
Introduction 
The PMDC motor is used in the field of delicate applications. 
A digital twin is the digital representation of the system. But 
the flow of information between the digital model and real 
system decides whether the digital representation is a digital 
twin or not. If the information flows from model to plant and 
then plant to model it is called a digital twin. The process 
cycle of the PMDC motor can be monitored and useful data 
can be collected for future robust design of the machine. 
The variation of the parameters during the operation of 
the system makes it difficult to control the plant optimally. 
Digital twin helps us control the system optimally even in 
parameter variation[4].

The digital capability has grown enormous. The digital 
domain greatly reduces the need for real-world resources. 
With the development of cloud computing technology 
and metaverse, the need for digital representation of the 
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system has increased. The digital domain acts as a bridge 
between disciplines. The non-technical entities of the 
system can be used to tune technical aspects of the system. 
Modeling of the system to the desired level of accuracy 
makes the digital twin efficient and useful. The nonlinear 
nature of the model also needs to be modeled and the 
model is to be updated for uncertainties that take place 
when the system is being controlled. To improve the control 
performance of the closed-loop system, there should be a 
flow of information from the digital twin to the controller. 
The received information must be effectively used to change 
the controller parameters to get a good response (Kritzinger 
et al., 2018).

The digital twin is implemented by the following. 
The NARX model helps to model the nonlinearities in the 
system. The expert systems’ growth helps make the model 
more adaptive to the uncertainties. The NARX model can 
be implemented using different techniques. By using the 
neural network, can implement the NARX model. The 
optimization algorithm achieves adaptability. The proposed 
work’s primary contribution is the creation of the digital twin 
for the PMDC motor.

Werner Kritzinger et al. used a categorical analysis of 
the DT in manufacturing and a categorization of the current 
publications according to their amount of DT integration 
to give a review on digital twins[1]. In their study on digital 
twins, Giovanni Lugaresi and Andrea Matta described 
a method for automatically recognizing manufacturing 
systems, developing appropriate digital twins, and 
extracting crucial information about a production system 
from data logs (Lugaresi and Matta, 2021). The creation of 
a digital twin for machining operations based on planning 
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and process data was reviewed by Hanel et al. and made 
it feasible to spot issues early on in the machining process 
(Hanel, 2020). Brylina et al., presented a review in the 
importance of modeling in digital twins with an example of 
a PID controller model and cycle time of the PID controller 
(Brylina, N. N. Kuzmina, and K. V. Osintsev, 2020).

Duan and Tian talked about the digital twin’s design, 
the model’s maturity, and how the model learns once it gets 
going will not learn immediately about the complete aspect 
of the system (Duan and Tian, 2020). Naung et al offered 
an overview of the neural network’s structure, functional 
diagram, and mathematical DC motor model (Naung, 
Anatolii and Lin, 2019) and contrasted the outcomes of PI 
controllers and neural networks.

The following is how the paper is structured; Section 
II describes the suggested technique. The experimental 
analysis is covered in Section III, and the recommended 
work is wrapped up in Section IV.

Proposed Digital Twin
The proposed digital twin is given in Figure 1. The NARX 
model is initially trained using PRBS signal. It predicts the 
output. The weights of the NARX model is actively changed 
using the PSO algorithm to model the changes in the system. 
The model generates the output based on current dynamics. 
The Kalman filter estimates the state of the PMDC motor 
from the noisy measurement. The prediction from the NARX 
model is applied to the MPC controller, which controls the 
speed of the PMDC motor.

PMDC Motor
A PMDC motor can be represented in terms of its electrical 
dynamics and mechanical dynamics of the system. The 
PMDC motor’s electrical and mechanical equivalent circuit 
is given in Figure 2.

The mathematical model of electrical subsystem 
obtained by applying Kirchoff’s voltage law is,

					                             (1)

Where,is the excitation voltage applied to the PMDC 
motor, i is the current flowing through the motor, R is 
resistance of the armature winding, L is the inductance of 
armature winding and, eb  is the back electromotive force,

The mathematical model of mechanical subsystem 
obtained by applying force balance equation is,

			          (2)
Where, T is the generated torque, Jm is the motor inertia, 

bm is the frictional constant, TL is the load torque, θ is rotor 
angle.

Due to the presence of a feedback circuit inside the 
system, PMDC is a self-regulatory system. The system always 
settles at a new equilibrium point till the operating range 
is in its rated capacity. The manipulated variable is input 
voltage, torque being the disturbance and, the output 
is speed in rad/sec. The parameters of the PMDC motor 
considered in this work is given in Table 1.

Figure 1: Digital twin for PMDC
 

Table 1: PMDC motor parameters
Parameter Value

Coil resistance 0.157 Ω

Coil inductance 0.00031 H

Back- emf constant 0.049 volt/(rad/sec)

Torque constant 0.05Nm/Amps

Rotational inertia 0.00046 kg-m*m

Friction coefficient 0.00027 Nm/(rad/sec)

Figure 2: Electrical and mechanical equivalent circuit of PMDC 
motor

Figure 3: Basic structure of NARX using ANN
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The rating of the PMDC is 24 V, 3 A, 4600 RPM. On 
substituting the parameters given in Table 1, in (1) and (2) 
gives,

						             (3)

	
					                             (4)
The PMDC motor’s characteristics in S-domain is 

considered as,

5

					                             (5)
Based on the pole location it is seen that the system 

is stable.The response of the system is overdamped. The 
overdamped response is characterized by,
•	 Damping ratio ε is 1.918336146.
•	 Natural frequency ωn is 130.9061006 rad/Sec.
•	 Settling time is 0.105 sec for 2% error and 0.121 sec for 

1% error.
•	 Steady-state gain of the system is 20.

PID controller is chosen initially to control the speed 
of the PMDC and it is tuned using reaction curve method. 
The PID controller’s parameters are: derivative gain (kd), 
proportional gain (Kp) 34032, and integral gain (Ki) 0.0025.

Nonlinear Auto Regressive Exogenous (Narx) Model
NARX model has the information about the nonlinearity in 
the system. For digital twin, the model needs to learn from 
the system being controlled (Table 2). The system in the 
real time exhibits many types of nonlinearities. Since the 
general model of the systems is often a localised model, 

it cannot establish the relationship between the system’s 
input and output when the operating point changes. The 
nonlinearities that can occur at the time of operation of the 
systems are saturation of the actuators, minor degradation 
of the system components. This type of nonlinearities needs 
to be addressed. Thus, it is better to go with the model that 
is capable of adapting to the nonlinearities (Naung, Anatolii 
and Lin, 2019). The equation of the NARX model is,
	 y(t) = f(y(t - 1) + y(t - 2) + ... y(t - d) + .... u(t - d)                  (6)

Where f (.) is the nonlinear function that represents the 
system’s nonlinearities, y (.) is the expected output of the 
system, u (.) is the input that was applied to the system, and 
d is the amount of time that has passed before prior values 
are taken into account.

The dynamics of the PMDC motor can be represented 
by the selection of NARX model parameters. Artificial neural 
networks (ANN) can be employed to implement the NARX. 
The quantity of layers, neurons, and activation functions 
for each layer define an ANN. The model can also be made 
regressive by including delay components. The Figure. 3 
describe the basic structure of NARX using ANN.

In order to build NARX, an ANN with three layers an input 
layer with six neurons, a hidden layer with ten neurons, and 
an output layer with one neuron was used. Transig is the 
selected activation function for the hidden layer. The output 
layer uses linear activation function. The data are scaled and 
normalized before given to the network for training. The 
inputs are voltage and load torque at current instance and 
immediate previous instance. Also, current and previous 
instance output are feedback as input.

Response of the NARX Model
The PMDC motor is excited by the PRBS signal. The input 
and output data set are collected and neural network is 
trained using the NN app. The model’s MSE is in the range 
of 10-5. Figure. 4 displays the NARX model’s behaviour during 
training, testing, and validation.

Kalman Filter
It is the optimal linear filter. The RLS estimation is purely 
data oriented it does not have the knowledge about the 

Figure 4: Response of NARX model for PRBS input

Figure 5: Flowchart of PSO algorithm

Table 2: Performance measure of NARX 

Label Target Values MSE

Training 2801 0.0129

Validation 600 0.0006

Testing 600 0.0004
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dynamics system. Kalman filter fuses the RLS and state space 
equation to form the robust estimator. The noise affected to 
the system should be of Gaussian in nature. The estimation 
is split into two pieces by the Kalman filter: the time update 
equation and the measurement update equation. The state 
space equation of the system serves as the basis for the 
time update equation. Priori and posteriori are terms used 
to describe the time update equation and measurement 
update equation, respectively (Arunshankar, 2002). The time 
update equation is given by,

	

The measurement update equation is given by

	

Where, x is state variable of the system, y is measurement 
from the system, U is input given to the system, A, B, C, D 
are the state space matrices of the system, K is Kalman gain, 
i is the time instants.

The term  is called residual or innovation 
term. This helps the Kalman filter to update its prediction 
or fine tune its prediction. Q represents the process noise 
covariance matrix, it holds the variance of each state noise. 
P is the error covariance which is set to high value if the 
knowledge about the initial state is poor. The values of Q, R 
and P used in this work are,

Q=[1 0 0 0 1 0 0 0 1 ]				           (9)
R=0.001					           (10)
P=[100 0 0 0 100 0 0 0 100 ]			         (11)

Particle Swarm Optimization
It is a metaheuristic algorithm. The animals that live in 
group have some level of intelligence which is very much 
suitable for searching the solution in multidimension space 
(Qi, Shi and Zhang, 2019). In PSO algorithm, large number 
of particles called swarms are created and initialized with 
random position in the search space. The algorithm’s 
fundamental goal is to enable the particle to move around, 
communicate with society each particle’s local best, and 
work toward being the best possible globally. In this work 
the PSO is used minimize the MSE of NARX.

The network has 70 weights that need to be modified 
to make the model adaptable. So, it is a 70-dimensional 
search space. Every instant PSO do the search for the 70 
weights which makes the cost function minimization. Figure 
5 illustrates the flowchart of PSO algorithm.

The weights which transfers the input to input of hidden 
layer is, 

W1 = [ W11 W12 W13 W14 W15 W16 W17 W18 W19 W110 W21 W22  W23  
W24 W25  W26 W27 W28 W29 W210 W31 W32 W33 W34 W35  W36 W37  W38 W39 
W310 W41 W42 W43 W44 W45 W46 W47 W48 W49 W410 W51 W52 W53 W54 W55 
W56 W57 W58 W59 W510 W61 W62 W63 W64 W65 W66 W67 W68  W69 W610 ]

INPUT LAYER HIDDEN LAYER OUTPUT LAYER	 (12)

		  (13)
Where, W1 represents the weights of layer 1, X is input 

to the network, Y1 is aggregated output of each neuron in 
the hidden layer.

The aggregated output of each neuron passing through 
the activation function.

						      (14)

		  		  (15)
Where, z1 is the output from the activation function of 

hidden layer neurons,are the weights between hidden layer 
and neuron,is aggregated output of the input from the 
hidden layer and output, and Y is output of neural network.

The MSE equation that PSO optimizes is,

	 		  (16)
Where,  i  represents current instant,  y(i)esti m ate 

is the estimate from Kalman filter.
Based on the global best, personal best and its current 

position the particles move. The new velocity and the 
particle’s new position is given by (17) and (18).

						      (17)
	 	 (18)
Let the position of the particle i be , the velocity of the 

particledenoted by,be the personal best of the particle I 
andbe the global best.

Model Predictive Controller
Model predictive controller is chosen as the controller for 
this work. Because of the constraint handling capacity and 
good adaptive nature, MPC is chosen. MPC employs a model 
to anticipate potential responses when a control step is 
required. The control is then found by maximising the cost 
function in the prediction window. The NARX model adapts 
the change in the state of the system. The MPC uses the 
NARX model to estimate the state (Hertneck et al., 2018) 
(Figure 6).

Figure 6: NARX snetwork structure for PMDC
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Optimization of the cost function is given by

	     (19)
Where, RS is vector containing information about 

reference input at each instant, size is same as that of 
prediction window, Y is the plant output, ΔU is the step size 
of the input applied to the plant.

The first term in the cost function is the error due to 
deviation of the system output from the set point and, the 
second term incorporates is the step size of the input, with 
R the tuning parameters for controlling the step size is R.

The control trajectory is given by,

      (20)
Here, ki represents the sampling instant, Nc control 

horizon.
To optimal control signal is given by,

	 	       (21)

Result And Discussion

Servo Response of PMDC with PID
The static and dynamic analysis of set point tracking is 
presented in this section. The step change in set point 
applied is 150 rad/sec. From Figure 7, Peak overshoot is 
6.67%, rise time is 0.012 sec and settling time is 0.043 sec.

Regulatory Response of PMDC with PID
The static and dynamic analysis of disturbance rejection is 
done on this section. A disturbance of 4Nm is applied at time 
t>5 sec. From Figure 8, undershoot is 6.67% and recovery 
time is 0.0293 sec.

Response of the NARX Model of PMDC
The system is simulated with an input of 24 volt and after 5 
sec a torque of 1 Nm is applied. By comparing the response 
shown in Figure 9 and 10, it is evident that NARX model has 
approximated the PMDC motor.

Figure 12: Response of system with MPC controller for case 1

Figure 7: Servo response of PMDC

Figure 8: Regulatory response of PMDC

Figure 9: Output from NARX model

Figure 10: True response of PMDC

Figure 11: Estimation of current and speed by Kalman filter
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Estimation by Kalman Filter
Figure 11 shows the estimated output obtained from the 
Kalman filter, with the input of 24 volts being applied to 
the system at t = 5 sec and, a disturbance torque of 1-Nm.

Convergence of PSO Algorithm for Different Cases
The PSO algorithm is tested for three cases,
•	 Case 1: The resistance value of armature winding is 

increased by 10 times.
•	 Case 2: The inductance value of armature winding is 

increased by 10 times.
•	 Case 3: Both resistance and the inductance value of 

armature winding are increased by 10 times.
•	 Case 1: MSE =7.7994e-15.
•	 Case 2: MSE =2.3617e-13.
•	 Case 3: MSE = 9.7e-10.

Response of System with Mpc Controller
The MPC controller uses the information from the NARX 
model to predict the response of the updated system. For 
each case the NARX model is updated by the PSO algorithm. 
The MPC has performed well with the help of an updated 
model. The performance of MPC in all three cases were 
shown as Figures 12-14, respectively.
The set point is fixed at 150 rad/sec. In all three cases, the 
MPC is capable of controlling the system at the desired 
setpoint.

Conclusion
The concept of digital twin is implemented for the PMDC 
motor. The Nonlinear Auto Regressive Exogenous model 
for the PMDC motor is developed. The model is updated 
by using PSO algorithm. This way the learning part is 
completed, the flow of information from the plant to the 
model. The second part is the flow of information from 
model to plant. Based on the updated model’s prediction, 
the MPC controller controls the plants. The variation of 
the system is done for three cases. In all three cases the 
convergence of the PSO algorithm for the cost function as 
MSE is checked. The resistance variation and inductance 
variation of the plant is simulated. It is seen that the step 
size of the controller output is fixed. In case 3 the voltage 
given to the PMDC motor goes out of the specified rating.
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