as the set of periods of 
periodic points of a linear operator (Akbar et al., 2019). The set 
of periods of periodic points of a toral automorphism (Kannan 
et al., 2011) and in (Pillai et al., 2010), Periodic points for onto 
cellular automata in (Boyle and Kitchens, 1999). Sets of periods 
of continuous maps on some metric spaces (Saradhi, 1997). 

In this paper we are going to investigate the properties 
of  and 

}			    (Eq.3)
Which contains those points whose period divides  for 

the additive cellular automata in the specific form for
 where  .

Preliminaries 

Definition
 is called dynamical system where  is a topological 

space and  is a self-continuous map on  

We consider is a topological dynamical system for 
the rest of the article.

Definition
 is called the trajectory of any point  

belongs to 

Definition
The set of all distinct element of trajectory is called orbit 

Denoted by 

Definition
 is said to periodic point if there is  such that

					     (Eq.4)

The least  is called the period of  (Holmgren, 2010) 
and in ( Block and Coppel,2006)			    (Eq.5)

Here we get infinite number of natural numbers , 
satisfying equation (Eq.4) and all are multiples of .

Definition
A point of period one is called the fixed point fixed 

Definition
The set of periods denoted by 

Periods have many applications as the points repeat 
with fixed time.
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Periodic properties for dynamical systems has been an 
interesting problem. This has been studied extensively 
studied in the literature.

Definition
For natural number , Let 

We call  as an alphabet and its elements as symbols. Let 
 be the additive group of infinite two sided sequences 

of symbols in  and Let  be the infinite one sided 
sequences which is also an additive group of infinite order.

We can define metric on these spaces which induces 
the same topology. 

Given a one sided or two-sided sequence  let 
 be the sequence given by 

		  (Eq.6)
This defines a continuous self map of both  and , 

called the shift map.
The system  is called the two-sided shift map and 

 is called the full one-sided shift.
For the infinite two-sided sequence

,  where dot  is  the 
indication for 

Definition
A cellular automata is a dynamical system , such 

that it commutes with shift map defined in (Eq.6) 

Another definition is function  from  to  a cellular 
automata if there exist

  (radius) and a local rule 
 such that 

 		  (Eq.7)
For every  and .
That in the infinite sequence function value of every 

 depends upon the neighborhood of to .
Both definitions are equivalent proved by G.A.Hedlund 

(Hedlund , 1969)
For Example , 
Define  as .
Here  is depends upon neighborhood 

and .

Definition
Additive or linear cellular automata is one kind of cellular 
automata in which value of each  it the linear 
combination of its neighborhood values as the specified 
radius of cellular automata.

Let  be an integer and 
Additive cellular automata is a map from , for 

which is of the form 

(Eq.8)

For example, 
, 

Define  as .
Here  is depends upon neighborhood 

and .
The difference between cellular automata and additive 

cellular automata is the linearity. 

Results
Here we describe the basic properties periodic points of 
additive cellular automata defined in (Eq.8). 

As we defined in (Eq.2) and (Eq.3) we can write 
 				    (Eq.9)

So studying the properties of  is equivalent to the 
studying the properties of 

We write the following lemma without proving as it is 
trivial.

Lemma 1:  is an identity function from  to itself and 
 is additive cellular automata as defined in (Eq.8) then the 

map  is a homomorphism.
Proof: We can prove it by considering for all 

Lemma 2:  is a normal subgroup of .
Proof: As every element , 

 (Here  is zero element in )
That implies  is the kernal for the function 

 and kernal is normal subgroup for .
Lemma 3:  is a normal subgroup of .
Proof: Similarly, to the lemma 1 define function as 

 then  is the kernal for as  and 
normal subgroup for .

Theorem 1:  contains at least one element for any 
additive cellular automata defined in (Eq.8).

Proof: This can be proved in two ways.
From Lemma 1,  is a normal sub group of  and 

every normal subgroup of a additive group contains identity 
element that is zero element .

Here  
Another way is By the definition of Additive cellular 

automata which is linear combination of its neighbourhood 
values ( Which are all zeros) is zero i.e 

.

Theorem 2: Cardinality of  is denoted as  
then .

Proof: From Theorem 1 ,  contains at least one 
element of  that is zero element . So the cardinality is 
always greater than or equal to one.

Theorem 3:  contains at least one element for any 
additive cellular automata defined in (Eq.8).

Proof: By the lemma 3,  is a normal sub group of 
 and every normal subgroup of a additive group contains 

identity element that is zero element .
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Theorem 4: Cardinality of  is denoted as  then 
.

Proof: Similar to the theorem 2 as ,  is a normal sub 
group of .

Theorem 5: Every additive cellular automata has a 
periodic point .

Proof: As the definition of additive cellular automata 
defined in (Eq.8),

So  is the fixed point which is equal to periodic point 
of period 1 .

Theorem 6: Finite intersection and arbitrary intersection 
of  is non empty.

Proof: As every :  is having  element so finite and 
arbitrary intersection of  is non empty.

Theorem 7:  for every positive integer .
Proof: For all  then  

 
So 

: 

Theorem 8:  for any positive integer.
Proof: By the theorem 7, 

Theorem 9:   is the only subset such that 
 for every prime integer .

Proof: For prime   contains those elements whose 
period divides prime k. For prime k the divisors are 1 and 
itself.

So  is the only subset such that  for 
every prime integer .

Theorem 10:  is the only subset such that 
 where GCD of  

is 1.
Proof: By the definition of , it contains all the 

elements whose period divides .
As the gcd of  is 1.
The elements common to  and  are  

only.
So 

Theorem 11:  is the only subset such that 
 are primes.

Proof:  are primes so their gcd is 1. We can apply 
the theorem 10.

Theorem 12: The additive cellular automata is in the 
form of  then 

Proof: For  and image of every 
element is same including zero element.

So every element is fixed that is period one. So set of 
periods contains only one number that is 1. That implies the 
cardinality of  is 1.

In the case every point is periodic so .

Theorem 13: The additive cellular automata is in the form 
of  then .

Proof: For any additive cellular automata zero element is 
the fixed. Now we will examine for the conditions period 2.

As specified in (Holmgren et al., 2000), For  is a 
prime then  lies in the multiplicative group of 

 of order .
So Every element has some finite order , Such that 

.
.

If  is a prime then we get the cardinality of  is 2.
In another case if .
Then  contains in the unitary group of , which 

contains all the positive integers less than  and coprime to .
Here  has finite group. So, every element has some 

finite order , Such that .
.

In this case also we get cardinality of  is 2.
In other cases, we can’t guarantee the existence of the 

second period.

Discussion
The group nature of the periodic set of additive cellular 
automata was covered in this paper. We also discussed about 
different periodic sets’ cardinality. Finding a periodic set with 
a given cardinality for the given additive cellular automata 
remains an open question. We can also talk about the periodic 
nature of general cellular automata, but this is a little more 
difficult because in some cases, zero may not be a fixed point, 
making it impossible for it to be the normal subgroup of the 
additive group of two-sided infinite sequences modulo.
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