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Abstract

Recent developments in the digital domain can reduce the resources needed for efficient plant control. The growth of cloud computing
and big data analysis has paved the way for using digital domain as processing units. Metaverse is the animated version of the physical
realm in digital domain. The control mechanism and dynamics of the real-world data cannot be manually fed to the digital domain.
The real plant can change its dynamics during its operation which the previously modeled mathematical model cannot address. So,
the model for the system needs to be developed by its own and it need to be adaptable. This can be done by implementing the digital
twin. In this work, a nonlinear Auto Regressive Exogenous model captures the dynamics of a PMDC motor. A model predictive approach
is used to control the PMDC motor, which uses updated model to predict the response and generate the desired control input.
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Introduction

The PMDC motor is used in the field of delicate applications.
Adigital twin is the digital representation of the system. But
the flow of information between the digital model and real
system decides whether the digital representation is a digital
twin or not. If the information flows from model to plantand
then plant to model it is called a digital twin. The process
cycle of the PMDC motor can be monitored and useful data
can be collected for future robust design of the machine.
The variation of the parameters during the operation of
the system makes it difficult to control the plant optimally.
Digital twin helps us control the system optimally even in
parameter variation[4].

The digital capability has grown enormous. The digital
domain greatly reduces the need for real-world resources.
With the development of cloud computing technology
and metaverse, the need for digital representation of the
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system has increased. The digital domain acts as a bridge
between disciplines. The non-technical entities of the
system can be used to tune technical aspects of the system.
Modeling of the system to the desired level of accuracy
makes the digital twin efficient and useful. The nonlinear
nature of the model also needs to be modeled and the
model is to be updated for uncertainties that take place
when the system is being controlled. To improve the control
performance of the closed-loop system, there should be a
flow of information from the digital twin to the controller.
The received information must be effectively used to change
the controller parameters to get a good response (Kritzinger
etal., 2018).

The digital twin is implemented by the following.
The NARX model helps to model the nonlinearities in the
system. The expert systems’ growth helps make the model
more adaptive to the uncertainties. The NARX model can
be implemented using different techniques. By using the
neural network, can implement the NARX model. The
optimization algorithm achieves adaptability. The proposed
work’s primary contribution is the creation of the digital twin
for the PMDC motor.

Werner Kritzinger et al. used a categorical analysis of
the DT in manufacturing and a categorization of the current
publications according to their amount of DT integration
to give a review on digital twins[1]. In their study on digital
twins, Giovanni Lugaresi and Andrea Matta described
a method for automatically recognizing manufacturing
systems, developing appropriate digital twins, and
extracting crucial information about a production system
from data logs (Lugaresi and Matta, 2021). The creation of
a digital twin for machining operations based on planning
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Architecture for the work carried out
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Figure 2 Digital twin for the plant

Figure 1: Digital twin for PMDC

and process data was reviewed by Hanel et al. and made
it feasible to spot issues early on in the machining process
(Hanel, 2020). Brylina et al., presented a review in the
importance of modeling in digital twins with an example of
a PID controller model and cycle time of the PID controller
(Brylina, N. N. Kuzmina, and K. V. Osintsev, 2020).

Duan and Tian talked about the digital twin’s design,
the model’s maturity, and how the model learns once it gets
going will not learn immediately about the complete aspect
of the system (Duan and Tian, 2020). Naung et al offered
an overview of the neural network'’s structure, functional
diagram, and mathematical DC motor model (Naung,
Anatolii and Lin, 2019) and contrasted the outcomes of PI
controllers and neural networks.

The following is how the paper is structured; Section
Il describes the suggested technique. The experimental
analysis is covered in Section lll, and the recommended
work is wrapped up in Section IV.

Proposed Digital Twin

The proposed digital twin is given in Figure 1. The NARX
model is initially trained using PRBS signal. It predicts the
output. The weights of the NARX modelis actively changed
using the PSO algorithm to model the changes in the system.
The model generates the output based on current dynamics.
The Kalman filter estimates the state of the PMDC motor
from the noisy measurement. The prediction from the NARX
model is applied to the MPC controller, which controls the
speed of the PMDC motor.

Table 1: PMDC motor parameters

Parameter Value

Coil resistance 0.157 Q

Coil inductance 0.00031 H

Back- emf constant 0.049 volt/(rad/sec)
Torque constant 0.05Nm/Amps

Rotational inertia 0.00046 kg-m*m

Friction coefficient 0.00027 Nm/(rad/sec)
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Figure 2: Electrical and mechanical equivalent circuit of PMDC
motor

PMDC Motor
A PMDC motor can be represented in terms of its electrical
dynamics and mechanical dynamics of the system. The
PMDC motor’s electrical and mechanical equivalent circuit
is given in Figure 2.

The mathematical model of electrical subsystem
obtained by applying Kirchoff's voltage law is,

R4 L di
v=IR+L—+e€

dt P )

Where,is the excitation voltage applied to the PMDC
motor, i is the current flowing through the motor, R is
resistance of the armature winding, L is the inductance of
armature winding and, e, is the back electromotive force,

The mathematical model of mechanical subsystem
obtained by applying force balance equation is,

d* +b a6 +T
dez © "mde -t )

Where, Tis the generated torque, J is the motorinertia,
bm is the frictional constant, T is the load torque, 6 is rotor
angle.

Due to the presence of a feedback circuit inside the
system, PMDCis a self-regulatory system. The system always
settles at a new equilibrium point till the operating range
is in its rated capacity. The manipulated variable is input
voltage, torque being the disturbance and, the output
is speed in rad/sec. The parameters of the PMDC motor
considered in this work is given in Table 1.
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Figure 3: Basic structure of NARX using ANN



180 Pravin P. P, J. Arunshankar

The Scientific Temper. Vol. 14, No. 1

0 of Output Element 1 for Time-Series 1

+ Training Targets
* Training Qutputs
Validation Targets
Validation Outputs
Test Targets
+ Test Outputs
b Errors

0 i i —Response

Qutput and Target

[ Targets - Outputs ‘

-100
0.02

Error
o
=]

.‘l ™ |
1000 2000 3000 4000 5000 6000 7000 8000 9000
Time Steps

0.02

Figure 4: Response of NARX model for PRBS input

The rating of the PMDC is 24 V, 3 A, 4600 RPM. On
substituting the parameters given in Table 1, in (1) and (2)
gives,

1
I8) = 500031375 + 0157378 ' )

— 0.049) ?3)
1
0.0004665 + 0.0002546

w(s) = (0.05011)

)
The PMDC motor’s characteristics in S-domain is
considered as,

o)

v(s)
0.0501

T 1.4618 + 10752 + 7.3418 * 10=5s + 0.0025

(5)

Based on the pole location it is seen that the system
is stable.The response of the system is overdamped. The
overdamped response is characterized by,

Damping ratio € is 1.918336146.

Natural frequency w_is 130.9061006 rad/Sec.

Settling time is 0.105 sec for 2% error and 0.121 sec for

1% error.

« Steady-state gain of the system is 20.

PID controller is chosen initially to control the speed
of the PMDC and it is tuned using reaction curve method.
The PID controller’s parameters are: derivative gain (kd),
proportional gain (Kp) 34032, and integral gain (Ki) 0.0025.

Nonlinear Auto Regressive Exogenous (Narx) Model

NARX model has the information about the nonlinearity in
the system. For digital twin, the model needs to learn from
the system being controlled (Table 2). The system in the
real time exhibits many types of nonlinearities. Since the
general model of the systems is often a localised model,

Table 2: Performance measure of NARX

Label Target Values MSE

Training 2801 0.0129
Validation 600 0.0006
Testing 600 0.0004

it cannot establish the relationship between the system’s
input and output when the operating point changes. The
nonlinearities that can occur at the time of operation of the
systems are saturation of the actuators, minor degradation
of the system components. This type of nonlinearities needs
to be addressed. Thus, it is better to go with the model that
is capable of adapting to the nonlinearities (Naung, Anatolii
and Lin, 2019). The equation of the NARX model is,

y(t) =fly(t- 1) +y(t-2) +..y{t-d) +...u{t-d) (6)

Where f (.) is the nonlinear function that represents the
system'’s nonlinearities, y () is the expected output of the
system, u () is the input that was applied to the system, and
d is the amount of time that has passed before prior values
are taken into account.

The dynamics of the PMDC motor can be represented
by the selection of NARX model parameters. Artificial neural
networks (ANN) can be employed to implement the NARX.
The quantity of layers, neurons, and activation functions
for each layer define an ANN. The model can also be made
regressive by including delay components. The Figure. 3
describe the basic structure of NARX using ANN.

In order to build NARX, an ANN with three layers an input
layer with six neurons, a hidden layer with ten neurons, and
an output layer with one neuron was used. Transig is the
selected activation function for the hidden layer. The output
layer uses linear activation function. The data are scaled and
normalized before given to the network for training. The
inputs are voltage and load torque at current instance and
immediate previous instance. Also, current and previous
instance output are feedback as input.

Response of the NARX Model

The PMDC motor is excited by the PRBS signal. The input
and output data set are collected and neural network is
trained using the NN app. The model’s MSE is in the range
of 10°. Figure. 4 displays the NARX model’s behaviour during
training, testing, and validation.

Kalman Filter
It is the optimal linear filter. The RLS estimation is purely
data oriented it does not have the knowledge about the

Figure 5: Flowchart of PSO algorithm
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dynamics system. Kalman filter fuses the RLS and state space
equation to form the robust estimator. The noise affected to
the system should be of Gaussian in nature. The estimation
is splitinto two pieces by the Kalman filter: the time update
equation and the measurement update equation. The state
space equation of the system serves as the basis for the
time update equation. Priori and posteriori are terms used
to describe the time update equation and measurement
update equation, respectively (Arunshankar, 2002). The time
update equation is given by,

Xipq)i = A* X + B+ Uj

The measurement update equation is given by

Rivajivr = Xiapi ¥ K iwr — € * i)

Where, x is state variable of the system, y is measurement
from the system, U is input given to the system, A, B, C, D
are the state space matrices of the system, Kis Kalman gain,
i is the time instants.

The term (i+1 = € * %i411) s called residual or innovation
term. This helps the Kalman filter to update its prediction
or fine tune its prediction. Q represents the process noise
covariance matrix, it holds the variance of each state noise.
P is the error covariance which is set to high value if the
knowledge about the initial state is poor. The values of Q, R
and P used in this work are,

Q=[100010001] 9)
R=0.001 (10)
P=[1000001000001001 (1m

Particle Swarm Optimization

It is a metaheuristic algorithm. The animals that live in
group have some level of intelligence which is very much
suitable for searching the solution in multidimension space
(Qi, Shi and Zhang, 2019). In PSO algorithm, large number
of particles called swarms are created and initialized with
random position in the search space. The algorithm’s
fundamental goal is to enable the particle to move around,
communicate with society each particle’s local best, and
work toward being the best possible globally. In this work
the PSO is used minimize the MSE of NARX.

The network has 70 weights that need to be modified
to make the model adaptable. So, it is a 70-dimensional
search space. Every instant PSO do the search for the 70
weights which makes the cost function minimization. Figure
5 illustrates the flowchart of PSO algorithm.

The weights which transfers the input to input of hidden

yl=

[Ylll Y21:l y311 Y411 Y511 y611 Y71:l }'811 Y91l YIO1:l ] =
Wi

[X, X, X3 X4 X5 Xo ]1)0000000000000000

pgooooooo (13)
Where, W' represents the weights of layer 1, X is input
to the network, Y'is aggregated output of each neuron in
the hidden layer.
The aggregated output of each neuron passing through
the activation function.

y2 = w2t x 41 (14)

Y = purelin(Y?) (15)
Where, Z' is the output from the activation function of
hidden layer neurons,are the weights between hidden layer
and neuron,is aggregated output of the input from the

hidden layer and output, and Y is output of neural network.
The MSE equation that PSO optimizes is,

Error = +(Y (i) — y(i)estimate)2 (16)

Where, i represents current instant, y(i)etimate
is the estimate from Kalman filter.

Based on the global best, personal best and its current
position the particles move. The new velocity and the
particle’s new position is given by (17) and (18).

vi(t+1) =W v (8) + C(P(t) — x;(8))
+ G — Xi(®) 7)
X (t+1)=X;() +v(t + 1) 18)

Let the position of the particle i be, the velocity of the
particledenoted by,be the personal best of the particle |
andbe the global best.

Model Predictive Controller

Model predictive controller is chosen as the controller for
this work. Because of the constraint handling capacity and
good adaptive nature, MPCis chosen. MPC employs a model
to anticipate potential responses when a control step is
required. The control is then found by maximising the cost
function in the prediction window. The NARX model adapts
the change in the state of the system. The MPC uses the
NARX model to estimate the state (Hertneck et al., 2018)
(Figure 6).

@ @ ®

Figure 6: NARX snetwork structure for PMDC



182 Pravin P. P, J. Arunshankar

The Scientific Temper. Vol. 14, No. 1

-
5 3

Motor speed(rad/sec)
M A 2 m 2 B
8 5 8 8 8 8

o

05 1 15 2 25 3
Time (sec)

o

Figure 7: Servo response of PMDC

Motor speed(rad/sec)

I I I
5 62 54 56 658 6 62 64 66 68 7
Time (sec)

Figure 8: Regulatory response of PMDC

Optimization of the cost function is given by

] =(Rs — Y)T(RS -Y) + AUTBAU (19)

Where, R, is vector containing information about
reference input at each instant, size is same as that of
prediction window, Y is the plant output, AU is the step size
of the input applied to the plant.

The first term in the cost function is the error due to
deviation of the system output from the set point and, the
second term incorporates is the step size of the input, with
R the tuning parameters for controlling the step size is R.

The control trajectory is given by,

Au(k;), Au(k; + 1),....,Au(k; + N, — 1) 20)

Here, k represents the sampling instant, N_control
horizon.

To optimal control signal is given by,

AU = (070 + R) 0T(Ry—Frx(k)) (o)

Response of the trained neural network

Response of Output Element 1 for Time-Series 1

| —

o
g 8 & & 8

Output and Target

- 3

Figure 9 NARX response

Figure 9: Output from NARX model
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Figure 11: Estimation of current and speed by Kalman filter

Result And Discussion

Servo Response of PMDC with PID

The static and dynamic analysis of set point tracking is
presented in this section. The step change in set point
applied is 150 rad/sec. From Figure 7, Peak overshoot is
6.67%, rise time is 0.012 sec and settling time is 0.043 sec.

Regulatory Response of PMDC with PID

The static and dynamic analysis of disturbance rejection is
done on this section. A disturbance of 4Nmis applied at time
t>5 sec. From Figure 8, undershoot is 6.67% and recovery
time is 0.0293 sec.

Response of the NARX Model of PMDC

The system is simulated with an input of 24 volt and after 5
sec atorque of 1 Nmis applied. By comparing the response
shown in Figure 9 and 10, it is evident that NARX model has
approximated the PMDC motor.
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Figure 12: Response of system with MPC controller for case 1
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Figure 13: Response of system with MPC controller for case 2
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Figure 14: Response of system with MPC controller for case 3

Estimation by Kalman Filter

Figure 11 shows the estimated output obtained from the
Kalman filter, with the input of 24 volts being applied to
the system at t = 5 sec and, a disturbance torque of 1-Nm.

Convergence of PSO Algorithm for Different Cases

The PSO algorithm is tested for three cases,

« Case 1: The resistance value of armature winding is
increased by 10 times.

« Case 2: The inductance value of armature winding is
increased by 10 times.

« Case 3: Both resistance and the inductance value of
armature winding are increased by 10 times.

« Case 1: MSE =7.7994e-15.

« Case 2: MSE =2.3617e-13.

« Case 3: MSE =9.7e-10.

Response of System with Mpc Controller

The MPC controller uses the information from the NARX
model to predict the response of the updated system. For
each case the NARX model is updated by the PSO algorithm.
The MPC has performed well with the help of an updated
model. The performance of MPC in all three cases were
shown as Figures 12-14, respectively.

The set point is fixed at 150 rad/sec. In all three cases, the
MPC is capable of controlling the system at the desired
setpoint.

Conclusion

The concept of digital twin is implemented for the PMDC
motor. The Nonlinear Auto Regressive Exogenous model
for the PMDC motor is developed. The model is updated
by using PSO algorithm. This way the learning part is
completed, the flow of information from the plant to the
model. The second part is the flow of information from
model to plant. Based on the updated model’s prediction,
the MPC controller controls the plants. The variation of
the system is done for three cases. In all three cases the
convergence of the PSO algorithm for the cost function as
MSE is checked. The resistance variation and inductance
variation of the plant is simulated. It is seen that the step
size of the controller output is fixed. In case 3 the voltage
given to the PMDC motor goes out of the specified rating.
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