
Introduction 
Since they are safety-critical systems, early fault identification 
is compulsory for pressurized water reactors. This can be 
done by using analytical redundancy components (Kumar 
et al., 2022) or process data analytics (Kumar and Devi (2021). 
The nuclear industry is continually working to construct safer 
and more effective reactors for its upcoming generation 
of plants. To help operators make the right findings in the 
case of an anomaly or problem, thereby raising the level of 
safety for these reactors, is one of the essential conditions 
for attaining that goal. In this regard, fault monitoring 
techniques may significantly contribute to raising these 
plants’ safety standards. The inherent shortcomings of 
conventional methods have made intelligent fault diagnosis 
procedures a lively area of research (Ma and Jiang, 2009). 
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Based on the recent trend, machine learning is currently the 
most required option for future fault diagnosis technology 
(Patan, 2008)

Reported recent  studies in automated fault diagnosis 
include: comparing anomaly diagnosis ability between a 
Radial Basis Architecture and an Elman neural architecture 
(Kumar, 2021). Ayodeji, Liu and Xia (2018) proposed a fault 
diagnosis scheme based on Support Vector Machines (SVM) 
that is skilled of component-level tasks. In paper by Peng et 
al. (2018), the Sequential Probability Ratio Assessment was 
used to spot faults in PWR by means of distributed hierarchy.

This article proposes a data-based anomaly diagnosis 
procedure built on the long short-term memory (LSTM) 
architecture. Conventional neural algorithms are susceptible 
to overfitting and frequently peak in local minima. 
Furthermore, deciding on the architecture structure, with the 
number of hidden neurons, is tough. These create practical 
issues when attempting to implement the conventional 
vanilla neural architecture as a resolution. recurrent neural 
architectures (RNN) was developed for sequence problems 
to address this issue. This method outperforms conventional 
ANN and is better suited for structuring time series data 
(Zhang, Wang and Liu, 2008; Zhang et al., 2010; Zhang et al., 
2013; Kumar and Devakumar, 2022). It’s likewise remained 
used to aid in anomaly diagnosis.

Conventional RNN generates nonlinear models for 
detecting actuator faults (Talebi, Khorasani and Tafazoli, 
2009). Furthermore, the Elman architecture’s convergence 
speed and generalization ability have been improved. 
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Though, if RNN permits for information storing, architecture 
gradients incline to fade over time. LSTM architecture 
employs RNNs. It is particularly good at speech recognition, 
text classification, and other tasks. In the field of nonlinear 
systems, anomaly prediction is regarded as the primary 
subject (Wu et al., 2018). Until now, slight research on using 
LSTM in anomaly diagnosis are carried out. Depending on 
its outcome in time series data, the investigation goals to 
implement LSTM for anomaly diagnosis in a small modular 
reactor.

The content discussed is as follows. Section 2 briefs 
on the normalization and parameters of small modular 
reactors, fault scenarios, and LSTM. Section 3 explains on 
the results obtained. Section 4 provides the conclusion and 
future scope.

Materials and Methods

IP-200 - Modular Reactor
The IP-200, a cutting-edge small modular reactor (SMR) 
depending upon Integral PWR modeled at Harbin 
Engineering University, is under consideration. Medium 
and small-sized reactors (SMR) have grown in acceptance 
during recent years owing to their small size, the comfort 
of assembly (at the plant), and approachability in distant 
locations (Locatelli et al., 2014 ). This type of reactor is perfect 
for powering distant and seaside areas. The reactor’s main 
parameters are revealed in Table 1. RELAP5 software was 
used to model the thermal hydraulics of the IP-200 reactor 
(Saeed et al., 2020; Wang et al., 2021; Kumar & Devakumar, 
2022). This is a two-fluid scheme code for analysis. Figure 1 
depicts the system’s normalization.

Due to its integral design, the pressure container has the 
majority of the primary system, with the core, pressurizer, 

OTSG (Once Through Boilers/Steam Generators), and 
pumps. (Xia et al., 2016; Sun et al., 2017; Jiang et al., 2018) 
Labels its functioning. The reactor core contains plate 
category fuel elements, which is situated at the lowest of 
the reactor container. It involves three flow conduits: a hot 
(014P) channel, a bypass (018P) channel, and an average 
(016P) channel. Though the upper plenary functions as a 
pressurizer with safety features built in. Four clusters of 
OSTGs are utilized for heat transmission to the secondary 
unit, each one linked to a pump located in the superior side 
of the reactor vessel. Shared headers serve both the feed 
water (202B) inlet and the superheated steam (250) outlet.

Fault Scenarios
The IP-200 RELAP-5 simulated dataset can be found at (Saeed 
et al., 2020; Wang et al., 2021; Kumar & Devakumar, 2022). To 
estimate the efficacy of the proposed anomaly diagnosis 
structure, a  learning was carried out using the thermal 
hydraulic guesstimate code in RELAP5 for simulation of the 
IP-200 NPP. The various abnormal and normal simulated 
circumstances considered in this learning are enumerated 
in Table 2.

A Long Short-term Memory (LSTM) architecture is utilized 
in this study to classify the above-simulated conditions.

Figure 2: LSTM schematic layer

Figure 1: Nodalization of IP-200

Table 1: Key Parameters of IP-200
Process Parameters Rated Values

Power at full core 220 MW

Pressurizer Pressure 15.5 MPa

Inlet Temperature of Reactor Core 562.15 K

Outlet Temperature of Reactor Core 594.15 K

Mass flow rate of Feed water 81.5 kg/s

Temperature of Feed water 373.15 K

Mass flow rate of Primary Coolant 1200 kg/s

Superheat of steam 40.0 K

Pressure of steam 3.0 MPa

Number of Once through Steam Generators 12

Number of main pumps 4
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Long Short-Term Memory
Recurrent neural architecture (RNN) is an upgraded type of 
traditional neural architecture. The temporal statistics is the 
input information, with contacts amongst units forming a 
directed cycle in that layer. In distinction, a traditional neural 
architecture has connections in between the layers only. 
Inside a single layer, there is no linking between the units. 
Thus, this architecture does not diffuse time series numbers, 
its effectiveness for time series numbers will be subpar. 
But, if RNNs can stock data over time, the gradients in the 
architecture vanishes. If it happens, the learning capability 
of the RNN reduces significantly.

The LSTM neural architecture is categorized as deep-
net, which is intended to acquire long-term dependencies. 
It can preserve data for lengthy epochs of time by utilizing 
the introduced gates. The forget gate is cast off to ignore 
repeated data, the input gate chooses critical data to be 
saved in the internal state, and the output gate predicts 
output data.

Hochreiter and Schmidhuber devised LSTM network ( 
Hochreiter and Schmidhuber, 1997), which Gers refined and 
advanced (Gers, Schmidhuber and Cummins, 2000). While 
the horizontal line in the normal RNN neural architecture 
layer passes over the uppermost of the diagram, the LSTM 
contains three gates to defend and govern the cell state. 
The first stage of the LSTM is to determine which data from 
the cell state will be ignored. The choice was made using a 
method known as forgetting the door. ht-1 and xt is read 
from the gate for each quantity in the cell state and outputs 
a value between 0 and 1. Ct-1. 1 denotes “fully reserved,” 
while 0 denotes “totally discarded.”

The following step determines the new data saved in the 
cell state. This article is alienated into two parts. The sigmoid 
layer, also known as the ‘input layer,’ resolves which value 
to inform first. Then, using a tanh layer, a next candidate 
vector is created, and Ct is supplementary to state. In the 
subsequent stage, these two messages will provide status 
information. Multiply the present state by ft and remove 
any unnecessary data. Then mix it with Ct. This will be the 
most recent candidate, and it deviations depending on 
how much each state is altered. Finally, decide on a output 
value. The output is based on the cells’ present status, then 
it will be filtered.

The sigmoid layer is used to regulate portion of the cell’s 
state that will be produced as the first step. The cell’s state 
is then multiplied by the sigmoid gate output using tanh (a 
value between -1 and 1), with just the portion that regulates 
the output being produced. The equations of the LSTM are

Figure 2 shows a quick schematic of the LSTM layer. The 
projected LSTM architecture has an optimizer that functions 
on the SGDM. The classic Stochastic Gradient Descent 
(SGD) procedure changes architecture parameters (biases 
and weights) to minimize the objective function by taking 
incremental stages in the direction of the loss function’s 
negative incline.

Table 3: LSTM Training parameters 

Layers LSTM
LSTM
LSTM
Fully Connected
SoftMax
Classification

Number of inputs 43 sensor signals from IP-200

Number of classifications 6

Gradient Threshold 0.001

Maximum Epochs 150

Number of neurons Hidden layer 1: 150
Hidden layer 2: 150
Hidden layer 3: 150

Table 2: Simulated conditions with values

Classification Number Simulated Condition

0 Steady state at rated Power

1 Steam generator tube rupture

2 Reactor Coolant Pump failure

3 Pressurizer PORV struck open 100%

4 Power transient 60 to 80%

5 Feedwater line break 50%

Figure 3: Steady state at rated Power
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Figure 9: Architecture accuracy and loss progress

Figure 4: Steam generator tube rupture

Figure 5: Reactor Coolant Pump failure

Figure 6: Pressurizer PORV struck open 100%

Figure 7: Power transient 60 to 80%

Figure 8: Feedwater line break 50%

The SGD method might fluctuate through the steepest 
descent route as it approaches the optima. One method 
for reducing fluctuation is to include a momentum term in 
the parameter update.

The SGDM update is

where the influence of the preceding gradient stage to 
the present epoch is determined one method for reducing 
overfitting is to include a regularisation term in the weights 
of the objective function, E(). The regularisation term is also 
known as weight decay. With the regularisation term, the 
loss function looks like:

where λ - the regularization factor, w - the weight vector, 
and the function of regularization   (w) is

The LSTM neural architecture can handle classification 
architecture through recognized input and fault categories. 
This technique is praised in industries for a variability of 
tasks. (20)

Results and Discussion
The Relap-5 dataset was analyzed through Figures 3 to 8. 
Simulated sensor data from 43 process variables like flow, 
temperature, and pressure of several elements of IP-200 
is considered under study. The plots indicate the variable 
changes due to the presence of fault.

A LSTM architecture was trained in MATLAB environment 
for classifying IP-200 simulated fault and normal conditions. 
The parameters used for training are as in Table 3

where l epitomizes epochs, α>0 the rate of learning,  remains 
the parameter vector, and E() the objective function. The 
incline of t this objective function, 

Δ

E(θ), is premeditated 
by means of the whole training data. The conventional 
gradient descent technique usages all data in a single pass. 
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Six layers of neural architectures was trained for classification 
via 43 different process parameters. The process parameter 
value differs for each simulated fault/non-fault condition. 
Thus, the architecture was trained using six sets of 43 
process parameters. The number of neurons in the hidden 
layers was chosen in such a way that nominal performance 
accuracy is achieved. The training performance of LSTM is 
as shown in Figure 9.

It is noted that the trained LSTM model can accurately 
classify the six types of simulated conditions with identical 
efficiency for all faults.

Conclusion
An online fault monitoring technique for a nuclear power 
plant is presented in this work. The LSTM architecture 
reliably classifies four fault conditions: Steam generator 
tube rupture, reactor coolant pump failure, pressurizer valve 
open, and feedwater line break, as well as two non-fault 
conditions: power transient and steady-state at rated power. 
The IP-200 Relap-5 dataset was used in this investigation. 
The trained LSTM architecture appropriately classifies the 
above six cases. Other fault and non-fault scenarios will be 
included in future studies, with the goal of using LSTM to 
forecast process variables and to diagnose and isolate faults. 
Other deep learning algorithms can be investigated and 
their performance compared to that of LSTM.
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