
Abstract
In systems, the fault is an internal occurrence. It becomes a failure if the defect is not detected and corrected. Sensors have been widely 
employed as a vital component of data collection systems, particularly in the industrial and agricultural sectors. Sensors are prone to failure 
due to their harsh operating environment. As a result, early detection of sensor faults is crucial for taking corrective action to reduce the 
impact. In this paper, faults in generator speed and wind turbine velocity have been investigated. The Extended Kalman Filter is utilized 
to identify the sensor faults in wind turbine model. The residual generation is used to detect the fault. The residual is the discrepancy 
between the real and estimated outputs. A Linear Quadratic Regulator controller is used for the stabilization of an unstable system.
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Introduction
One of the most widely utilized renewable energy sources is 
wind energy. However, faults and unplanned wind turbine 
shutdowns are costly. Sensor measurements play a vital role 
in system health monitoring because sensor malfunctions 
result in inaccurate monitoring outputs, impacting the 
system’s health. It requires fault detection techniques to 
identify faults at an early stage. Fault Detection and Isolation 
(FDI) is critical in various industries to ensure system safety 
and security (Kumar et al., 2021; Kumar et al., 2022) . To 
establish the kind, magnitude, place, and period of a failure, 
fault detection and isolation (FDI) methods are used. The 
robustness, velocity of liability detection and isolation 
distinguish fault detection and isolation techniques. This 
study compares anomaly detection systems based on 
Artificial Neural Architecture (ANN), Observer, Fuzzy, and 
Kalman filters. A set of residuals must be determined to 
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achieve fault identification and isolation. Residuals provide 
information about the current state of the system as well as 
potential faults (Ghareveran and Yazdizadeh , 2019).

In fault detection research, fuzzy inference is mostly 
used. Because of the input and the partial dialectal terms 
and rules, it is difficult to detect and measure faults and early 
fault severities. A fuzzy logic technique is utilized to detect 
wind turbine faults depending on extended dialectal rules 
to solve this problem. A fuzzy interpretation system anomaly 
detection method is proposed to detect early wind turbine 
faults. Based on the defuzzied result, the fault factor is 
designed to measure fault severities. (Qu et al., 2019; Simani, 
Farsoni and Castaldi, 2015).

The fault detection structure has been implemented 
and calibrated to be more reactive to system faults while 
being least reactive to process noise and disturbances. A 
monitoring scheme based on the residual generation via 
a non-linear estimator is also developed. The presented 
technique detects and isolates single or multiple faults in 
wind turbine sensors (Hwas and Katebi, 2014).

Many types of anomalies in wind turbines, such as plant 
faults, actuator faults and sensor faults, can be identified 
accurately and conveniently by the estimator using the 
residual generated by the Extended Kalman Filter estimator. 
The residual is the difference between the true and 
estimated values of the Extended Kalman Filter. Examine the 
occurrence and non-occurrence of faults in wind turbines 
using the residual output. Many types of anomalies in wind 
turbines, such as plant faults, actuator faults and sensor 
faults, can be identified accurately and conveniently by the 
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estimator using the residual generated by the extended 
Kalman filter estimator (Li et al., 2017; Ghareveran and 
Yazdizadeh, 2019).

In this work, wind turbine model is chosen for anomaly 
detection using the extended Kalman filter (Ribeiro, 2005; 
Trinh and Chafouk, 2011). The residual generation is used to 
detect the fault. The residual is the discrepancy between the 
output of the real system and the output of the estimated 
system. The state feedback controller is used to stabilize the 
unsteady system. This enhances the safety and security of 
the system.

System Modelling
The subsystems required to model the wind turbine are as 
follows

Wind velocity system
Wind velocity is a vital and attached part of the turbine. This 
is made up of two portions:

                                            (1)

Where  is the average wind velocity value and  is the 
turbulent portion of the wind velocity, respectively.

                                 (2)

Where  and  are coefficients regularized with zero mean 
and variance (Idrissi, El bachtiri and Chafouk, 2017).

Aerodynamic system
Aerodynamic wind turbine blades convert kinetic energy of 
wind to rotational motion.
Produced torque is specified by:

Where

 = λ.β)                                         (4)                                                                                                                                            

   (5)

                                                                           (6)

Where “v - the velocity of wind, - the density of air, R - the 
radius of rotor, - the efficiency coefficient which depends 
on tip velocity ratio λ and blade pitch angle β. Each blade 
in the turbine contains a pitch actuator, which changes the 
blade’s angle of attack”. The following model expresses the 
connection between the blade pitch angle  and the pitch 
demand .

                                                       (8)

Where  is a time constant that varies according to the 
actuator.

Mechanical Drive Train System
A shaft along with a gearbox make up this system. The 
gearbox increases the rotating velocity of the shaft, making 

it suitable for the electrical component. The mechanical 
drive train is based on a two-mass model. The model is 
described as:

Where “  is the control torque,  is the torsional stiffness, 
 is the torsional damping,  is the aerodynamic torque, 
 is the turbine inertia,  is the generator inertia,  is 

the gearbox ratio,  is the rotor velocity and  is the 
generator velocity.”

The difference between turbine rotor angle and 
generator rotor angle 

                                                                  (11)

Generator
Stator and rotor flux in d-q frame are

                                                               (12)

                                             (13)

                                               (14)

                                                                  (15)

Where / , is used for the 
leakage coefficient

                                                                       (16)

Where  is the stator voltage
By considering some assumptions about generator for 

observability condition, the reduced order model written as

                                 (17)

          (18)

                (19)

    (20)

Where 
 are Flux, current, and voltage in rotor and stator in the 

d-q frame.  and  are resistance and inductance 
of the rotor and stator.  is the mutual inductance then 

 is the synchronous velocity.
The non-linear model of generator is written as

   (21)
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The output equation is

                                                             (22)

By linearization of non-linear model, the generator model 
is described as

Where  and  are generator velocity, rotor 
current in d-q frame at operating point.

is defined as:

         
                                                         (24)

The generalized form of linearized state space model is 
described as

                                                     (25)

The state space matrices can be represented as:

B

w

Where                                                                                          
State variables, input variables and output variables of the 
wind turbine is given as

For the wind turbine, the rated values of the system 
parameters are as follows (Table 1):

Faults in Wind Turbine
Some common types of wind turbine fault are generator 
faults, gearbox faults, pitch system faults and blade faults.

Generator Fault
When the generator fails in the wind turbine, no power is 
produced. Generator fault occurs often in wind turbines 
and mostly contain mechanical and cooling system faults. 
The mechanical fault is substantially rotor fault and bearing 
fault. Electrical fault are stator winding fault and rotor 
winding fault. The electrical fault in wind turbine is caused 
by short circuit. Refrigeration system failures occur on a 
longer duration of heat oil that leads to impairment to the 
alternators, and therefore the foremost details for these 
catastrophes are jams within oil mixing systems, leakage 
of oil, faulty pipelines and oil corrosion.

Gearbox Fault
Among the components of turbines, the gearbox takes 
the highest failure rate. The bearings cause the majority of 
turbine gearbox liability. Gearbox fault includes teeth surface 
pitting, teeth bonding, gear fracture, static indentation and 
bearing damage.

Pitch System Fault
Electric motor drive and hydraulic drive are two sorts of 
pitch systems that is employed in turbines. The electrical 
motor is the pitch system’s most important component. 
The most common electrical motor pitch system faults 
are control structure catastrophes, mechanical scheme 
catastrophes, and battery structure catastrophes. Pitch 
angle liabilities, overheating motors, and communication 
failures are all examples of control system letdowns. Pitch 

Table 1: System parameter

Variables Value

Density of air, 1.22 Kg/
Rotor radius, r 40 M
Rated power 2 Mw

Gearbox ratio, 52.6

Inertia of turbine, 4.9*  N m 

Inertia of generator, 0.9*  N m 

Torsional stiffness, 3.5*  N 

Torsional damping, 114*

Winding resistance of rotor, 2.63 Mω

Magnetizing inductance, 5.474 Mh

Winding inductance of rotor, 5.606 Mh

Winding inductance of stator, 5.643 Mh
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gearbox problems is a frequent outcome in excessive current 
and heat increase of the running motor when it comes to 
mechanical system faults. When chargers fail and charging 
is unavailable, battery system problems are common. The 
turbine will run away since the battery-operated cannot 
deliver enough electrical power.

Blade Fault
Blade fissures and blade superficial cracks are the two 
types in blade failures. Blade damage will also occur during 
shipment and installation. Branches of trees scratch blade 
edges during transit to the wind farm, which will be a 
hidden problem in the future. Angle renovation and friction 
renovation will occur if the blade’s center point is not aligned 
to the beam angle through the installation procedure, 
causing damage to the blade’s front edge.

Fault Detection and Isolation Techniques
Fault Detection and Isolation (FDI) is critical for delivering 
safety and security action in many industries. A fault in any 
scheme causes the equipment to fail. Many FDI methods 
are used to control the fault’s type, size, position, and time. 
The main goal of the fault detection and isolation technique 
is to raise the alarm due to a change in the system and to 
control the size, position, and time of the fault occurrence. 
Fault detection is used to determine whether or not faults 
exist. Fault isolation identifies the precise location of faults.
FDI techniques are generally classified as

• Model-based method
• Data-driven method

Residual Generation For Wind Turbine
A set of residuals must be developed in order to achieve fault 
identification and isolation. The residual is the discrepancy 
among the real and estimated process output. Residual 
generation and evaluation operations are part of the liability 
detection algorithm. The residual generator produces 
a residual, which the Residual evaluator compares to a 
threshold to determine if a problem has occurred. If the value 
is beyond the threshold, a fault has occurred; otherwise, 
there is no fault present in the system (Figure 1).

To begin, a physical prototype of a turbine system is 
built, from which a system function for the EKF approach is 
specified. The projected outcomes from the EKF model and 

the yield of the turbine model are compared using identical 
inputs to determine fault diagnosis potential.

Extended kalman filter
The Extended Kalman Filter is a non-linear variant of the 
Kalman filter that linearizes a present mean and covariance 
estimate. It uses analytical methods like Taylor’s series, 
Jacobian to linearize the non-linearity.

The extended Kalman filter is separated as two phases: 
forecast and update. The forecast phase applies the prior 
time step’s state estimate to the present time step to 
get an estimate of the state. During the update phase, 
measurement data from the present time step is used to 
modify the forecast, resulting in a far more accurate state 
estimate for the same time step.
Non-linear System Dynamics:

= f ( , ) +                                      (26)

 = h( ) +                                                         (27)

Where,
 and  are measurement noise and process noise, 

respectively.
,  and  are the system state, input and sensor 

measurement.
Time update equations
Predicted state:

= f( , )                                              (28)

Predicted Covariance:

= +                                          (29)

Where the state transition matrices are defined to be the 
following Jacobians

                                                      (30)

Measurement update equations
Innovation:

                                              (31)

Measurement covariance:

                                         (32)

Updated state:

= +                       (33)

Updated Covariance:

 = (I - )                                              (34)

Kalman gain:

=                            (35)

Where the observation matrices are defined to be the 
following Jacobians:

                                                               (36)Figure 1: Residual generation for wind turbine
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where  and  are Jacobian approximations

Result and Discussion
Under this section, a linear quadratic regulator (LQR) 
stabilizes the unstable system. Then an extended Kalman 
filter predicts the sensor faults in wind turbine system.

LQR Response
The simulation results of 2Mw wind turbine obtained from 
the LQR.

Figure 2 shows LQR response. Figure 3 displays controller 
input response. Based on the weights on the states and 
weights on the control input are controlled. LQR stabilizes 
the unstable system.

Estimated Output
Figure 4 and 5 displays that true and estimated state of 
velocity of wind turbine and generator. In Figure 4, the blue 
curve indicates the true value and yellow curve indicates 
the estimated velocity of wind turbine. In Figure 5, the red 
curve indicates the true value and green curve indicates the 
estimated velocity of wind turbine. Estimated state follows 
the true state.

Residual Response
Figure 6 and 7 displays the residual of wind turbine velocity 
and generator velocity. It shows the difference between the 
true and estimated wind turbine and generator velocity 
values. If they reach beyond the threshold value, the fault is 
present in wind turbine. In the velocity of the wind turbine, 
if it reaches beyond 1.8 the fault is present in wind turbine 

Figure 2: LQR response

Figure 3: Controller input

Figure 4: Measured and estimated state of wind turbine velocity

Figure 5: Factual and estimated state of generator velocity

Figure 6: Residual of wind turbine velocity

Figure 7: Residual of generator velocity
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velocity. In the velocity of the generator, if it reaches beyond 
1.2 the fault is present in generator velocity.

Conclusion and Future Work
Many studies have engrossed the FDI systems needed to 
operate wind farms properly. Wind turbine is unstable, so the 
state feedback controller stabilizes the system. Difficulties 
in fault detection and identification for a complicated wind 
turbine system. The ensemble Kalman filter is an effective 
predictor for estimating wind turbines’ state. This approach 
is both non-linear and reliable. The estimator can detect 
a sensor fault accurately and easily, utilizing the residuals 
generated by the ensemble Kalman filter predictor.

In future work, the unscented Kalman filter and neural 
network can be utilized for anomaly detection and isolation 
need to enhance the efficiency (Kumar and Devakumar 
2022).
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