
Introduction 
In every product production process, inspection and 
quality control are critical. The human inspection approach 
was used in past decades. Monitoring occupations are 
considered time-consuming and monotonous by humans. 
According to studies, manual inspection is predicted to 
be responsible for 10% or more of total labor expenses 
on manufactured products. As a result, automation was a 
must. Despite the fact that technology improvements have 
resulted in increased automation of industrial processes, 
concerns with monitoring and quality control have yet to 
be fully addressed. Global manufacturing markets have 
been striving to develop more cost-effective, higher-quality 
items. Welding flaws are also an unavoidable component of 
the process in the welding industry. The presence of a weld 
flaw in the metal has an impact on the welded material’s 
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quality. The term “weld defect” refers to any imperfections 
or inconsistencies on the weld’s surface. Non-destructive 
testing (NDT) are used to track several sorts of weld defects 
(Deepak et al., 2021).

The high-quality welding procedure known as Tungsten 
Inert Gas welding (TIG welding) was used to generate 
the database with three classes. As illustrated in Figure 
1, TIG welding is a type of arc welding that employs an 
inert tungsten electrode to make a weld. Gas Tungsten 
Arc Welding (GTAW) is another name for it. During the 
TIG welding procvess, an arc is created between the 
workpiece metal and a pointy tungsten electrode in an 
inert atmosphere of helium or argon. The tiny powerful 
arc created by the pointed electrode is ideal for producing 
high-quality and precise welding. Because electrode 
consumption does not occur during welding, there is no 
need to balance the heat input from the arc. Also, Fande, 
Taiwade & Raut (2022) and Devakumar & Jabaraj (2014) 
provide additional information about TIG Welding.

Figure 1: TIG Welding
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There are a variety of TIG welding problems. However, 
contamination defects and incomplete fusion defects are 
the most common. Contamination can develop as a result 
of tainted metal or electrodes used in the welding process 
or as a result of an uneven shield gas flow. Lack of fusion can 
be caused by a slow welding speed or a replacement leading 
edge of the arc that is moved away from the puddle. For the 
gathering of the three class database, a dataset including 
both of these weld flaws and a good weld was conducted 
for TIG welding using the Aluminium 5083 metal Alloy.

Figure 2 depicts the three types of weld faults that 
make up the dataset to be classified. Our research focuses 
on visual testing, which reliably and consistently finds 
flaws in aluminum 5083 weldments using the TIG welding 
process. Visual testing is focused in order to minimize 
manual mistakes and save time when executing for a large 
number of datasets. By processing the dataset through the 
convolutional neural network (CNN) algorithm, locating 
and categorizing weld defects in metal is being done. This 
dataset is separated as testing and training data. The training 
data is divided into batches using data augmentation, and 
each batch is being put into the algorithm to train the 
neural network to gain the needed weld image attributes 
for classification. The accuracy metric is used to assess and 
compare the three methods. This comparison is helpful in 
determining which algorithm may be utilised for commercial 
applications to enhance efficiency and extend the life of the 
weld product.

Related Works
This section lists the studies that were conducted in 
conjunction with this project. The advantages of connecting 
two different metals are outlined in paper (Zhang et al., 
2020). It also presents an overview of recent research on TIG 
welding in joining metals based on structural, property, and 
performance aspects. This research analyzed the difficulties 
in welding dissimilar metals due to their differences in 

metallurgical, physical, and chemical characteristics by 
reviewing a total of 29 studies. The inspection method for 
detecting weld faults has shown to be important in order 
to overcome issues such as picture inaccuracy and noise, 
poor contrast, and non-uniform lighting. These issues were 
solved in the paper by Chu & Wang (2016) by developing a 
novel machine vision-based inspection system for detecting 
and classifying weld flaws in MIG (Metal Inert Gas) welding. 
The nature of electrical transients created by arc welding, 
i.e. the magnitude and length of the transient induced 
in propulsion lines and conveyed to interface circuits, is 
discussed by Bodeau (2018). Various mitigation approaches 
for TIG welding have been presented for various circuit types 
in order to mitigate or eliminate potential damage. The total 
number of pixels is extracted as the main parameter using 
the grey interval derived from the Region of Interest (ROI). 
The pixel ratio technique is used to remove background 
noise, which helps to increase the signal-to-noise ratio 
(Zhang & Wen, 2016).

In a paper by Bacioiu et al. (2019), a new dataset of 33,254 
photos depicting the TIG (Tungsten Inert Gas) welding 
process of Aluminium 5083 metal with increased contrast 
was created using a High Dynamic Range (HDR) camera. 
This dataset contains five distinct welding flaws as well as a 
good weld. This research introduces an ANN (Artificial Neural 
Network) paradigm for accurately categorizing welding 
defects. The accuracy of a Deep Neural Network is increased 
by using a big dataset, yet, a limited dataset produces less 
accurate results. This drawback can be solved by adopting 
transfer learning approaches that use deep CNN to pretrain 
the dataset (Sekhar, Sharma, & Shah, 2022). A manual dataset 
of 940 weld fault photos is pre-trained using VGG16 and 
ResNet50 CNNs, and then processed via machine learning 
models, including Support Vector Machine (SVM), Logistic 
Regression, and Random Forest, which conduct extraction 
and classification. The CCD camera may also produce a 
dataset, as described in the article (Patil & Reddy, 2021). 
The co-occurrence matrix and grey absolute histogram are 
utilised in this study to extract properties such as energy, 
homogeneity, correlation, and contrast. Weld flaws are 
classified as excellent weld, excess weld, or inadequate 
weld using the (SVM, a machine learning approach. Sun et 
al. (2019) proposed a method for identifying and classifying Figure 2: Three classes of weld defects

Table 1: Dataset Classification 

Welding Types No. of images in each phase Total no. of images

Training Testing

Good Weld 882 220 1102

Contamination Weld Defect 728 181 909

Incomplete Fusion Weld Defect 807 201 1008

Total 3019
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weld flaws in the regions of thin-walled metal canisters. 
The feature extraction from the dataset is done using a 
subtraction approach based on gaussian mixture models, 
which has a classification accuracy of roughly 95%. Dong, 
Taylor, & Cootes (2018) merged the CNN and random forest. 
The CNN handles the feature extraction method, which 
extracts the weld fault zone from the dataset image. To 
determine the type of weld fault and classify it, the retrieved 
characteristics are fed into a random forest algorithm. The 
random forest algorithm was also regarded as one of the 
classification approaches to identify and detect the kind of 
weld flaw to accomplish Non-destructive welding (Kulkarni, 
et al., 2022). The CNN and SVM classifier based on the 
radial basis function (RBF) are used to identify aggressive 
and benign breast cancer. Using RBF in an SVM allows for 
more freedom in tweaking the kernel width and aids in 
data dimension fitting (Desai & Shah, 2021). For the dataset 
utilized, this hybridization yielded more robust findings. 
Weld flaws such as incomplete fusion, burn-through, and 
whether it’s a good weld are identified using the random 
forest algorithm and the J48 method, and the results are 
compared, with the findings showing that the random 
forest technique is more efficient. SVM and CNN algorithms 
[15] can also hybridize (Bansode,Dildar & GS, 2022). CNN is 
predominantly utilized for classification in this article. The 

Support Vector Machine takes up the process of isolating and 
detecting the faulty area. For pre-processing, morphological 
filtration is used, which helps decrease computing costs and 
the risk of false alarm. CLAHE (Contrast-Limited Adaptive 
Histogram Equalization) is used as a histogram equalization 
approach to reduce the noise component.

Proposed Methods
This research uses the TIG welding dataset to test multiple 
classification strategies and determine the most effective 
model for classification using accuracy as a parameter. CNN, 
a popular image classification approach, is used to classify 
welding flaws. Figure 3 depicts a high-level summary of the 
proposed effort.

Dataset
In total, 3019 images are utilised in the TIG welding real-time 
dataset for classification. A good weld, an lack of fusion weld 
defect, and a contaminated weld defect are all included in 
the dataset. The images are in the .png format and have 
a 800 × 974 pixels resolution. For the training and testing 
phase, each dataset class is divided into two groups. The 
categorization of the dataset to be utilized is shown in Table 1. 
The samples of each type of welding picture, which are good 
weld, contaminated welding defect, and incomplete fusion 
defect, are tabulated in Table 2. The dataset was produced 
using a hardware setup that included a CCD camera that 
captured the welding operation in real time.

Convolutional Neural Network
Convolutional neural networks are made up of several layers 
of synthetic neurons. Similar to their biological counterparts, 

Figure 3: Overview of proposed work

Figure 4: CNN Architecture

Figure 5: The kernel stride across input feature map to compute the 
convolved output feature matrixTable 2: Samples of Welding Images



175 Classification of weld defects using machine vision using convolutional neural network

artificial neurons are computational models that evaluate 
the weighted sum of numerous inputs and produce an 
activation value as an output. Because CNN includes the 
feature extraction stage, classic approaches do not require 
a separate pre-processing phase for an image. In order to 
infer the objects present in a picture, the original pixel of 
the image data is provided as the input in the form of arrays. 
The revelation that a CNN was helpful in extracting higher-
level interpretations from the image was a breakthrough 
in creating models for image categorization. Rather than 
pre-processing the data to extract features such as textures 
and forms, a CNN uses the image’s original resolution data 
as input and learns the feature extraction to determine 
the object they represent. To begin, the CNN is given an 
input feature map, a three-dimensional matrix whose first 
two dimensions represent the picture length and width in 
pixels. The third dimension is 3 in length, corresponding 
to the 3 channel colour i.e red, green and blue (RGB). CNN 
architecture is illustrated in Figure 4.

The input layer then processes the 800 x 974 pixel 
welding picture to produce a resized image of 150 x 150 
pixel image in order to scale all of the photos to a consistent 
size before processing through the neural network and to 
create formatted data. Following that are the hidden layers, 
which aid in the extraction of information from the image. 
The layers are as follows:

Convolutional Layer
The output feature map, is created by extracting tiles from 
the input feature map and applying kernel or filters to them 
to generate additional features. Filters contains differ in size 
from the input feature map. The size of the tiles extracted 
and the number of filters applied are the two factors that 
helps in determining the convolutions. During a convolution, 
the kernel essentially travels horizontally and vertically over 
the input grid, to extract the matching tile, one pixel at a 
time as shown in Figure 5.

The CNN conducts entity-wise multiplication of the filter 
and the input tile for each filter-tile combination, it adds all 

the elements of the resultant matrices to yield a specific 
value. Each of these values results in the convolved output 
feature matrix. The CNN helps to learn the values for the filter 
matrix that allow it to extract features that are required from 
the input feature map during training. F However, because 
filters account for the vast bulk of the

CNN’s resources and training time grows if more filters 
are applied. Furthermore, because each new filter added 
to the network adds less incremental advantage than the 
previous one, engineers strive to build networks with the 
fewest possible filters to extract the information required 
for effective picture categorization.

Pooling Layers
Following ReLU, the CNN process the convolved feature 
to minimize the size of the feature map while keeping the 
most relevant feature characteristics. Max pooling is a typical 
method employed in this procedure. Max pooling works in 
the same way as convolution does. A slider is used to stride 
across the map to extract the convolved tiles of a certain 
size. The highest value is exported to a new attribute map 
for each tile, while deleting other values.

Fully Connected Layer
At the end, one or more fully connected layers are found in 
a convolutional neural network. Their task is to classify data 
using the characteristics collected by the convolutions. FC 
layers often use a softmax activation function to generate 
a probability ranging from 0 to 1 attempting to predict. The 
equation defines the softmax activation function

where n is the number of classes and z denotes the 
output value for the current batch after the convolution 
neural network has processed it.

Figure 6: Filter Visualization of the first convolutional layer Figure 7: Feature Visualization
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The CNN architecture implemented in this paper is described 
below : 
• INPUT: 150 x 150 x 3
• CONV: 3 x 3 size, 16 filters, 1 stride
• ReLU: max (0, x)
• MAX-POOL: 2 x 2 window, 1 stride
• CONV: 3 x 3 size, 32 filters, 1 stride
• ReLU: max (0, x)
• MAX-POOL: 2 x 2 window, 1 stride
• CONV: 3 x 3 size, 64 filters, 1 stride
• ReLU: max (0, x)
• MAX-POOL: 2 x 2 window, 1 stride
• FC: 512 hidden neurons with ReLU activation function
• OUTPUT: 3 Output classes with softmax activation 

function

Experimental Results and Discussions
The four factors of current, voltage, gas flow rate, and arc 
weld travel speed substantially influence the weld qualities, 
as shown in Table 1. Changes in these factors can have a 
broad variety of effects on the welding process. This welding 
process, which features errors induced by variations in the 
baseline values, has been used as a dataset for the CNN 
algorithm.

CNN
The most prevalent image classification technique is the 
convolutional neural network. The flow from directory 
function may be used to get the TIG welding dataset from 
directories. It generates batches of enhanced normalized 
datasets with three classes of 80% training and 20% testing 
pictures, which are fed into the CNN model as described in 
Table 3, and the output is generated.

The shape or pixel of each layer is depicted in Table 3, 
along with the number of parameters utilised in each. In this 
model, three network layers are employed to generate the 
output: an input layer, a convolutional layer with maximum 
pooling, and dense and flattened layers. The scaled picture 
of dimension is placed in the input layer (150 x 150 x 3). The 
convolutional layer modifies the picture for the set number 
of filters, while the max pooling layer shrinks the image’s 
length and breadth. There are three convolutional layers in 

total. The first layer has 16 filters, but the second and third 
layers contain 32 and 64 filters, respectively, since high 
level characteristics are retrieved from them. The image is 
flattened into a 1- dimensional representation with all of the 
major details intact (17x17x64 = 18496). The dense layer, also 
known as the fully linked layer, has 512 hidden units, but the 
output layer only has one.

Figure 6 depicts the first convolutional layer, which 
employs 16 filters. This filter visualization generates 16 
pictures in total, each representing one of the 16 filters in 
four rows and columns. Dark squares indicate tiny weights 
with suppressive values, whereas bright squares represent 
excitatory weights with big values. Filter initialization is done 
at random using a normal distribution.

Filters that operate as feature detectors are applied to 
the input image and the feature map’s prior layers. Figure 
7 depicts the feature filtering procedure as well as the 
internal representation of the feature extraction process in 
each layer. The first convolutional layer is represented by 
conv2d_3 and max pooling2d_3 in Figure 7, followed by 
max pooling, which contains 16 filters in both rows. Similarly, 
the layers conv2d_4, max pooling2d_4 and conv2d_5, max 
pooling 2d_5 represent the second and third convolutional 
layers, respectively, with 32 and 64 filters. The output is 
then obtained by following the flatten and dense layers. It 
is clear that the welding area geometry, i.e. the height and 
breadth of the welding region, is the influencingfactor in 
determining the classification output.

The curve in Figure 8 was created using categorical 
cross entropy as the loss function and accuracy metric 
across 15 epochs. Figure 8 (a) depicts the graph’s fluctuation 
throughout 15 epochs, with the validation accuracy reaching 
96.1 percent in the fifteenth epoch. Similarly, in the instance 
of Figure 8 (b), the validation loss was close to 5%.

Conclusion
This study successfully classifies the TIG welding dataset 
using three algorithms implemented in Jupyter notebook 
IDE using python language. It can be observed that the 
pure CNN model gave an accuracy of 96.1% in classifying 
the 3-class real-time welding dataset. Thus, the accuracy is 
used as a metric to predict the classification algorithm for the 
welding dataset. The real–time dataset was classified into 
80% training and 20% testing and was passed to the data 
augmentation process. This concept might be improved by 
combining it with a camera that can offer real-time welding 
input to industries that use TIG or other welding methods. 
This will be a very powerful alternative for sectors that use 
automated welding, since it will save manpower and costs 
significantly.
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