
Abstract
The conventional technologies used for textile dye wastewater treatment are costly, and involve high energy consumption and sludge 
production. However, bioremediation using plants and microbes involves low cost, energy consumption, and no sludge formation. 
Hence, the review focuses on the dye degradation by the plant-microbe treatment system.
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Introduction
The low-cost perspective of the treatment system for mixed 
pollutants was the utilization of plant-microbe combinations 
(Jayapal et al., 2022; Supreeth et al., 2021). Such a system 
demonstrated efficiency to remove Chemical Oxygen 
Demand (COD), ammonical nitrogen, and phosphorous in 
the eutrophicated water (Supreeth et al., 2021). Although 
physicochemical methods efficiently remove high-level 
pollution, the process is energy-consuming and intrusive 
to the environment. The advantages of the plant-microbe 
integrated system in pollutant removal are owing to its 
cost-effectiveness and almost nil sludge formation. The 
rhizoremediation technique is used, when the treatment is 
less urgent and when the contamination level is moderate 
(Segura & Ramos, 2013). Understanding the interaction 
between plant and microbe during rhizoremediation is 
significant in optimizing process parameters; hence, the 
review focuses on the overall mechanism involved during 
the treatment process.

Plant-Dye interactions during rhizoremediation
Root exudates (organic molecules) released in the 
rhizosphere increased pollutants’ bioavailability to the 
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microbes, thereby facilitating their degradation (Luo et al., 
2017). The succinic acid and glucose present in the exudates 
of the Barmultra plant degraded the pollutant naphthalene 
when combined with the microbe Pseudomonas putida 
(Kuiper et al., 2002). Root exudates that remediate dyes 
were also reported. For instance, Portulaca grandiflora Hook 
exudates removed Navy Blue HE2R dye (Khandare et al., 
2011). The exudate composition depends on the plant variety 
and the nature of the pollutants (Phillips et al., 2012). The 
hydrocarbons act as substrate for microbes and decrease. 
Besides, the phenolic compounds increased with PAH stress 
(Liu et al., 2022). The degradation of phenol, petroleum 
compounds and benzo[a]pyrene by the microbes utilizing 
sugars, palmitic acid and phenolic compounds in the root 
exudates (Jin et al., 2019; Liu et al., 2015; Toyama et al., 2011).

Dyes are one major category of pollutants. The 
mechanism of plant-dye interaction occurs by adsorption/
absorption, translocation, and transformation of dye 
molecules inside plant cells.

Adsorption or absorption of dye molecules onto the 
plant surface
Plants can adsorb dye molecules onto their roots. The 
adsorption of dye by Leucaena leucocephala roots was 
earlier reported (Bharathiraja et al., 2018; Jayanthy et al., 
2014; Jayapal et al., 2018). The removal of pollutant dye 
could be either through adsorption or absorption. The 
hydrophobicity of the molecule determines the process. 
The octanol-water partition coefficient (log Kow) determines 
the uptake of organic molecules. When log Kow< 1 for 
dyes molecules, it enters plant roots and translocates. If, 
log Kow>3.5, as for complex dye molecule, it adsorbs onto 
the roots (Christian & Beniah, 2019). The dye molecules 
are absorbed and metabolized by plants. They also 
accumulate dyes within the intracellular spaces, resulting 
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in dye decolorization by the enzymes, mainly laccases and 
peroxidases (Uruj et al., 2015). Eichhornia crassipes removed 
most of the Black B and Red RB dye by its adsorption onto 
plant parts. Dye absorption and accumulation mechanism 
removed dyes by the fibers in banana (Muthunarayanan 
et al., 2011; Abdul Karim et al., 2016; Siti et al., 2018). Many 
other plants efficiently removed textile dyes in the industrial 
effluent by absorption (Ahila et al., 2021).

Translocation and transformation of dye molecules
Transformation of pollutants occurs in three phases as 
follows (Kvesitadze et al., 2009). In the functionalization 
process, the hydrophobic molecules acquire hydrophilicity 
by enzymatic transformations such as oxidation, reduction, 
and hydrolysis. In conjugation, xenobiotics were chemically 
coupled with proteins, organic acids, and polysaccharides 
to form peptide, ether, and ester with covalent bonds and 
increase the hydrophilicity of the molecules. At the final 
stage of compartmentation, the conjugates accumulate 
in vacuoles and insoluble conjugates get excreted out of 
plant cells’ vital organs (Kvesitadze et al., 2006). The plant 
cell’s nuclei, swollen mitochondria, enlarged plastids, and 
widening of ER and Golgi apparatus were observed when 
the phytoremediator accumulated dye molecules (Prasad & 
Aranda, 2018). The withstanding capacity of the plant cells 
determines their detoxification potential. The degradation 
of dye molecules in plant leaves was reported (Shahi et al., 
2018) (Figure 1).

Plant-microbe interactions in the rhizosphere and 
abiotic stress tolerance
Abiotic stress, which leads to agricultural productivity loss, 
can be mitigated by the addition of PGPR. The abiotic stress 
influences the plant-microbe association by the altered root 
exudates or microbial activity in the rhizosphere (Tripathi 
et al., 2015). Upon abiotic stress induction, the microbes 
interact with both the plant and other microbes and induce 
functional catabolic genes in the microbial community, 

and lead to alleviation of pollutants (Segura & Ramos, 
2013). The microbial species Trichosporon akiyoshidainum 
from the rhizosphere of the plant Cinnamomum porphyria 
degraded azo and anthraquinone dyes (Nanjani et al., 
2021). In general, PGPR ameliorated abiotic stress responses 
through phytohormones (IAA, ABA) production, antioxidant 
production, and degradation of ethylene precursors (Michael 
et al., 2021). Adopting this mechanism, PGPR alleviated stress 
due to hydrocarbons (organic compounds), and metals 
such as chromium in the plant andimproved its growth 
(Tirry et al., 2021; Vocciante et al., 2022). When microbes are 
exposed to nutrient deficit and pollutants-rich environment, 
they adapt to the pollutants, thrive in toxic conditions, and 
form a functional community by horizontal gene transfer 
mechanism to remediate the pollution (Gkorezis et al., 2016). 
In case of dyes the rhizosphere possesses microaerophilic 
conditions and hence the aerobes can break down dye 
molecules using oxygenases and utilize them in their 
metabolism (Figure 2).

Microbe-Microbe Interaction During 
Rhizoremediation
The microbe-microbe interaction is influenced by quorum 
sensing (QS) and by competition for nutrients (Harris et al., 
2020). QS of microbial biofilm stimulates bioremediation 
by binding to transcriptional factors and initiates the 
cascading of appropriate catabolic genes. The microbe 
interacts with other microbial species in the rhizosphere, 
causing aggregationand horizontal gene transfer to form 
a functional microbial community (Yin et al., 2021; Segura 
& Ramos, 2013). The biofilm’s exopolysaccharide (EPS) 
increased the solubility and enhanced pollutant degradation 
(Kumari et al., 2016). The biofilm increases the cell density 
around the xenobiotics, thereby removing pollutants 
(Maddela et al., 2019). The microbes Vibrio fischeri removed 
Reactive brilliant red X-3B, Bacillus amyloliquefaciens 
degraded crystal violet, Bacillus sp. AK1 and Pseudomonas 
aeruginosa degraded Amaranth and malachite green dyes 

Figure 1: Schematic representation of dye-plant interaction during 
the rhizoremediation process

Figure 2: Aerobic catabolism of dyes by microorganisms 
(Gkorezis et al., 2016).
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respectively (Liu et al., 2017; Sun et al., 2016; Watharkar et 
al., 2013; Kalyani et al., 2012). The remediation of dyes was 
controlled by factors, namely pH, dissolved oxygen, type 
and concentration of dyes, redox potential, and chemotaxis 
(] Mohapatra et al., 2019).

Dye-Microbe interaction in the rhizosphere
The microbe adsorb onto the dyes using covalent, 
electrostatic interaction was earlier reported (Li et al., 2019). 
The adsorption capacity of the dye onto microbial surface 
was earlier researched by pseudo kinetics (Sari et al., 2019). 
The adsorption by physisorption follows the pseudo-first 
order and chemisorptions follows pseudo second order 
model (Simelane et al., 2018).

Dynamic interaction of plant-microbe-dyes during 
rhizoremediation
The interaction between plant and microbes under the 
abiotic stress condition is dynamic. Root exudates (mainly 
flavonoids) act as carbon or nitrogen source for microbes, 
alter pH and make pollutants available to the microbes. 
Microbes, in turn, modify the constituents of root exudates 
by releasing volatile organic compounds (VOCs), microbe-
associated molecular patterns (MAMPs), and Nod and Myc 
factors (Ma et al., 2016). Plants enrich specific microbes based 
on the constituents in the exudates, promote chemotaxis, 
distribution along the roots, and form a symbiotic 
relationship (Haichar et al., 2008). For the adsorption and 
root colonization, the protein and lectin were involved. 
Besides, plants recognize N-acetyl-L-homoserine (AHL) from 
bacterial QS and modulate gene expression important for 
manifesting defense or degrading mechanisms (Mangwani 
et al., 2016; Shrestha et al., 2020).

Under stress conditions, rhizospheric microbes produce 
IAA, cytokinins, and gibberellic acid. IAA from both plants 
and microbes induces root exudation and growth of lateral 
roots. ACC deaminase-producing PGPR nullifies the abiotic 
stress-induced ethylene production in plants and inhibits 
damage to the plant (Ali et al., 2014).

The roots facilitate the colonization by beneficial bacteria 
by their exudation pattern and avoid pathogenic bacteria. 
Plants, while preventing pathogens, also stimulate beneficial 
microbes and balance them with MAMPs. Molecules in the 
jasmonate signaling pathway in pollutant degradation were 
reported earlier (Ma et al., 2021).

The coordination between pathogens and beneficial 
microbes occurs at the spatial and temporal level and 
increases the resilience of plant species. The plant-microbe 
follows four stages of interaction using the Zigzag model. 
At stage I, pattern recognition receptor (PRR) recognize the 
microbe’s Pathogen-associated molecular pattern (PAMP) 
and prevent its entering. In stage 2, the transportation of 
effector molecules and induction of effector-triggered 
susceptibility (ETS) in plants. At stage 3, the intracellular 

receptors (R proteins) identify particular effectors and 
induce effector-triggered immunity (ETI), which induces 
programmed cell death. At stage 4, the pathogen escapes 
ETI and leads to ETS (Dogra et al., 2018).

The abiotic stress-induced pathways, mainly jasmonic 
acid (Yuan et al., 2008), which paved way for transcription 
of corresponding genes and induces a defense mechanism. 
Rhizosperic microbes increased the bioavailability of 
pollutants to plants as well as degraded them (Gayathiri et 
al., 2022).

The inoculation of appropriate microbes induces plant 
biomass along with rhizoremediation (Ojuederie et al., 2017). 
The dye remediates microbes Klebsiella sp. VITAJ23 was used 
as bio inoculant and facilitates remediation of reactive green 
dye when used with Alternanthera philoxeroides plantlets 
(Astha et al., 2019). The bacterial species Bacillus, Lysibacillus, 
and Pseudomonas were involved in root colonization of 
Phragmites australis during the dye pollutant degradation 
(Riva et al., 2019). The plants remediate toxic dyes by their 
adaptation to the polluted environment before treatment 
(Bharathiraja et al., 2018).

Discussion
The process of using plants and their symbiotic associates 
i.e. rhizospheric bacteria for the removal of pollutants from 
waste products, especially the industrial effluents containing 
textile dyes, chemicals, metals and their salts is known as 
phytoremediation. It is important as these pollutants are 
toxic, carcinogenic and mutagenic (Khandare et al., 2012). 
The physicochemical processes of treating these wastewater 
are rather expensive and produces a large amount of sludge. 
A number of studies are now being done to produce plant-
microbe based system to remove these pollutants from the 
water and decrease its toxicity.

Abdul Karim et al. (2017) tried to remove crystal violet 
dye and acid green (AG) dyes from aqueous solution with 
the help of banana. Both the dyes were successfully removed 
with increasing intensity upto a saturation point. Effect pH 
was also studied and found to be effective for only AG dye. 
Watharkar et al. (2013) made use of bacterial biofilms for the 
extraction of dyes from industrial waste materials and found 
that Amaranth dye can be decolorized easily even at 600 mg 
l-1, which was confirmed by the spectrometer.

Watharkar et al. (2013) decolorized Navy Blue RX (NBRX) 
by using Bacillus pumilus strain PgJ isolated from Petunia 
grandiflora Juss. Mix of both could decolorize the NBRX up 
to 96.86% within 36 h.

Astha (2019) removed 79% of reactive green dye with 
increased enzyme activity. The pot culture indicated that A. 
philoxeroides was very tolerant to this dye, even upto 3000 
mg L-1 of dye concentration.
Tara et al., (2021) found that bacterial-augmented floating 
treatment wetlands (FTWs) with three dye-degrading 
bacteria Acinetobacter junii strain NT-15, Pseudomonas 
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indoloxydans strain NT-38, and Rhodococcus sp. strain 
NT-39) and the plant Phragmites australis could degrade an 
azo dye, Reactive Black 5 (RB5) successfully (95%). Also, the 
metabolite thus formed were found to be not harmful to 
the faunal population.

Jayapal et al. (2020) studied the degradation of industrial 
textile-dye waste degradation by using a sequential 
anaerobic-aerobic plant-microbe system with vetiver plants. 
They found that the system succeeded in decolorizing dye 
(78.8%) and removing of total aromatic amine (TAA) (69.2%). 
Also, it reduced the toxicity and teratogens. Khandare et al., 
2012 studied phytoremediation by utilizing consortiuom of 
plant Zinnia angustifolia and the bacterium Exiguobacterium 
aestuarii strain ZaK on the removal of Remazol Black B dye 
(RBB) and found it to be more efficient in the degradation 
of dye as compared to the bacterium and the plant when 
used separately.

Some of the other studies experimenting on dye 
pollutant removal by various integrated plant-microbe 
systems are given in Table 1. Since extremely large amounts 
of dyes like toxic azo dyes and other contaminants are 
discarded in the sewage system, which are precarious to 
the health of living organisms and many of which do not 
degrade by themselves because of their complex structural 
configuration, it is the need of time to develop methods to 
sustainability remove them from the water to save faunal 
and human population from their harmful effects.

Conclusion
The dynamic interaction in the rhizosphere induces the 
development of a specialized microbiome and aid in the 
subsequent pollutant removal. Hence, understanding 
the mechanism helps to remove various pollutants by the 
rhizoremediation treatment system.
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