
Abstract
Diabetic retinopathy is a potentially mortal diabetic complication. The severity level of DR must be identified earlier to reduce the 
medical complications. Effective automated ways for identifying DR and classifying its severity stage are necessary to reduce the burden 
on ophthalmologists. Transfer learning methods are utilized to automatically grade the  severity of diabetic retinopathy in this study. 
The stages of DR are diagnosed using pretrained VGG16, Inception v3, and ResNet50 models on pre-processed retinal images of DDR 
dataset. Out of three implemented models, Inception v3 achieved higher validation accuracy of 76.47% and testing accuracy of 67% 
compared to VGG16 and ResNet50 models. This research contributes to the analysis of deep learning architectures for the creation of 
automated diabetic retinopathy stage diagnosis and grading.
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Introduction
Diabetic retinopathy (DR), which primarily affects working 
people, is the leading cause of vision impairment and 
blindness. Diabetes causes diabetic retinopathy, which is 
caused by elevated blood sugar levels. This medical disorder 
causes vascular damage and aberrant blood vessels (Duh et 
al., 2017) . The International Diabetes Federation predicts 
there will be 643 million diabetic people globally in 2030 and 
783 million by 2045 (Ogurtsova et al., 2017). Nonproliferative 
Diabetic Retinopathy (NPDR) and Proliferative Diabetic 
Retinopathy (PDR) are two stages of DR. NPDR manifests 
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itself in the early phases, which are further divided into Mild, 
Moderate, and Severe. Microaneurysms (MA), dot and flame 
shaped haemorrhages, exudates, and cotton wool patches 
are all common NPDR abnormalities (Duh et al., 2017). PDR 
is a more highly developed form of DR in which aberrant 
vessels begin to form and lead to neovascularization. In 
addition to lesions, vascular changes include vessel calibres, 
tortuosity, and branching angles (Habib et al., 2014). The mild 
stage might progress to advanced PDR if an early diagnosis 
is not made. Early screening and treatment are required to 
limit retinal complications and avoid vision loss. Because 
manual grading needs skill and time, Computer Assisted 
Diagnosis (CAD) techniques have been demonstrated to 
be helpful in diagnosing the DR at an early phase. Table 1 
shows the abnormal lesions appear in various stages of DR.

Several deep learning-based techniques for diagnosing 
DR using fundus images have been proposed. CNN models 
were created specifically to rate the severity degree (Alyoubi 
et al., 2020). However, the DL model necessitates a vast 
amount of data. Because the current database has a restricted 
number of photographs. Transfer learning strategies have 
been highlighted in studies as a way to overcome restricted 
resources (Oltu et al., 2021). The pre-trained CNN models 
were utilized specifically for assessing the severity level of 
DR. To diagnose the severity of DR, pretrained architectures 
Alexnet, VGG16, VGG19, Inceptionv3, ResNet were used (Oltu 
et al., 2021) . The Kaggle EyePACS, Messidor, DIARETDB, 
and e-optha databases were used in the majority of the 
studies (Alyoubi et al., 2020). The EyePACS dataset comprises 
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Table 1: Abnormal Lesions Present in Stages of Dr [1]

Stages of DR Retinal anomalies

No DR No anomalous signs

Mild NPDR Few Microaneurysms

Moderate NPDR Microaneurysms, hemorrhages, Exudates

Severe NPDR venous beading, intraretinal microvascular 
abnormality

Proliferative DR neovascularization, vitreous and preretinal 
hemorrhages

around 88,000 images, which is enough data for DL models. 
However, it has the drawback of including ungraded and 
low-quality photos (Alyoubi et al., 2020) . In this study, a 
second large diabetic retinopathy dataset DDR is used, and 
the performance of transfer learning models is examined. 
The sample images for stages of DR taken from the DDR 
dataset are shown in Figure 1.

Employed DDR datasets, hence this work focuses on 
constructing transfer learning models for DDR datasets.

Pre-processing, selecting a pretrained architecture, 
and fine-tuning the architecture are the primary processes 
necessary for detecting DR using a transfer learning 
approach. Riaz et al. classified DR into five groups using the 
CNN architecture. The model was created with the help of 
the kaggle and messidor datasets. Using the EyePACS and 
Messidor-2 datasets, Gulshan et al. developed an Inception- 
v3 model to predict diabetic retinopathy. The model had a 
sensitivity of 90.3% for the EyePACS dataset and 87% for the 
Messidor-2 dataset (Riaz et al., 2020). Data augmentation was 
used in conjunction with CNN to diagnose five categories of 
DR severity levels, with a sensitivity of 95% (Chlap et al., 2021). 
On the Kaggle dataset, Kanungo et al. built the Inceptionv3 
architecture for automated detection of various of diabetic 
retinopathy. For a batch size of 128, they were able to attain 
an accuracy of 88% (Kanungo et al., 2017). Masood et al. used 
CNN transfer learning with Inceptionv3, which had been 
pretrained on ImageNet. They were able to attain 48.2% 
accuracy on the EyePACS five class dataset Masood et al., 
2017). For the diagnosis of diabetic retinopathy, Mansour et 
al. created AlexNet architecture with various optimization 
approaches (Mansour, 2018). On a dataset containing 30,000 
photos, Gosh et al. used a CNN-based model to achieve an 
accuracy of 95 and 85% for two and five category diabetic 
retinopathy disorders (Ghosh et al., 2017). Chandrakumar 
et al. devised the stagewise classification model, which 
includes dropout to reduce overfitting. The model was 
developed using the Kaggle dataset and tested using the 
DRIVE and STARE datasets (Chandrakumar & Kathirvel, 2016). 
Using the EyePACS dataset, Wang et al. created AlexNet, 
VGG16, and Inception-v3 models. The accuracy rates were 
37.43, 50.3, and 63.23%, respectively (Wang et al., 2018). 
Wan et al. applied pretrained VGG, AlexNet, ResNet, and 
GoogLeNet models to a dataset of 35,126 images from the 

EyePACS and obtained accuracy of 89.75, 93.17, 93.73, 93.36, 
and 90.40%, respectively (Wanet al., 2018).

According to the literature, transfer learning is extensively 
utilized to diagnose the DR severity level for EyePACS Kaggle 
and MESSIDOR datasets. Only a few research have
The contributions of this work are,
•	 This work develops the transfer learning pretrained 

models VGG16, Inception v3, ResNet50 for DDR dataset. 
From the literature, it is inferred that few studies have 
used this dataset.

•	 For grade five stages of DR, the DDR database will be 
used for training and validation. Performance criteria 
such as accuracy, sensitivity, precision, and F1 score will 
be examined for each architecture.

•	 This study evaluates the performance of three models 
for DDR dataset.

The paper is organized as follows; Section 2 presents the 
description of dataset and section 3 presents the methods 
and transfer learning models. Experimental results and 
discussions are presented in section 4 followed by a 
conclusion.

Dataset
The DDR dataset contains 13,637 fundus pictures showing 
evidence of DR with a resolution of 2124 x 2056 and a FOV 

NO DR MILD

MODERATE SEVERE

PDR

Figure 1: Stages of DR from DDR dataset
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of 45 degrees. Images are collected between 2016 to 2018 
in china from 147 hospitals. The level of DR severity includes 
No DR, mild NPDR, moderate NPDR, severe NPDR, and 
PDR. Images are graded by multiple graders. The dataset 
contains training, validation, and testing sets separately (Li 
et al., 2019).

Methodology
The steps in this work are depicted in Figure 2. Pre-
processing, training, and classification with performance 
metrics evaluation are the three stages of the transfer 
learning method given in this paper. The images were 
first resized and normalized as part of the pre-processing 
procedure as shown in Figure 3. The data augmentation 
was used to reduce overfitting and improve the model’s 
generalization ability (Tariq et al., 2021). Three CNN models 
were employed in the training stage: VGG16, Inception 
v3, and ResNet50, all of which were pre-trained using the 
ImageNet database. The last layers of each model were fine-
tuned, and a dense layer was added for grading.

Transfer Learning Models
In this study, pre-trained CNN architectures, VGG16, 
Inception v3, and ResNet50, were trained and validated 
on the DDR database. For DR grading, fine-tune the 
architecture’s final fully connected layers. The following is 
a model training procedure:
•	 Resize, normalize and augment the data in the training 

set as part of the pre-processing.
•	 Load the models that have been pre-trained.
•	 Configure the trained model’s parameters, such as 

batch size, epochs, optimizer, and metrics.

•	 Save the model and run it.
•	 Evaluate the model’s loss and other performance 

measures.

VGG16
VGG16 is a CNN model developed for the 2014 ImageNet 
Challenge by the Visual Geometry Group (Simonyan & 
Zisserman, 2014). There are 13 convolution layers, 5 pooling 
layers, and 3 fully connected layers in the VGG16 network. 
The image is resized to a size of 224x224. The model is 
pretrained using the ImageNet database and weights are 

utilized for DR classification. The layer weights are locked 
during the training phase, and one fully connected layer, 
and a dense layer with 6 neurons are added for grading DR. 
SoftMax function is utilized in dense layer with 6 neurons. 
The model s validated and tested on the respective DDR 
datasets. Figure 4 shows the pretrained VGG16 model with 
modified layers for classification. Adam optimizer was used 
to train for 25 epochs with a batch size of 32. The dropout 
was included to help prevent overfitting.

Pre-processing
DDR database contains fundus images of size 2124 x 2056 
from five DR classes. First pre-process the images to a specific 
dimension based on the transfer learning models. The DDR 
database is class imbalanced, with 6266 samples present in 
no DR and 236 samples present in severe DR, which leads to 
biasing of the model. To reduce the model from overfitting, 
data augmentation was implemented. Rotation, flipping, 
brightness, shearing was included for creating augmented 
images. Image was normalized to make convergence faster.

Table 2: Shows the Dr grading distribution

Class DR stage Total Training Validation Testing

0 No DR 6266 3133 1253 1880

1 Mild 630 315 126 189

2 Moderate 4477 2238 895 1344

3 Severe 236 118 47 71

4 Proliferative 913 456 182 275

5 Ungradable 1151 575 230 346

Total 13,673 6835 2733 4105

Figure 2: Framework for grading the DR severity level
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Inception v3
The Inception v3 is an enhanced version of the Inception 
v1, which was first released as GoogLeNet in 2014. 
convolutional layers, pooling layers with an inception 
block, and fully connected layers are among the 48 layers 
in Inception v3. The Inception modules combine the 
characteristics of preceding levels to speed up calculation. 
Batch normalization and dropout of 0.5 were employed 
to the design to boost performance (Szegedyet al., 2015). 
The model allows images with a resolution of 299x299. In 
this work, pretrained layers with fully connected layer and 
SoftMax layer are employed for classification.

ResNet50
ResNet50, also known as Residual Network, is a 50-layer 
residual network with skip connections that reduces 
the gradient problem (He et al., 2015). The architecture 
begins with a 7x7 convolution layer, which is followed by 
a maxpooling layer. Four stages with three residual blocks 
are layered, each with three convolution layers of kernel size 
1x1, 3x3, 1x1. Finally, DR is graded using a 0.5 dropout, fully 
connected layer, and SoftMax layer. Figures 5 and 6 illustrate 
the Inception v3 and ResNet50 architecture.

RESULTS AND DISCUSSIONS

Performance Metrics
Accuracy, sensitivity, precision, and F1 score are utilized as 
performance metrics to quantitatively evaluate the model 
presented in Table 4.

where, TP – True Positive; TN – True Negative; FP – False 
Positive; FN – False Negative.

The percentage of correctly categorized samples is 
called accuracy. Precision is the fraction of accurately 
classified samples among the classified positive samples. The 

Figure 3: Sample images from pre-processing stage

Figure 4: VGG16 architecture for DR Grading

Table 3: Hyperparameters used in the training phase

Metrics Formula

Accuracy 𝑇𝑁 + 𝑇𝑃
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Sensitivity (Recall) 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Precision 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

F1 score 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 x 𝑅𝑒𝑐𝑎𝑙𝑙
2 x 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Table 4: Performance evaluation metrics for dr grading

Parameters VGG16 Inception v3 ResNet50

Input Image Size 224 x 224 299 x 299 224 x 224

Optimizer Adam Adam Adam

Learning Rate 0.01 0.01 0.01

No. of Epoch 25 25 25

Batch size 32 32 32

Total number of 
Parameters

14,714,688 21,802,784 23,587,712

fraction of samples accurately categorized from all positive 
samples is measured by recall.

Results of Transfer Learning Models
This section contains the setup and outcomes for all of 
the pretrained models, as well as the loss gained during 
training and each model’s class-wise performance. VGG16, 
Inception v3, and ResNet50 are the transfer learning 
architectures employed. For DR grading, each model 
employed pretrained weights with modified last layers. Six 
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class targets are added to the SoftMax layer. The pretrained 
models are fine-tuned using a 6835-image training dataset, 
validated using 2733 photos, and tested with 4105 images. 
The model’s hyperparameters are optimized to maximize 
the results displayed in Table 3. The Adam optimizer with 
sparse categorical cross entropy loss is used for all of the 
architectures. Table 5 presents the accuracy of all the 
models. Training, validation, and testing accuracy have all 
been presented.

In comparison to the other two models, the inception 
v3 model gave better outcomes, as seen in Table 5. 
Furthermore, the training and validation accuracy have not 
been varied with a considerable variation, indicating that the 

overfitting problem has been reduced. Validation accuracy 
of 76.47% and testing accuracy of 67% were attained by 
Inception v3.

When trained on the training and validation datasets, 
the accuracy and loss performance of the three models 
is shown in Figure 7. Because the models were resistant 
to overfitting, they performed well during training and 
validation. Over each epoch, the losses in training and 
validation have decreased.

Figure 5: Inception v3 architecture for DR Grading Figure 6: Res Net50 architecture for DR Grading

Table 5: Accuracy of transfer learning architectures

Model Training (%) Validation (%) Testing (%)

VGG16 55.92 65.85 57

Inceptionv3 68.01 76.47 67

ResNet50 42 51.9 53.6

Table 6: Performance metrics of Vgg16 mode1

Class Precision Recall F1 score

No DR (0) 0.56 0.97 0.71

Mild DR (1) 0.11 0.06 0.08

Moderate DR (2) 0.36 0.16 0.22

Severe DR (3) 0.1 0.02 0.01

Proliferative DR (4) 0.52 0.20 0.29

Ungradable DR (5) 0.80 0.38 0.52
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The metrics collected for each class for the DDR database are 
presented in Tables 6-8. Because of the enormous sample 
size, models perform better in the no DR and ungradable 
classes. It demonstrates that the models were successful 
in categorizing these two classes. However, all the models 
fail to account for mild DR; specifically, VGG16 have not 
identified the severe DR class. The achieved results shows 
that the models were identified each class with better 
performance. Of all three models, Inception v3 produced the 
highest validation accuracy of 76.47% and testing accuracy 
of 67%, respectively. Inception blocks produce better results 
for DR classification than VGG16 and ResNet50 architectures.

Conclusion
Transfer learning-based diagnosis models for grading 
diabetic retinopathy are presented in this research. Three 
pre-trained CNN models were used, and the final layers for 
multi-class grading were fine-tuned. Because the bulk of 
the class belongs to the no DR, there may be a lot of bias. 
Dropout and data augmentation were used to reduce bias 
and overfitting. The performance of VGG16, Inception v3, 
ResNet50 models have been analyzed for DDR dataset. 
From the results, the Inceptionv3 model achieved better 
performance with an accuracy of validation accuracy of 
76.47% and testing accuracy of 67%. VGG16 produced 
a validation accuracy of 65.87% and testing accuracy of 
57%. ResNet50 produced a validation accuracy of 51.9% 
and a testing accuracy of 53.6%. The research findings 
could be used to larger datasets in the future to increase 
the performance. Additionally, models will be trained 
from scratch and analyze its performance for clinical 
implementation.

References
Alyoubi, W. L., Shalash, W. M., & Abulkhair, M. F. (2020). Diabetic 

retinopathy detection through deep learning techniques: 
A review. Informatics in Medicine Unlocked, 20. https://doi.
org/10.1016/j.imu.2020.100377

Chandrakumar, T., & Kathirvel, R. (June 2016). Classifying diabetic 
retinopathy using deep learning architecture. International 
Journal of Engineering Research and Technology, 5, 19–24.

Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., 
& Haworth, A. (2021). A review of medical image data 
augmentation techniques for deep learning applications. 
Journal of Medical Imaging and Radiation Oncology. Wiley, 
65(5), 545–563. https://doi.org/10.1111/1754-9485.13261

Duh, E. J., Sun, J. K., & Stitt, A. W. (2017). Diabetic retinopathy: 
Current understanding, mechanisms, and treatment 
strategies. JCI Insight, 2(14). https://doi.org/10.1172/jci.
insight.93751

Ghosh, R., Ghosh, K., Maitra, S., Maitra, S. (2017). Automatic Detection 
and Classification of Diabetic Retinopathy stages using CNN. 
In Proceedings of the 2017 4th International Conference on 
Signal Processing and Integrated Networks (SPIN),” Noida, 
550–554. https://doi.org/10.1109/SPIN.2017.8050011

Habib, M. S., Al-Diri, B., Hunter, A., & Steel, D. H. (2014). The 
association between retinal vascular geometry changes 
and diabetic retinopathy and their role in prediction of 
progression – An exploratory study. BMC Ophthalmology, 
14, 89. https://doi.org/10.1186/1471-2415-14-89

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning 
for image recognition. Cornell University. https://doi.
org/10.1109/CVPR.2016.90

Kanungo, Y. S., Srinivasan, B., Choudhary, S. (2017). Detecting 
diabetic retinopathy using deep learning. In Proceedings 
of the 2nd IEEE International Conference on Recent Trends 
in Electronics, Information y Communication Technology,” 
Bangalore, May 2017 (pp. 801–804). https://doi.org/10.1109/
RTEICT.2017.8256708

Li, T., Gao, Y., Wang, K., Guo, S., Liu, H, & Kang, H. (2019). Diagnostic 
assessment of deep learning algorithms for diabetic 

Figure 7: Training and validation loss

Table 7: Performance metrics of inception V3 mode1

Class Precision Recall F1 score

No DR (0) 0.72 0.83 0.78

Mild DR (1) 0.1 0.01 0.02

Moderate DR (2) 0.54 0.57 0.55

Severe DR (3) 0.62 0.07 0.13

Proliferative DR (4) 0.74 0.31 0.43

Ungradable DR (5) 0.78 0.90 0.84

Table 8: Performance metrics of resnet50 mode1

Class Precision Recall F1 score

No DR (0) 0.65 0.81 0.72

Mild DR (1) 0.1 0.00 0.00

Moderate DR (2) 0.39 0.47 0.43

Severe DR (3) 0.02 0.03 0.14

Proliferative DR (4) 0.01 0.01 0.01

Ungradable DR (5) 0.34 0.16 0.22



357	 Transfer learning models for diabetic retinopathy

retinopathy screening. Information Sciences. Elsevier, 501, 
511–522. https://doi.org/10.1016/j.ins.2019.06.011

Mansour, R. F. (2018). Deep-learning-based automatic computer-
aided diagnosis system for diabetic retinopathy. Biomedical 
Engineering Letters, 8(1), 41–57. https://doi.org/10.1007/
s13534-017-0047-y

Masood, S., Luthra, T., Sundriyal, H., & Ahmed, M. (2017). 
Identification of diabetic retinopathy in eye images using 
transfer learning. In Proceedings of the 2017 International 
Conference on Computing, Communication and Automation 
(ICCCA),” Greater Noida, 1183–1187. https://doi.org/10.1109/
CCAA.2017.8229977

Ogurtsova, K., da Rocha Fernandes, J. D., Huang, Y., Linnenkamp, 
U., Guariguata, L., Cho, N. H., Cavan, D., Shaw, J. E., & Makaroff, 
L. E. (2017). IDF Diabetes Atlas: Global estimates for the 
prevalence of diabetes for 2015 and 2040. Diabetes Research 
and Clinical Practice, 128, 40–50. https://doi.org/10.1016/j.
diabres.2017.03.024

Oltu, B., Karaca, B. K., Erdem, H., & Ozgur, A. (2021). A systematic 
review of transfer learning based approaches for diabetic 
retinopathy detection. Cornell University.

Riaz, H., Park, Jisu, Choi, H., Kim, H., & Kim, J. (2020). Deep and 

densely connected networks for classification of diabetic 
retinopathy. Diagnostics, 10(1), 24. https://doi.org/10.3390/
diagnostics10010024

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional 
networks for large-scale image recognition. arXiv preprint 
arXiv:1409.1556.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2015). 
Rethinking the inception architecture for computer vision. 
Cornell University. https://doi.org/10.1109/CVPR.2016.308

Tariq, H., Rashid, M., Javed, A., Zafar, E., Alotaibi, S. S., & Zia, M. Y. I. 
(2021). Performance analysis of deep-neural-network-based 
automatic diagnosis of diabetic retinopathy. Sensors, 22(1). 
https://doi.org/10.3390/s22010205

Wan, S., Liang, Y., & Zhang, Y. (2018). Deep convolutional neural 
networks for diabetic retinopathy detection by image 
classification. Computers and Electrical Engineering, 72, 
274–282. https://doi.org/10.1016/j.compeleceng.2018.07.042

Wang, X., Lu, Y., Wang, Y., & Chen, W. B. (2018). Diabetic retinopathy 
stage classification using convolutional neural networks. In 
Proceedings of the 2018 IEEE International Conference on 
Information Reuse and Integration (IRI),” Salt Lake City, 465–
471. United States. https://doi.org/10.1109/IRI.2018.00074


