
Abstract
In this study, we reviewed various published works that used deep learning techniques to detect potato leaf disease. Deep learning 
techniques have shown remarkable detection performance for potato leaf disease. In particular, CNN has been shown to be efficient in 
extracting features from images and in identifying patterns that are challenging to identify using machine learning techniques. However, 
CNN architectures with different activation functions, batch sizes, and optimizers can cause different results. Therefore, in this work, a CNN 
model has been implemented to analyze the effect of different activation functions, batch sizes, and optimizers for the detection of potato 
leaf diseases. Based on the findings of three experiments, the leaky rectifier function performed best as the activation function for the 
convolutional neural network (CNN) model. AdaGrad’s optimizer showed superior accuracy compared to stochastic gradient descent (SGD), 
Adam, Adamax, and RMSProp algorithms. We also discovered that the model’s performance was even better, but only when the batch size 
used in the model was smaller than the size of the test dataset. The work is based on deep learning to identify potato leaf disease and provide 
researchers and practitioners with heuristic knowledge to help increase potato production when CNN is employed in the agricultural sector.
Keywords: Deep learning, CNN, Batch size, Optimizer, Activation function, Potato.
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Introduction
The potato has been part of the human diet for thousands of 
years, first in the southern portion of North America and then 
throughout the rest of the world. Potatoes are consumed 
as a vegetable in many developed countries, with adult 
consumption ranging from 50 to 150 g per day. On the other 
hand, in some rural areas of Africa and the highlands of Latin 
American countries, potato is considered a staple crop. It is 
consumed in significant quantities, with adult consumption 
ranging from 300 to 800 g per day (Burgos et al., 2020). 
The main reasons for the decline in worldwide potato 
production are early and late potato diseases (Tsedaley, 
2014; Yellareddygari et al., 2019). This phenomenon directly 
impacts the production of potatoes.

The global food system will need to be significantly 
improved, if it can sustainably and nutritiously feed the 
growing world population in the following decades (Devaux 
et al., 2020). Therefore, detecting potato leaf disease in the 
agricultural sector becomes essential for the agricultural 
industry to protect food security.

Recently, there has been a significant increase in the 
usage of deep learning techniques in agricultural sectors 
(Kamilaris & Prenafeta-Boldú, 2018; Sujatha et al., 2021; 
Zhong & Zhao, 2020). With the help of these techniques and 
information from plant communities, the suggested model 
may demonstrate the impact of hyperparameters on deep 
learning techniques for detecting potato leaf disease.

In this work, we compiled several published studies that 
utilized deep learning techniques and algorithms to detect 
potato leaf disease in the agriculture sector.

Deep learning is now widely used to detect potato leaf 
disease, but choosing the training hyperparameters for the 
disease detection model is time-consuming in this case 
(Kietzmann et al., 2018; Lee et al., 2020; Tiwari et al., 2020a), 
making it difficult for researchers and practitioners to make 
further advancements in the field. As a result, there isn’t 
much research that has examined how hyperparameters 
affect how well a deep learning model detects potato 
leaf disease in the agriculture sector. As a result, there 
appears to be limited empirical support for the idea that 
hyperparameters influence how well the deep learning 
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Figure 1: Sample leaf of (a) potato healthy, (b) potato late blight, (c) 
potato early blight, and (d) potato healthy (Hughes & Salathé, 2015). 

model performs when it comes to detecting potato leaf 
disease. In order to pick hyperparameters, empirically 
generated heuristic knowledge still needs to be improved.

In this study, we’ll look into the effect of hyperparameters 
on the deep learning models used to detect potato leaf 
disease in agriculture. In the current study, our contribution 
can be summarized as follows:
•  Effect of different activation functions on CNN model 

performance
•  The effect of different optimizers on CNN model 

performance
•  The effect of different activation functions on CNN 

model performance
This paper is organized as follows: Section 2 briefly 

summarizes published studies that have successfully 
detected potato leaf disease in the agricultural sector using 
different deep-learning techniques. Section 3 summarizes 
the dataset used for the study, including pre-processing and 
evaluating hyperparameters on the chosen dataset. Section 
4 presents the model results. Finally, this study ends with 
conclusions and suggestions for further research.

Literature Review

Deep learning techniques
Deep learning techniques have been used in a number 
of applications in the past, including image classification, 
pattern recognition, and natural language processing 
(Elsharif et al., 2020; Khalifa et al., 2021). Deep learning 
techniques for image classification and detection frequently 
employ convolutional neural networks (CNNs) (Albawi et al., 
2017; Kagaya et al., 2014; Sharma et al., 2018).

In computer vision applications, CNN is a widely used 
technique. It belongs to a type of deep neural network that 
is used to evaluate visual data. A convolutional phase is used 
to process an input image before assigning a label to it. First 
of all, an image is sent to the network; this is referred to as the 
input image. The input image is then processed in infinite 
steps; this is the convolutional part of the network. Finally, 
the neural network can detect the images of a potato leaf. 
An image is made up of an array of pixels that have height 
and width. A grayscale image has one channel, whereas a 
color image has three (one each for red, green, and blue). 
A channel is piled on top of another. Each pixel has a value 
ranging from 0 to 255 to represent the color’s intensity. For 
example, a pixel with a value of 0 will be white, whereas a 
pixel with a value close to 255 will be darker.

The most crucial element of the CNN model is the 
convolutional layer. To locally extract an object’s features 
from an image, convolution is utilized. It suggests that the 
network will be able to detect specific patterns throughout 
the image. A multiplication done element by element is 
called convolution. A feature map is the result of element-
wise multiplication. A small array of pixels in the image will 
receive the filter’s application during the convolutional 
phase. Generally, the filter will follow the input image in a 
33 or 55 pattern. This implies that the network will perform 
the convolution while swiping these windows across every 
input image.

An activation function is applied to the output after 
the convolution procedure to accommodate non-linearity. 
The pooling layer attempts to reduce the dimensionality 
further and include more key characteristics into the image 
using the 3D feature map of the convolution layer as input. 
The pooling process is used to make the supplied image’s 
dimensions smaller. Typically, the largest value of the feature 
map is used to pool the input image. After that, the feature 
map is flattened and given to the fully connected layer. The 
number of fully connected layers may vary depending on 
the problem and the network.

Deep learning techniques for potato leaf disease 
detection
A model for detecting potato leaf disease was designed by 
many researchers using deep learning techniques such as 
CNN and transfer learning. These strategies, according to 
recent studies, enhance prediction accuracy. For instance, 
Saeed et al., (2021) suggested deep learning techniques 
for the early diagnosis and detection of potato diseases. 
The method trains deep convolutional neural networks 
like ResNet-152 and InceptionV3 with an accuracy of 98.34 
and 95.24%, respectively, on the Kaggle potato dataset at a 
learning rate of 0.0005.

Asif et al., (2020) suggested a model that uses image 
processing methods to identify and diagnose diseases 
in potato leaves effectively. The five methods employed 
in the study are AlexNet, VggNet, ResNet, LeNet, and the 
Sequential Model. This provided model had a precision 
of 97.5%. Rashid et al., (2021) proposed a multi-level deep 
learning model for recognizing potato leaf disease. The 
proposed deep learning algorithm obtained 99.75% 
accuracy on the potato leaf disease dataset. The study by 
Chakraborty et al., (2022) demonstrated the mask region-
wbased convolutional neural network architecture and the 
residual network for detecting blight disease patches on 
potato leaves. In a field scenario with complex backgrounds, 
a manual study of the detection performance showed 
an overall precision of 98% on leaf images. Johnson et 
al., (2021) proposed a novel network architecture named 
MobOca_Net to recognize potato diseases. The lightweight 
MobileNetV2 was chosen as the foundation network to 
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improve the learning capability of classical MobileNetV2 
by incorporating the attention mechanism behind the 
pre-trained network, which was followed by an octave 
convolution block for extracting high-dimensional features. 
The proposed procedure outperformed other methods in 
terms of performance gain, with an average identification 
accuracy of 97.73% on various potato disease types. A potato 
leaf disease detection model was created by Kukreja et al., 
(2021) to identify and detect potato leaf diseases. They 
used a CNN-based deep learning multi-classification model 
for classifying 900 real-time images of potato crop plants 
with healthy and potato blight disease images based on 
their potato blight disease severity level, as well as a binary 
classification to classify the healthy and diseased crop leaves. 
Four disease severity levels were considered, resulting in 
a binary classification accuracy of 90.77% and the highest 
multi-classification accuracy of 94.77%.

Tiwari et al. (2020b) proposed a technique that fine-tunes 
pre-trained models like VGG19 to extract significant features 
from a dataset. The results were then analyzed using several 
classifiers, with logistic regression outperforming others 
by a significant margin of classification accuracy, achieving 
97.8% over the test dataset. To detect disease in potato 
leaves, Baskar et al. (2013) developed a CNN architecture. 
According to the findings, the 70:30 data splitting produces 
more accuracy than the 80:20 data splitting. By using 
20 batch sizes and 10 epochs, the accuracy was 97% for 
training data and 92% for validation data. The study by M. 
Islam et al., (2017) proposed a new method for identifying 
diseases using leaf images that combines image processing 
and machine learning. The experimental result shows that 
support vector machines outperformed other models with 
95% accuracy in disease classification over 300 images. 
The framework proposed by Hou et al., (2021) compared 
and analyzed the effectiveness of the graph-cut algorithm 
with various machine-learning techniques for detecting 
potato leaf disease. The proposed method’s performance 
was tested on 2840 images of healthy and diseased potato 
leaves. According to the segmentation data, the average 
intersection over union for the five classes was 93.70%. 
Compared to k-NN, ANN, and RF, the SVM classifier had the 
highest overall accuracy of 97.41% for disease classification. 
When it came to determining the degree of infection, the 
SVM classifier had the highest overall accuracy of 91.0%.

The research proposed by Patil et al. (2017) employed 
machine learning techniques to identify potato leaf diseases. 
According to the data, ANN has the highest accuracy of 92%, 
followed by SVM at 84.9% and RF at 79.6%. Singh & Kaur 
(2021) proposed a machine-learning-based approach for 
the detection and classification of diseases that affect potato 
plants. The K-means approach was explored for image 
segmentation; the gray level co-occurrence matrix concept 
was considered for feature extraction; and the multiclass 

support vector machine methodology was considered for 
classification. The proposed methodology has a 95.99% 
accuracy rate. Islam et al., (2019) built a pre-trained model 
that detects potato leaf disease with high accuracy. Images 
of 152 healthy leaves, 1000 late blight leaves, and 1000 early 
blight leaves were used in the studies. With 20% test data 
and 80% training data, the model predicts with an accuracy 
of 99.4% in testing.

As a result, we can guarantee that deep learning offers 
a reliable and practical answer to the agriculture sector’s 
potato leaf disease problem. Additionally, this method 
yields noteworthy outcomes across numerous datasets. 
Despite the widespread use of CNN, we have observed that 
only a very limited amount of research has been done on 
the effects of choosing different hyperparameters as well 
as how to improve CNN performance. The same previously 
mentioned result has also been published and supported in 
some other pertinent papers that have employed the same 
deep-learning techniques to identify potato leaf disease in 
the agricultural field (Lee et al., 2021; Radha & Swathika, 2021). 
Since this work has been extensively examined in this article, 
we can happily state that the methods used to configure the 
hyperparameters in deep learning techniques where CNN 
is used to model the detection of potato leaf disease seem 
to be still lacking on a larger scale in the agricultural sector.

Methods

Dataset
The dataset used for these studies was collected from 
the PlantVillage collection (Hughes & Salathé, 2015). The 
collection contains 2152 images of potato leaves that are 
divided into three groups: healthy, late blight, and early 
blight. There are 152 images of healthy potato leaves, 1000 
images of early blight leaves, and 1000 images of late blight. 
Table 1 provides the dataset’s comprehensive information. 
All of the images were taken into consideration for the study. 
Figure 1 depicts (a) healthy potatoes, (b) late-blight potatoes, 
(c) early-blight potatoes, and (d) healthy potatoes. 

Image Pre-processing
The collected image sizes varied, making learning difficult 
for the model. As a result, before dividing the collected 
image dataset into the training, test, and validation sets, 
we performed image pre-processing, such as resizing, data 
normalization, and data splitting. The images have been 
reduced in size to 224 224 pixels. The image’s pixel value 
is rescaled to the interval [0, 1] via data normalization. The 

Table 1: Provides the dataset’s comprehensive information.
Name of sample Number of samples
Healthy leaf 152
Early blight 1000
Late blight 1000
Total 2152
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dataset was split into three sections: training, testing, and 
validation. The validation and test datasets were used to 
assess the performance of the proposed model, while the 
training dataset was used to train the CNN model. As a result, 
we divided the training, validation, and testing datasets by 
80%, 10%, and 10%, respectively.

Performance evaluation. 
We used accuracy, precision, recall, and F1-Score as 
performance evaluation metrics. 
•  Accuracy. Accuracy is the fraction of the number of true 

predictions to the entire number of input examples.
  Accuracy = (True positive + False negative)/(Total 
Number of samples)   (1)
•  Precision. It is the number of true positive outcomes 

divided by the number of positive outcomes expected 
by the classifier.

  Precision = True positive/(True positive + False 
positive)    (2)
• Recall. It is the number of true positive outcomes divided 

by the total number of  all patterns that should have 
been known as positive.

  Recall = True positive/(True positive + False 
negative)
     (3)
• F1-Score. The F1 Score is the choral mean of recall and 

precision. Therefore, this score returns false positives 
and negatives into reason to assault a strength between 
recall and precision.

  F1-Score = (2 * Precision * Recall )/(Precision + 
Recall)     (4)

CNN Implementation
Stephen et al., (2019) have developed procedures for training 
the CNN model. This study will serve as the foundation for 
the method we use to train this model. 

The feature extractors and the classifier are the two main 
components of the CNN model’s structure. The output of 
the immediately preceding layer is supplied as an input to 
the successive layers in the feature extraction layer, which 
each layer, in turn, uses as an input. As indicated in Table 2, 

the convolution, maximum pooling, and classification layers 
are merged to form the CNN architecture. The conv33, 32, 
conv33, 64, and conv33, 128, a max-pooling layer of size 
22, and the activation function, which is a hyperparameter 
for CNN between them, make up the feature extractors. 
With an input image of size 224224, we acquired feature 
maps of the following sizes for the convolution and max-
pooling procedures: 224224, 112112, 5656, and 2828 and 
128 for the pooling operations, respectively. It is important 
to remember that each layer’s plane was created by joining 
one or more planes from earlier layers. The classifier is at 
the end of the convolutional neural network (CNN) model. 
It is a dense layer, often called an artificial neural network 
(ANN). Like any other classifier, this one uses individual 
features (vectors) to carry out computations. As a result, a 
1D feature vector is created from the output of the feature 
extractor (CNN component) for the classifiers. The result 
of the convolution operation is flattened in this phase, 
known as “flattening,” to produce a single, lengthy feature 
vector that the dense layer will use for its final classification 
procedure. A flat layer with two thick layers of 1000 and 3, 
respectively, makes up the categorization layer. The CNN’s 
performance hyperparameter and the detection functions’ 
softmax activation function are the activation functions 
that operate between the two dense layers. The CNN’s non-
linearity is controlled by a hyperparameter known as the 
activation function of each layer’s node. These operations 
restrict the output to a specific band or threshold.

We evaluated the effect of hyperparameters on a deep 
learning model for detection of potato leaf disease in the 
agricultural sector using the methodology of (Dalli (2022).

Activation Function
There are four main activation functions widely used in 
CNN; the description is presented below: Each neuron node 
in a neural network will take the output value from the 
layer before as its input value and pass it to the layer after. 
The nodes in the input layer must input the feature value 
to the following output layer. The relationship between 
the input values of the neuron nodes in one layer and the 
output values of those nodes in another layer is represented 
in a multilayer neural network by an activation function 
(Y. Zhang et al., 2021). Similar to an activation function, a 
nonlinear function enables neural networks to achieve 
improved representation performance and get around the 
linear function’s finite approximation limitation.

The rectified linear unit (ReLU) function was the most 
popular function used in CNN architecture. The threshold 
of the ReLU function is 0, and it has a real value. Figure 2 
illustrates how this function replaces negative numbers with 
zero. In the scenario where the input values are negative, the 
ReLU activation function can be utilized. The model is set up 
so that it can alter the real positive scaled values.

Table 2: The output of the CNN architecture.
Layer(type) Output shape Turtles
conv2d (Conv2D) (None, 224, 224, 32) 896
max_pooling2d (MaxPooling2D) (None, 112, 112, 32) 0
conv2d_1 (Conv2D) (None, 112, 112, 64) 18496
max_pooling2d_1 
(MaxPooling2D)

(None, 56, 56, 64) 0

conv2d_2 (Conv2D) (None, 56, 56, 128) 73856
max_pooling2d_2 
(MaxPooling2D)

(None, 28, 28, 128) 0

flatten (Flatten) (None, 100352) 0
dense (Dense) (None, 1000) 100353000
dense_1 (Dense) (None, 3) 3003
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f(x)=max(0,x)   (6)
The disadvantage of ReLU is that it does not converge to the 
minima when the gradient becomes 0 for negative values, 
which will cause a dead neuron during backpropagation. 
Leaky ReLU, which permits a little negative value during 
the backpropagation if we have a dead ReLU problem, can 
solve this issue. The neuron will finally be brought down 
and activated as a result. Figure 3 illustrates a leaky ReLU.

f(x) = max(0.01*x,x)  (7)
As depicted in Figure 3, the hyperbolic tangent (tanh) 

value is taken into account to be a real number that falls 
between -1 and 1. The tanh expression is based on negative 
values not being frequently scaled onto commonly used 
functions as zero.

  (8)

Optimizer
On a particular dataset, the model learns by contrasting 
the actual label of the input (available in the training set) 
with the predicted label and minimizing the cost function. 
Theoretically, the model has learned the dataset successfully 
if the cost function is zero. However, in order to minimize a 
cost function, an optimization procedure is required. In order 
to reduce the cost function, various optimization strategies 
are discussed in the following section.

Stochastic gradient descent (SGD) is also referred to 
as “online training” since it enables updating the network 
weights for each training image. We discovered that this 
strategy is significantly faster and is available online from 
numerous literature reviews. As a result, the SGD technique 
successfully carries out a parameter modification in response 
to each training example taken into account, as stated in 
(Halgamuge et al., 2020).

The work of Zhang (2018) provides a description of the 
estimation of adaptive moments (Adam). This first-order 
optimization strategy uses gradients, stochastic objective 
functions, and adaptive lower-order moment estimations.

The adaptive gradient algorithm (AdaGrad) (N. Zhang et al., 
2018) permits a decrease in the learning rate by increasing 
the numerator. Alternately, we can say that the gradient-
based optimization technique has been used, which 
also adapts the learning rate that would then predict the 
parameters; it can undoubtedly give us smaller updates to 
the data (low learning rates) for all of the parameters that 
we would consider to be relevant to it. This is due to the fact 
that the AdaGrad technique uses highly frequent features 
in the model, and very large updates (high learning rates) 
consider a parameter that would be important to the rare 
features, thus, it would undoubtedly operate well with extra 
data in the network.

The “root mean square propagation” (RMSProp) 
technique is another term for an advanced AdaGrad 
modification that controls the learning rate at a rapid decline 
level. It is frequently compared to the Adadelta approach. 
Despite this, the Adadelta method unquestionably uses the 
RMSProp method of parameter changes carried out in the 
rule of numerator’s updating. The AdaMax method, which 
is based on the infinite standard, is a variation of the Adam 
method (Z. Zhang, 2018).

Results 

Effect of different batch sizes
In the first experiment, we tested the most commonly used 
batch size combinations for CNN. The batch sizes used in this 
experiment were BS = [16, 32, 64, 128, 256]; an SGD optimizer 
and a 0.001 learning rate were used. For consistency of Figure 2: ReLU function. 

Figure 3: Leaky ReLU function.

Figure 4: Tanh function.
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results and due to the size of the dataset, the number of 
epochs was fixed at 100. Table 2 shows the effect of different 
batch sizes. The lowest accuracy was achieved for larger 
batches (BS_256). The highest performance was obtained 
by using a smaller batch size; the smaller the batch size, the 
higher the performance.

The highest overall accuracy achieved during the 
experiments was due to the batch size of 32. Our results 
agree with the ones obtained by Masters and Luschi 
(2018), where the authors stated that smaller batch sizes 
should be used. While the use of large batch size values 
is not recommended in our study, the results of Radiuk 
(2017) match our findings on the batch size. Finally, Bengio 
(2012) suggested that 32 is a good default value for the 
batch size. While this is corroborated by our experiments 
(in which a batch size of 32 provided good results), the 
best performance was achieved with a batch size of 32. 
The comparative results of the loss and accuracy obtained 
from the batch size effects are presented in Figures 5 and 
6, respectively.

Effects of different optimizers
We continue the second experiment using a smaller 
batch size (BS_32), as we saw in the first experiment, that 
smaller batch sizes have higher performance. The second 
experiment focuses on the second research topic, that 
is, the effect of different optimizers on the CNN model’s 
performance. When we talk about some optimizers, like 
SGD, AdaGrad, and derivatives, Other algorithms that we 
can take into account include the Adam algorithm and 
the root mean square propagation (RMSProp) algorithm. 
Table 3 shows the effect of different optimizers. For 
consistency of results and due to the size of the dataset, 
the number of epochs was fixed at 100. For the RMSProp 
optimizer, the lowest accuracy was achieved. The highest 
performance was obtained using the AdaGrad optimizer, 
demonstrating that AdaGrad optimizer had the highest 
performance.

The highest overall accuracy achieved during the 
experiments was by the AdaGrad optimizer. Our results 
agree with those obtained by Iqbal et al., (2021), where 
the authors stated that the AdaGrad optimizer should be 
used. Finally, Vidushi et al., (2021) suggested that AdaGrad 
is a good default optimizer. While this is corroborated by 
our experiments (in which an AdaGrad optimizer provided 
good results), the best performance was achieved with an 
optimizer. The comparative results of the loss and accuracy 
obtained from the optimizer effects are presented in Figures 
7 and 8, respectively.

Effect of different activation functions
For the final test, we used the smallest batch size and 
AdaGrad optimizer, which have high performance, as seen 
in the first and second experiments. The final question of 

the study is to determine the effect of different activation 
functions on the performance of the CNN model. The 
activation functions used in this experiment are ReLU, 
Leaky ReLU, Tanh, and PReLU. For consistency of results and 
due to the size of the database, the number of epochs was 
limited to 100. Table 4 shows the effect of different activation 
functions. Tanh activation function was achieved with the 
lowest accuracy. The leaky ReLU activation function provides 
the best performance.

The highest overall accuracy achieved during the 
experiments was when using the leaky ReLU activation 
function. Our results agree with the one obtained by Nayef 
et al., (2022), where the authors stated that the leaky ReLU 
activation function should be used. Finally, Mujhid et al., 
(2022) suggested that leaky ReLU is a good default activation 
function. While this is corroborated by our experiments, 
in which a leaky ReLU activation function provided good 
results, the best performance was achieved with a leaky 
ReLU activation function. The comparative results of the loss 

Table 2: shows the effect of different batch sizes.
Batch Sizes Accuracy Precision Precision F1-Score
16 78.0% 78.3% 78.0% 78.3%
32 89.3% 91.3% 89.3% 89.3%
64 89.1% 91.0% 89.3% 89.0%
128 80.5% 85.6% 80.6% 80.6%
256 77.7% 81.0% 77.6% 75.6%

Table 3: shows the effect of different optimizers.
Activation function Accuracy Precision Recall F1-Score
ReLU 95.9% 95.3% 96.0% 96.0%
Leaky ReLU 98.0% 97.3% 97.6% 97.6%
Tanh 93.9% 94.3% 94.0% 94.0%
PReLU 97.7% 97.6% 97.6% 97.6%

Table 4: shows the effect of different activation functions.
Optimizer Accuracy Precision Recall F1-Score
SGD 96.9% 97.0% 97.0% 97.0%
Adam 84.8% 88.0% 84.6% 84.6%
AdaGrad 97.9% 98.0% 98.0% 98.0%
Adamax 90.0% 91.3% 90.0% 90.3%
RMSProp 77.0% 78.3% 77.3% 76.0%

Figure 5: Comparative results of batch sizes accuracy
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and accuracy obtained from the activation function effects 
are presented in Figures 9 and 10, respectively.

Analysis and Discussion
The data from the first experiment indicate that the best 
results are obtained by using a CNN with a smaller batch size 
of (BS_32). A CNN model can effectively detect leaf images 
in this situation. The second experiment shows that when 
AdaGrad is used as the training algorithm, we get better 
results, but when RMSProp is used, we get worse results. 
Finally, using the Leaky ReLU function as an activation 
function, we can determine that the model can converge to 
the minimum if the efficiency is 0 for negative values, which 
was the original goal of the study. Furthermore, since they 
allowed a small negative value during the backpropagation, it 
was shown that the neuron eventually descends and activates 
as a result. When the Leaky ReLU activation function is used 
in the CNN architecture, CNN provides the best throughput.

A crucial aspect of the new study is its theoretical and 
applied contribution. First, a few studies in the agricultural 
field examine how the hyperparameter setting affects 
the effectiveness of deep neural networks. It would not 
be a stretch to say that our research would undoubtedly 
contribute to theoretical data, particularly by laying the 
groundwork for a better understanding of the influence 
work of hyperparameter configurations. In contrast to earlier 
studies, its purpose is to make it easier for us to understand 
the effects of several commonly used activation functions in 
the model when it is used to detect potato leaf disease using 
CNN. We looked into how different activation functions, 
types of optimizers, and batch sizes affect CNN performance 
when it comes to detecting potato leaf disease.

On a more practical level, this research establishes the 
foundation for producing useful heuristic information 
that can assist researchers in employing deep learning 
techniques in the agricultural sector to detect potato leaf 
disease. This research contributes to the effectiveness of 
hyperparameter tweaking when training CNN to detect 
potato leaf disease.

Despite the encouraging findings, the study had some 
limitations. To begin with, the dataset used for the study was 

Figure 6: Comparative results of batch sizes loss

Figure 7: Comparative results of the accuracy

Figure 8: Comparative results of the loss

Figure 9: Comparative results of the loss

Figure 10: Comparative results of the accuracy
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too small to train the CNN model. This limitation, however, 
provides an opportunity for additional research to assess 
the repeatability of the findings, and we plan to eventually 
summarize findings from larger databases collected from a 
variety of agricultural supplies across agricultural sectors. All 
three goals of the study outlined in Section 1 were achieved.

Conclusion
The effects of various hyperparameter configurations on 
the performance of a CNN were investigated in this study. 
Three experiments were designed to confirm this. First, we 
look at how different batch size combinations affect the CNN 
architecture. Secondly, we investigate the performance of 
CNN by using various optimizers. Finally, we investigate the 
CNN model’s performance using various activation functions.

In this paper, the data we have mentioned where the first 
experiment shows that the model developed using small 
batch size (BS_32) has high performance and the widely 
used softmax is applied to the output layer of the network, is 
a sign that the CNN potato leaf detection model is definitely 
working very well in the agricultural sector. Similarly, the 
second experimental data shows that the AdaGrad optimizer 
performed well if it was selected as the training method in 
the study. Finally, the last experiment showed us that using 
the leaky RELU function with CNN in the model definitely 
works well in the agricultural sector.

In the future, we expect to use our approach to detect 
more varieties of potato leaf and other types of plant 
diseases, evaluate further optimization algorithms, and use 
more data augmentation strategies. In addition, we plan 
to expand optimization for a few more hyperparameters. 
Meanwhile, the trained model can be flexibly combined with 
mobile devices to allow agricultural producers to make fast 
and fair decisions about potato disease knowledge.
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