
Abstract
Audio signal processing is used in acoustic IoT sensor nodes which have limitations in data storage, computation speed, hardware size 
and power. In most audio signal processing systems, the recovered data constitutes far less fraction of the sampled data providing 
scope for compressive sensing (CS) as an efficient way for sampling and signal recovery. Compressive sensing is a signal processing 
technique in which a sparse approximated signal is reconstructed at the receiving node by a signal recovery algorithm, using fewer 
samples compared to traditional sampling methods. It has two main stages: sparse approximation to convert the signal into a sparse 
domain and reconstruction through sparse signal recovery algorithms. Recovery algorithms involve complex matrix multiplication and 
linear equations in sampling and reconstruction, increasing the computational complexity and leading to highly resourceful hardware 
implementations. This work reconstructs the sparse audio signal using LASSO and orthogonal matching pursuit (OMP) algorithm. OMP 
is an iterative greedy algorithm involving least square method that takes a compressed signal as input and recovers it from the sparse 
approximation, while LASSO is L1 norm based with a controlled L2 penalty. The paper reviews the reconstruction and study of sparsity 
and error obtained for reconstructing an audio signal by OMP and LASSO.
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Introduction
The important characteristic of sparse signals is the 
minimum number of non-zero coefficients in one of their 
transformation domains (Donoho, 2006). They can be 
reconstructed from reduced linear combinations of sparse 
coefficients (Elad, 2010). In certain applications, a reduced 
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set of samples result as a consequence of their physical 
unavailability due to the intentional omitting of high noise 
or corrupted signals like audio signals (Stankovic, Stankovic 
and Amin, 2014). In some applications, sparsity is a result of 
a reduction in the number of observations while preserving 
the whole information (data compression) ((Donoho, 2006; 
Baraniuk, 2007).

Compressive sensing is a breakthrough development 
that allows sparse sampling signals under sub-nyquist 
rate and reconstructing the signal using a recovery 
algorithm. Reconstruction algorithms are complex with high 
computational intensity, and hardware implementation of 
these algorithms is difficult (Carrillo, Barner and Aysal, (2010). 
Orthogonal matching pursuit (OMP) is a two-step method 
involving Least mean square and QR Decomposition. This 
paper focuses on the simulation of the OMP algorithm using 
MATLAB for IoT applications.

Literature Survey
In the previous studies, novel design techniques based on 
the Internet of Things (IoT) are introduced for acquiring data 
from compressed signals using an OMP algorithm. Technical 
analysis and data dependence between the various phases 
of the OMP algorithm provides high throughput. Discrete 
cosine transform (DCT) along with compressive sampling 
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(CS) techniques, are used for audio signal compression. 
Using spectral analysis, DCT structures and CS stage, audio 
signals are represented sparsely in the frequency domain (Bi, 
Mitra and Li, 2013). Thus, compressive sampling represents 
the signals with less samples than a traditional sampling 
method. At the receiver side, reconstruction of the samples 
is proposed using the OMP algorithm, which constitutes two 
main processes: QR decomposition (QRD) and least square 
method (Davis, 1997; Chi, 2015).

Bai, et al. (2012) present FPGA implementations of the 
OMP and AMP algorithms. It was observed that, AMP is more 
suitable for less sparse problems while OMP performs faster 
for recovery problems with a smaller number of non-zero 
coefficients and more sparsity. The implementations show 
that CS reconstruction is feasible for real-time applications.

Stanislaus and Mohsenin (2013) provide an architecture 
for OMP-based reconstruction and has implemented 
scalable QR decomposition to reduce the processing time by 
at least 25%. So, OMP can be considered as the reconstruction 
algorithm for acoustic IoT node applications. There are 
roughly three types of sparsity promoting algorithms (a) 
greedy algorithms, (b) iterative shrinkage methods, and (c) 
convex optimization algorithms (Theodoridis, Kopsinis and 
Slavakis, 2012). OMP is greedy, and OMP and LASSO (Least 
Absolute Shrinkage and Selection Operator) are convex 
optimization problems.

Compressive Sensing
Compressive sensing has been known as a technique that 
has dawned new possibilities for signal detection and 
processing. It is a standard sampling theory that tries to 
minimize the required number of samples for effective 
signal reconstruction (Rabah et al., 2014) and aims to provide 
efficient sensing, transmission, and storage methods and 
facilitate signal processing in situations where certain 
information is not available. It relies on computational 
algorithms to solve the data reconstruction problem from 
a lessor number of samples by examining sparsity and 
inconsistencies (Zhang et al., 2015). This concept aims to 
provide an optimal solution in the frequency domain of 
representation.

The conventional basic method of signal reconstruction 
from its samples is the Shannon- Nyquist sampling theorem. 
The theorem states that reconstruction is effective only if 
the sample size is at least twice the maximum frequency 
of the signal. For exact reconstruction, the number of 
observations must be at least equal to the length of the 
signal. However, the traditional sampling and reconstruction 
method requires more storage space, sensing time, and 
many sensors while consuming more energy (Stanković 
and Daković, 2016).

Compressive sensing (CS) is a novel concept that 
surpasses the conventional methods. It shows that a sparse 
signal can be reconstructed from even very few incoherently 

observed samples (Rabah et al., 2014). Basically, it is assumed 
that, most physical signals in real-time applications have a 
sparse representation in a specific transform domain, i.e, 
only a few data coefficients are significant, and many are zero 
or nearly zero to be ignored. This kind of signal reduction 
is a basic requirement for pursuing compressive sampling 
(Sejdić et al., 2014). Another important requirement is the 
incoherent nature of the sample coefficients in the signal 
acquisition domain with outliers that do not fit in. CS aims to 
provide original signal reconstruction from a small number 
of incoherent coefficients by exploiting sparsity properties.

Reconstruction Methods
A Sparse signal is a Linear projection of a signal to a known 
basis. If X is input signal with sample vector length ‘n’, Y 
is output obtained by compressed sensing whose length 
m<<n, then is the sensing/measurement matrix with 
dimensions mxn, and

where is a basis function to make x sparse and incoherent, it 
is a nxn matrix. is the co-efficient sequence of length n and 
is the ‘effective’ sensing matrix

Now reconstructing is a non-convex l0 norm problem, which 
can be solved by following other regularisation schemes 
like LASSO or OMP with an l1 constraint or least squares 
evaluation support.

LASSO
LASSO is used to find the the least square solution on the 
solution vector subject to an l1-norm constraint. LASSO can 
be rewritten equivalently as an optimization problem

where α ∈ [0, ∞) is a scalar regularization parameter that 
handles the trade-off between the mean square error and 
the l1-norm of the solution vector 𝑥. α is tuned to converge 
the solution for a large number of zeros in the vector x 
(sparsity).

Orthogonal Matching Pursuit
A number of compressed sample reconstruction methods 
have been developed in the previous studies, and they 
are one of the three main modes: convex optimization 
methods such as basis pursuit and gradient-based 
algorithms; greedy techniques like matching pursuit and 
orthogonal matching pursuit. Greedy algorithms bring lower 
computational complexity than other methods(Zhang et 
al., 2015). Matching pursuit (MP) is a common form of low-
level signal reconstruction, combining greedily with the 
original signal’s equivalent. The MP algorithm identifies a 
measurement matrix column closely related to the current 
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signal ratio, followed by measuring the enhanced signal 
ratio. Even though each iteration in in the MP requires a 
very low computational effort, the number of iterations or 
repetitions depends largely on the level of sparsity ‘k’, and as 
a result, MP is suitable for signals with a high level of sparsity 
(Candès and Wakin, 2008). 11–minimization algorithm is 
another recovery algorithm commonly used with better 
accuracy, but the implementation is quite complex and 
time-consuming.

In OMP, the Least Square (LS) step significantly reduces 
the amount of repetition compared to Matching Pursuit, 
but it results in higher computations with each iteration 
(Rabah et al., 2014). The large number of inner-products, 
comparative functions, and matrix conversions attributes 
this complexity. Moreover, OMP is less complex as it helps in 
finding the most correlated values in each iteration (Sejdić et 
al., 2014). The OMP algorithm is best suited for audio signals 
and hardware implementations (Davis, 1997).

The audio signals are highly correlated signals. The 
algorithm (OMP) takes the measurement matrix Φ and the 
measured vector as input and gives the estimate x͊ of the 
original signal x. At the time of each iteration, it selects one 
of the columns most closely related to the residue of the 
measurements y, and then removes the contribution of this 
column to the new remaining calculation. In each stage, 
the right solution is found in the form of multiplication 
and residual update. It also incorporates new real signal 
limitations; after a number of iterations, the number being 
determined by the sparsity ‘k’, the algorithm will produce 
the final estimate of the original signal. The OMP algorithm 
is best suited for reconstructing two-dimensional sparse 
signals based on a few number of sample measurements 
Candès and Wakin, 2008).

Methodology
This work involves compressive sampling through sparse 
approximation and reconstruction by least square and QR 
decomposition method constituting the OMP algorithm as 
shown in Figure 1 and LASSO method.

Sparse Approximation
Sparse approximation indicates that a signal of length M is 
represented with a smaller number of samples N with non-
zero coefficients where N<<M. It has two main objectives. 
There are a variety of sampling techniques that force the 
parameters to go directly to zero. Sparse approximation 
works like a type of regularization, leading to a simpler 
model that learns what parameters can be kept, and what 
parameters could be avoided.

Another reason to use a lesser amount of data is to 
efficiently reduce the memory usage, for example, when one 
needs to send the data over the network or store the data 
on mobile devices, it will consume less memory.

Least Square Method
Least Square Method is the process of finding the most 
suitable curve or line of proportion that is appropriate for 
a set of points by reducing the total sum of the squares of 
the residual points from the curve. During the process of 
finding the relationship between the two variables, the 
outcomes are measured quantitatively and the process is 
called regression analysis (Zhao et al., 2013)

Curve measurement method is a method of retrospective 
analysis. It is quite clear that the curves of a particular set 
of data are not always unique. Therefore, finding a curve 
with a slight deviation from all points of the measured data 
is necessary. This is known as a best-fitting curve. The least 
square is the method of approximating the curves to the 
given data by fitting equations.

QR Decomposition
QR decompression, also known as QR factorization, is a 
method used to convert matrix A to the form
A = QR.

where A represents the output matrix, Q represents the 
orthogonal matrix, and R is the upper triangular matrix. 
Usually, QR decomposition is used to solve the problem of 
least squares. To decompose a square or rectangular matrix 
into two parts, Q and R. QR decomposition makes it easier to 
perform linear operations, thus increasing the performance 
of a given task.

LASSO
The objective of OMP is to find an approximate solution 
for the l0-norm minimization problem with least square 
method in the algorithm, while LASSO being a linear model 
trained with l1-norm for regularising, solves the l1-norm 
minimization problem. The ‘L1 ratio’ denoted by is 1 for zero 
L2 penalty. But fine-tuning of introduces variation in fitting 
the reconstruction while introducing L2 penalty towards an 
ordinary least squares problem. The lasso co-efficient of the 
Discrete cosine transformed random sparse samples of the 
original audio signal are determined and these coefficients 
are sufficient to reconstruct after inverse DCT.

Figure 1: Block diagram of compressive sensing
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Since tuning introduces L2 norm, sparsity is reduced for a 
real-time application like audio signal processing. Figure 2 
shows the reconstructed signal when around 12% of 
the audio is made sparse in the transformed domain. 
Figure 3 shows the corresponding frequency spectrum. By 
decreasing the compression ratio, there is an increase in 
error. The error decrease with a decrease in in the LASSO 
algorithm (Figure 4).

OMP Algorithm
The matrices and parameters involved in executing the OMP 
algorithm shown in Table 1 is described below.

The inputs to the algorithm are Transform Matrix Ψ, 
Measurement Matrix ɸ, Compressive Sensing Matrix A 
(A=ɸΨ), Measurement vector y and sparsity k. A signal 
estimate is represented as x͊ and an approximation to the 
measurements is given by y. ak is a matrix containing non-zero 
elements. A residue rk = y – ak , represents the output matrix 
of each iteration which are compared with y. Ωk has the set 
of positions of non-zero elements of the signal estimate x͊ .

Results and Discussion
Real-time audio signals have large data length. Eventually, 
the number of samples handled are very high. For ease 
of experimentation and to perceive the plots better, one 

frame of the audio signal for a duration less than a second 
is considered without windowing a long sequence of 1D 
audio signal. Figure 5 shows the original signal, audio signal 
after the sparse approximation and the reconstructed 
signal. There are 35841 samples in the audio signal and the 
sampling rate for the considered input signal is 44100 Hz.

For OMP reconstruction, the compression parameter 
‘k’ denoting the sparsity is set to 1500, which was arrived 
by trial-and-error method. The reconstructed signal has 
more error when ‘k’ was initialized to 100. So, it is gradually 
increased in steps of 500. As the ‘k’ value is increased the 
number of iterations also increase proportionally. As a 
result, there is a trade-off between the sparsity and the 
computation time to get a reconstructed signal with fewer 
or no error.

Figures 6 and 7 show the accuracy of the signal when 
the ‘k’ value is 100 & 1500 respectively. It can be seen clearly 
that the reconstructed signal’s accuracy is more with least 
deviations when ‘k’ value is increased to 1500. Figure 8 shows 
the plot for the correlation of each sparse reconstructed 
signal with the original signal. For each value of ‘k’ the 
correlation of the reconstructed signal with input is different 
and is higher than that of smaller ‘k’ values. But, higher the 
‘k’ value the execution time taken by the algorithm also 
increases. Hence, ‘k’ should be maintained optimally for 
effective reconstruction.

Figure 2: Overlayed original and reconstructed signals by LASSO 
reconstruction with compression ratio= 40% and 12.4% sparsity and 

Alpha tuning 0.005

Figure 3: Frequency spectrum of original signal & reconstruction

Figure 4: Performance of LASSO Algorithm

Table 1: OMP Algorithm
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signal efficiently, providing scope for a better FPGA-based 
architectural implementation. Hardware implementation 
helps in reducing the computation time and power as well. 
Thus, these reconstruction methodologies show promising 
results adding scope for audio signal processing involving 
feature extraction and denoising in IoT applications where 
processing power is also a concern.
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Figure 5: MATLAB plot original signal, sampled signal (after 
sparse approximation) and Reconstructed signal (after LS and QR 

Decomposition)
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Figure 6: Overlayed original and reconstructed signals when k =100 
(Original signal - Red, Reconstructed signal- Green)
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Figure 7: Overlayed original and reconstructed signals when k = 
1500 (Original signal - Red, Reconstructed signal- Green)
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Figure 8: Overlap of correlation of reconstructed signals with the 
corresponding input at different sparsity values (k=100 - Red, k=500 - 

Blue k=1000- Green, k=1500 - Black)

Conclusion
This paper presents the execution of compressive sensing 
using MATLAB and Python and emphasizes the significance 
of LASSO and Orthogonal Matching Pursuit. In LASSO, 
optimized tuning of the parameters converges to a better 
solution with minimum L2 penalty which is a computational 
overhead for future hardware implementation. Also, efficient 
sparse signal recovery for varying sparsity is discussed. 
Since the OMP approach is greedy and iterative, fixing 
the sparsity judiciously reconstructs the compressed 


