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Abstract

The utility idea is used to optimize AISI M7 hard turning in the present study. This study uses the Taguchi optimization approach to
examine the effects of insert nose radius and machining parameters such as cutting speed, feed rate, and depth of cut on surface
roughness (Ra) and material removal rate (MRR) in a turning operation. The signal-to-noise (S/N) ratio is used to analyze the performance
characteristics in the turning of AISI M7 employing nose radius of 0.4, 0.8, and 1.2 mm carbide inserts on CNC turning centre in a three-
level, four-parameter design of experiment using L9 orthogonal array using MINITAB 17. Every trial is held in a dry setting. According
to the results of the current investigation, feed rate and nose radius are the most important variables affecting surface roughness and

material removal rate.

Keywords: Optimization Algorithm, Overcurrent Relay, Protective Zone, Real-Time Coordination.

Introduction

The technology of CNC turning machines has substantially
evolved in recent years to match the high standards in a
variety of production sectors, particularly in the precision
metal cutting business. Turning is a basic machining
operation among the several CNC industrial machining
techniques. It is extensively used throughout several
industrial sectors. Surface roughness (Ra) and material
removal rate (MRR) are crucial controlling variables in
machining processes. MRR serves as a productivity indicator.
Ra is a metric for excellence. The process of choosing the
best cutting speed, feed rate, depth of cut, and insert nose
radius decreases the Ra value and increase the MRR value.
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Literature Survey

This section includes some selected articles for an in-depth
investigation to find a research gap or further extension of
research in the area of hard turning. The selected papers for
the study are as follows:

Alok, A., & Das, M. (2019) “executed a new type of coating
material, HSN2 with 12 um thickness on carbide insert by
using physical vapor deposition technique for machining
hard AlSI 52100 steel of hardness 55 HRC is evaluated. DSC
and TGA also characterize the coated carbide insert’s thermal
and oxidative stability. The primary cutting, radial and feed
pressures, maximum flank wear, and surface quality of the
workpiece are all related to the input process parameters
of cutting speed, feed rate, and depth of cut. The impact of
cutting parameters on machinability is studied statistically.
Also, regression models are created to link input and output
process characteristics. A response surface optimization and
validation test follow this. Percentage errors for main cutting
force, radial force, feed force, surface roughness (%), and
flank wear (%) were identified in the confirmation test. The
greatest tool wear recorded is 292 m, which is acceptable
under ISO 3685. Among all output parameters, cutting
speed is shown to be the most effective. The current effort
is unique in that it involves machining AlSI 52100 steel with
a 55 HRC hardness at 102-287 m/min with a new coating
material HSN2 with a 12 m thickness”.

Aouici, H., et al. (2012) “investigated experimentally the
effects of cutting speed, feed rate, workpiece hardness
and depth of cut on surface roughness, and cutting force
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components in the hard turning. To mill the AISI H11 steel,
Sandvik used cubic boron nitride (CBN 7020), which is a mix
of 57 percent CBN and 35% TiCN. Using ANOVA, we used
four-factor (cutting speed, feed rate, hardness, and depth
of cut) and three-level fractional experiment designs. This
technique generated mathematical surface roughness and
cutting force components (RSM) models. While the depth
of cut and workpiece hardness have the greatest impact on
cutting force components, both feed rate and workpiece
hardness have statistical relevance on surface roughness.
Finally, optimal cutting conditions range for industrial
production are recommended”.

Aouici, H., etal. (2011) “investigated turning conditions of
hardened AISIH11 (X38CrMoV5-1), and the effects of cutting
parameters on flank wear (VB) and surface roughness (Ra)
using the CBN tool. The response surface approach is used
in the machining trials (RSM). In this study, the combined
impacts of three cutting parameters are investigated
(cutting speed, feed rate, and cutting duration) on two
performance outputs (VB and Ra) (ANOVA). The optimal
cutting conditions for each performance level are derived
using a quadratic regression model. The data suggest
that cutting time affects flank wear the most, followed by
cutting speed. Also, the feed rate seems to mainly influence
workpiece surface roughness”.

Azizi, M.W.,, et al. (2012) “investigated the effect of cutting
parameters (cutting speed, feed rate, and depth of cut)
and workpiece hardness on surface roughness and cutting
force components. On AlSI 52100 steel with coated Al203
+ TiC mixed ceramic cutting tools. The experiment was
planned using Taguchi’s L27 orthogonal array. The response
table and ANOVA enabled us to test the linear regression
model’s validity and identify relevant factors impacting
surface roughness and cutting forces. The statistical study
shows that the depth of cut, workpiece hardness, and feed
rate have a statistically significant influence on the cutting
force components than the cutting speed. Empirical models
were created to connect cutting parameters and workpiece
hardness with surface roughness and cutting forces. The
desired function technique for multiple response factor
optimization was used to find the optimal machining
settings to create the lowest surface roughness with the least
cutting force components. Finally, validation experiments
were conducted to validate the proposed empirical models”.

Azizi, M.W.,, et al. (2020) “optimized machining parameters
to achieve the desired technical parameters such as surface
roughness, tool radial vibration, and material removal rate
using response surface methodology (RSM). The hard
turning of EN19 alloy steel with GC3015) cutting tools was
examined. In order to achieve the needed surface finish
quality and production rate, manufacturers of hard and
high-precision components confront a major challenge.
RSM can handle this issue by creating a mathematical model

and conducting tests. The statistical study employed a
face-centered central composite design (FCCD) with cutting
parameters (cutting speed, feed rate, and depth of cut). It
was shown that cutting parameters correlated with surface
roughness, tool vibration, and material removal rate. Using a
desirability function, numerical and graphical optimization
was used to find the best cutting settings for reducing
surface roughness, tool vibration, and material removal rate.
Finally, validation experiments were conducted to validate
the mathematical models”.

Bouzid, L., et al. (2015) “attempted to statistically model
the relationship between cutting parameters (speed, feed
rate, and depth of cut), cutting force components (Fx, Fy,
and Fz), and workpiece absolute surface roughness (Ra).
A chemical vapor deposition-coated carbide tool is used
to machine martensitic stainless steel (AISI 420). A full-
factorial design (43) is used to examine the experimental
findings using both ANOVA and RSM. The optimal cutting
conditions are obtained utilizing mutually responsive
surfaces and desire functions, with residual values checking
the model’s adequacy. The findings show that depth of
cut (Fx: 86%) dominates (Fy: 58%) and feed rate (Fz: 81%)
influences surface roughness behavior (Ra: 81 percent). Also,
the anticipated and actual cutting force components and
surface roughness were in excellent agreement. The findings
are also tested for mistakes (Fx: 6.51 percent, Fy: 4.36 percent,
Fz: 3.59 percent, and Ra: 5.12 percent). Finally, ideal cutting
ranges for industrial production are anticipated”.

Cakir, M. C,, et al. (2009) “examined the effects of
cutting parameters (cutting speed, feed rate, and depth
of cut) onto surface roughness through the mathematical
model developed by using the data gathered from a series
of turning experiments performed. A second study was
conducted to assess the impact of two well-known coating
layers on surface roughness. The trials were performed for
two CNMG 120408 (ISO designation) carbide inserts with
the same geometry and substrate but varied coating layers
to assure identical cutting conditions. Cold-work tool steel
AISI P20 was machined. A thin TiAIN layer (31Tmicro m) is
PVD coated on Insert 2, while a TiCN underlayer, an Al203
intermediate layer, and a TiN outer layer are all deposited by
CVD on Insert 1. The overall average error of the model was
4.2 percent for Insert 1 and 5.2 percent for Insert 2, proving
the equations’ dependability”.

Chinchanikar, S., et al. (2013) “investigated the
performance of coated carbide tool considering the effect
of work material hardness and cutting parameters during
turning of hardened AISI 4340 steel at different levels of
hardness. Multiple linear regression models were used
to identify relationships between cutting parameters
and performance metrics such as cutting forces, surface
roughness, and tool life in the area of cutting parameters,
the created models are trustworthy and may be utilized



144 Nitin Bhone et al.

The Scientific Temper. Vol. 14, No. 1

successfully to anticipate reactions. An ANOVA was used to
identify highly significant parameters (ANOVA). According
to experimental evidence, less cutting force is necessary
to machine tougher materials. The depth of cut influences
cutting forces, then feed rate. Surface roughnessis influenced
by cutting speed, feed, and depth of cut. Particularly when
working with tougher materials, cutting speed and depth
of cut become the most important elements affecting tool
life. RSM and Desirability Function establish ideal cutting
conditions. Cutting pressures, surface roughness, and tool
life was found to be reduced by using lower feed rates,
deeper cuts, and restricting cutting speeds to 235 and 144
m/min for 35 and 45 HRC work materials, respectively”.

Das, D. K., et al. (2014) “investigated surface roughness
during hard machining of EN 24 steel with the help of coated
carbide insert. The test was done in dry circumstances. The
process parameters were optimized using the Grey-based
Taguchi method. The adequacy of the surface roughness
prediction models constructed using regression analysis was
also tested. Hard machining produces a surface roughness of
0.42 microns. The best depth of cut (Ra) and cutting speed
(Rz) for the grey-based Taguchi technique were found to
be 0.4 mm, 0.04 mm/rev, and 130 m/min, respectively. Feed
is the most important parameter for both Ra and Rz. The
prediction models have strong R2 values (0.993 and 0.934).
This shows a better model fit and is very significant”.

Das, S.R., etal. (2015) “investigated the dry hard turning
of AlISI 4140 steel using PVD-TiN coated AI203+TiCN mixed
ceramic inserts. In this study, the combined influence of
cutting parameters (cutting speed, feed, and depth of cut)
on performance variables including surface roughness and
flank wear is investigated (ANOVA). Cutting feed, followed
by cutting speed, is shown to have the greatest impact
on surface roughness. Although the depth of cut is not
statistically significant, flank wear is a function of the depth
of cut. SEM observations are done on the machined surface
and worn tool to establish the procedure. In the examined
range, abrasion was the predominant wear mechanism. Tool
wear and surface roughness were also investigated. It was
used to anticipate the appropriate surface roughness and
flank wear. Based on RSM, mathematical surface roughness
(Ra) and flank wear (VB) models were established with 95%
confidence. Finally, under optimal cutting circumstances
(obtained via response optimization), tool life was tested
to justify coated ceramic inserts in hard turning. Because
TiN-coated ceramic has a longer tool life (51 minutes), it
has a lower projected machining cost per item (Rs. 12.31)".

Das, S. R., et al. (2017) “addressed surface roughness,
flank wear, and chip morphology during dry hard turning
of AlSI 4340 steel (49 HRC) using CVD (TiN/TiCN/AI203/TiN)
multilayer coated carbide tool. The influence of cutting
settings on tool and workpiece flank wear and surface
roughness were studied using Taguchi’s L9 Orthogonal

array (OA) and ANOVA. SEM was used to examine the surface
topography of machined workpieces, wear processes
of worn coated carbide tools, and chip morphology of
produced chips (SEM). Thus, multiple regression analysis
was used to create a mathematical model for each answer,
and numerous diagnostic tests were run to ensure the
model’s validity and usefulness. Finally, a cost study
based on Gilbert’s method was done to demonstrate the
economic viability of coated carbide tools in hard turning
(suggested by the response optimization technique). The
findings reveal that feed and cutting speed affect surface
roughness and flank wear statistically. Faster-cutting speed
improved surface polish and increased flank wear. Tool wear
is generated by abrasion from the flank land rubbing on
the machined surface and high cutting temperatures. Chip
morphology indicates saw-tooth chip formation with severe
serration produced by cyclic fracture propagation driven by
plastic deformation. The overall machining cost per item
for hardened AISI 4340 steel with a coated carbide tool is
$0.13 (i.e. Rs. 8.21 in Indian rupees). The research concluded
that a multilayer TiN/TiCN/AI203/TiN coated carbide tool
for hard turning in dry cutting conditions is a cost-effective
alternative to standard cylindrical grinding. It also provides
cheaper alternatives to CBN and ceramic tools”.

Davoodi, B., et al. (2015) “investigated the effects of
cutting parameters on tool life of PVD TiAIN-coated carbide
tools, and volume of workpiece material removed during
the machining of the N-155 iron-nickel-base superalloy is
evaluated. Cutting factors included cutting speed and feed
rate at five levels. RSM was used to model the interactions
between machining parameters and output variables (RSM).
ANOVA was used to test the mathematical model and its
variables. Overall, the findings demonstrated excellent
agreement between observed tool life, material eliminated,
and model predictions. The cutting tool inserts were also
SEM investigated, and wear processes were studied at
different cutting speeds. The most common tool failure
mechanism was adhesion. Finally, the desired function
technique was used to optimize tool life and material
removal for optimal productivity”.

Davoodi, B., et al. (2014) “investigated the effects of
cutting speed and undeformed chip thickness on cutting
and feed force components, and tooltip temperature
was experimentally investigated in order to remove the
cutting fluid. AA5083-0O wrought alloy with high Mg
content (4.5%) was machined dry and wet using coated
carbide tools. Using ANOVA, they used two-factor (cutting
speed and undeformed chip thickness) and five-level
fractional experiment designs. This method was used
to construct mathematical models for cutting and feed
force components and tool tip temperature (RSM). The
results reveal that the undeformed chip thickness affects
the output variables. AA5083 may be machined without
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cutting fluid at high cutting speed and low undeformed
chip thickness. In dry and wet machining, cutting speed and
chip thickness have statistical relevance on the cutting and
feed force components. Finally, suitable turning conditions
for industrial production were provided”.

Devi,K.D., etal. (2015) “studied an optimization problem
that seeks the identification of the best process condition
or parametric combination for the said manufacturing
process. Single-objective optimization refers to problems
involving just one quality feature. It is difficult to pick the
ideal option that meets all quality standards concurrently
when more than one character is considered. The current
research used Response Surface Methodology to solve a
Multi-Objective Optimization issue by straight turning brass
bar. The research sought to determine the ideal process
environment for both quality and productivity. Finally,
the research examines the impact of four input factors on
output parameters: cutting speed, feed, depth of cut, and
coolant type. The estimated ideal setting minimized surface
roughness and maximized MRR, tool life, and machinability
index. The confirmatory test validated the ideal outcome”.

Dureja, J. S., et al. (2009) “attempted to model the tool
wear and surface roughness, through response surface
methodology (RSM) during hard turning of AISI-H11 steel
with TiN-coated mixed ceramic inserts. The influence of
machining parameters such as cutting speed, feed rate,
depth of cut, and workpiece hardness was explored by
analyzing the response factors of flank wear and surface
roughness using ANOVA and factor interaction graphs
in the RSM. This model best fits the experimental data.
Optimization of numerous response components using a
desirability function. The validation trials predicted response
factors within 5% error. Surface roughness is influenced
by feed rate and workpiece hardness, whereas flank wear
is influenced by feed rate and depth of cut. The tool wear
was monitored using a toolmaker’s microscope, and some
of the typical inserts were characterized by SEM-EDX. There
is abrasion, notch wear, and chipping of the tool surface
from rubbing and impingement of hard particles in the
work material”.

Dureja, J. S., et al. (2014) “attempted to investigate tool
wear (flank wear) and surface roughness during finish hard
turning of AlSI D3 steel (58HRC) with coated carbide (TiSiN-
TiAIN coated) cutting tool. The Taguchi L9 (3)3 orthogonal
array was used for design. They used the S/N ratio and
ANOVA to find important factors impacting tool wear and
surface roughness. Cutting speed and feed influenced
tool wear (flank wear), and feed influenced surface
roughness (Ra). Regression analysis was used to generate
mathematical models for tool wear and surface roughness.
The confirmation trials using Taguchi'’s optimum parameter
combination predicted the response factors with less than
5% error. To decrease tool wear and surface roughness, the

Desirability function module in RSM was used. The optimum
solution via desirability function optimization was compared
to the optimal Taguchi set of parameters. Both strategies
provide similar optimization outcomes”.

Kaladhar, M., et al. (2013) “attempted to explore the
influence of machining parameters on the performance
measures, surface roughness, and flank wear in turning of
AlSI 304 austenitic stainless steel with a two-layer chemical
vapor deposition (CVD) coated tool. The Taguchi method
was used to accomplish this. The data show that cutting
speed affects surface roughness and flank wear the most.
Also projected are ideal process parameter settings and
performance measure ranges”.

Kaladhar, M., et al. (2010) “studied the optimization
of machining parameters in turning AlSI 202 austenitic
stainless-steel using CVD-coated cemented carbide tools.
A number of process factors are investigated throughout
the experiment including speed, feed, depth of cut, and
nose radius. The trials were done on a CNC lathe utilizing
complete factorial design in the Design of Experiments.
ANOVA was also used to examine process factors’ effect and
their interaction during machining. The research shows that
the feed affects the surface roughness the greatest, followed
by the nose radius. An effort was made to forecast surface
roughness. Validation trials validate the projected values”.
Keblouti, O, et al. (2017) “investigated the effects of cutting
parameters and coating material on the performance of
cutting tools in turning AISI 52100 steel. Uncoated and
coated (with TiCN-TiN coating layer) cermet tools were
compared.Theinserts had the same substrate composition
and shape. It was used to build a mathematical model
(RSM). The influence of cutting settings on machining
surface quality and cutting forces was studied using
ANOVA. The findings suggest that feed rate is the most
important factor. However, cutting depth affects cutting
force components. The coating layer influence on surface
quality was also evaluated. Using PVD (TiCN-TiN) coated
inserts reduced surface roughness. A second-order
regression model with 95 and 97% correlation coefficients
was created”.

Keblouti, O., et al. (2017) “presented work concerning an
experimental study of turning with coated cermet tools with
TiCN-TiN coating layer of AISI 52100 bearing steel. The major
goals are to investigate the impact of cutting settings and
coating materials on cutting tool performance. Second, use
a multi-objective optimization to reduce surface roughness
(Ra) and increase the material removal rate. It was used to
build a mathematical model (RSM). The impact of cutting
parameters on machining surface quality and material
removal rate was quantified using ANOVA. The results
show that feed rate has the greatest impact on surface
quality. They also look at how coating layers affect surface
quality. The PVD (TiCN-TiN) coated insert has a reduced
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Figure 1: Workpiece Samples of AISI M7

surface roughness than the uncoated tool. This paper also
provides the root mean square deviation and correlation
coefficient between theoretical and experimental data, with
a maximum computed inaccuracy of 2.65%".

Research Gap and Objectives of Research

Research Gap

By studying various research articles, it can be concluded
that optimization of cutting parameters such as cutting
speed, feed rate, and depth of cut are not done for hard
AISI M7 material with coated carbide tool using the utility
concept of multi-response optimization (Figure 1). The
material hardness will be 62 to 64 HRC during the turning
process in dry conditions.

Objectives of Research

The basic objectives of the research are as follows:
«  Tofind the optimum value of MRR.
«  Tofind the optimum value of Ra.
«  To find the combined effect of MRR and Ra using
the utility concept. (Multi-response Optimization).

Methodology

In the first phase of research, | initially finalized the research
area and then collected and studied the articles closely
related to the research area. | have done industrial visits to
find the problem so | can correlate my work to industrial
problems. In this phase, | have finalized the hard material
AISI M7 with hardness 62-64 HRC (Figure 2). The machining
parameters such as cutting speed, feed rate, depth of
cut, and quality characteristics such as MRR and surface
roughness (Ra) are selected for investigation.

*Sustable Material Selection after Survey (1.e. AISI MT)

*Machining Parameters Fmalize with their levels (i.e Cutting Speed. Feed
Rate, Depth of Cut)

*Machining Operation Finalize (Tuming Operation on CNC Machine).

+ Respose Quality Characteristics Finalize. (Le Surface Finish and MRR)

» Suitable DOE method finalize (i.e Taguchi with ANOVA . Regression
Analysis)

« Suitable Statastical Software Choose (i.e MINITAB [atest version)

+ Parametric Optimization as per one respose quality fstic at a fime.

* Data Analysis usmg Software.
* Ploting and Interpretation.

* Application of Utility Concept.
= Multi objective optimization

Figure 2: Methodology implemented

Figure 3: Experimental unit

In the second phase of research, | have finalized the Design
of Experiment (DOE) method such as the Taguchi Method
with ANOVA and Regression Analysis. For statistical analysis,
| have used MINITAB 17 Software. | have done parametric
optimization separately for each response characteristic.
In the third phase of research, | plotted results for surface
roughness and MRR quality characteristics and applied
multi-response optimization by the utility concept.

Experimentation

AISI M7 is taken for machining and their weight before
machining and after machining was precisely recorded and
cycle time is recorded from the screen (Figure 3). The MRR
is calculated by using the formula:

MRR= (Wi,Wf) /p *t (1)

Where, W, = Initial weight of workpiece in gm
W, = Final weight of workpiece in gm
t = Machining time in seconds
p= Density of AISI M7
= (7.95 x 1000 Kg/m?)
and surface roughness value is recorded with the help of
Make-Strumentazione, Model-RT10G, L.C.0.001 um (Figure 4).
The choice of a certain orthogonal matrix from the
common orthogonal array is determined by:
« Number of controlling variables
- Amounts for each control factor’s levels (Table 1)
«  The total amount of factor freedom

Figure 4: Make-strumentazione, model-RT10G
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Table 1: Control factors and their levels

Control factors
Levels | Cutting | Feedrate | Depth Nose
speed | (mm/rev) | ofcut radius
(my/min) (mm) (mm)
Level 1 150 0.15 0.5 04
Level 2 220 022 0.75 0.8
Level 3 300 028 08 12
Table 2: Experiment to collect MRR values
Exp. MRR MRR Mean SN
No {Triall) | (Trial 2) MRR Ratio
mm?/sec | mm*/sec | mm?/sec dB
1 205.011 | 21279 208901 | 46.39
2 307.51 328.53 318.020 | 50.03
3 368.90 368.90 368900 | 51.33
4 218.87 23251 225690 | 47.05
5 305.96 323.08 314.520 | 4994
6 375.60 363.15 369375 | 5134
7 22591 22421 225060 | 47.04
8 308.29 31374 311.015 | 49.85
9 34590 33728 341.590 | 30.66

According to MINITAB 17, the best orthogonal array
for the current study work’s four parameters—cutting
speed, feed rate, depth of cut, and nose radius—which are
employed at three levels—is L9 (3%).

«  Condition of S/N ratio for surface roughness: smaller

is better
1 2
Il= —10log— Vi
n

=1 (2)

- Condition of S/N ratio for Material removal rate:

larger is better
b

1
= —10log— Z 1/yi’
n

i=1 (3)
Where, n - Signal to Noise (5/N) Ratio, Yi-an i observed

value of the response, n - Number of observations in a trial,

y - Average of observed values (responses) s — Variance

Let T= average results for 9 runs of MRR (Table 2).

Table 3: Experiment to collect Ra values

Exp. No Ra Ra Mean | S/N Ratio
(Triall) | (Trial2) | Ra dB
um um um

1 210 250 2.300 -7.2673
2 2.68 2.63 2.655 -8.4817
3 235 232 2335 -7.3659
4 0.95 0.45 0.700 2.5767
5 3.10 3.60 3.350 | -10.5250
6 3.50 3.38 3440 | -10.7325
7 1.35 1.32 1.335 -2.5102
8 1.20 1.31 1.255 -1.9812
9 4.10 3.53 3.815 | -116541

9

> M

T'=-—=298119mm¥sec  (4)
MRR, imum =T+ (A,=T) + (B, -T) +(C,-T) +
(D2 —-T') [Ross, 1988]
MRR__, . = 298.119+ (302.2-298.119) + (360.0 -298.119)
+(302.8 -298.119) + (304.2 - 298.119)
MRRoptimum =375.842 mm3/sec (Predicted value)  (5)

Let T= average results for 9 runs of Ra

9

ZRa
T'=%=253 pm 6)
=T+(A,-T)+(B,-T)+(C,-T) +

optimum

(D,-T') [Ross, 1988]

i = 235+ (2.135 - 2.53) + (1.445 - 2.53) + (2.390-
2.53) +(1.430- 2.53)

Ra =0.350 um (Predicted Value) (7)

optimum

The correlation among the factors i.e. cutting speed,
feed rate, depth of cut and nose radius and performance
measure (Ra) and (MRR) is obtained. The polynomial model
was obtained as follows:

. Ra=1.65-0.00216 (Cutting Speed) + 13.9 (Feed

Rate) - 0.146 (Depth of Cut) - 2.16 (Nose Radius) R-Sq.
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Table 4: Design matrix with multi-response S/N ratio

EXp_ A B C D Uobc
1 150 0.15 0.75 0.4 19.56
2 150 0.22 0.8 0.8 20.77
3 150 0.28 1.5 12 2198
4 180 0.15 0.8 12 24 81
5 180 0.22 1.5 0.4 19.70
6 180 0.28 0.75 0.8 2030
7 300 0.15 1.5 0.8 2226
8 300 0.22 0.75 12 2393
9 300 0.28 0.8 04 19.50

=97.6% 8

« MRR = 65.5 - 0.0552 (Cutting Speed) + 1060 (Feed
Rate) + 5.1 (Depth of Cut) + 15.7 (Nose Radius) R-Sq.
=96.0% ©)

The elements in the above equation are all relevant. A higher
R-squared value is always preferred. This demonstrates the
estimated constants’ accuracy and the models’ applicability
(Table 3).

Multi-Response Optimization
The multi-response S/N ratio of the total utility value is given
by (Table 4)

Nobs = Winy + Wam, (10)

using the utility concept, where W1and W2 are the weights
provided to Raand MRR. Based on the needs and priorities of
the clients, weights are assigned to the performance criteria.
Both Raand MRR are given equal weight in the current work.
W1 and W2 thus equal 0.5.

Result and Discussion
Figure 5 shows that the cutting speed =300 m/min, Feed
rate =0.15 mm/rev, depth of cut = 0.75 mm, and Nose

radius = 1.2 mm are optimum values of process parameters
at which both response parameters MRR and Ra give good
result in terms of quality. Mean value of 77, = at different
levels is shown in Table 5.
In this optimization stage, we have given equal importance
to both values’ Ra and MRR. Here nominal is best, this
criterion is used.

The conclusions of multi-objective optimization are:

«  Raand MRR both values increase with the increase

Table 5: Mean value of 7] , - at different levels

Levels Mean values of 77, for process
parameters
A B C D
Level 1 |20.77 | 22.21 21.27 19.59
Level2 | 21.61 | 2147 |21.70 21.11
Level 3 | 21.90 | 20.60 | 21.32 23.58

Main Effects Plot (data means) for Means

Cutting Speed Feed rate

‘\
\‘

T T T T T T
150 220 300 0.15 0.22 0.28
Depth of cut

224 e
219 —

Nose radius

Mean of Means

I e
: —

T T T

T T T
0.50 0.75 0.80 0.4 0.8 1.2

Figure 5: Muti-response optimization

in cutting speed.

«  Raand MRR both values decrease with an increase
in feed rate.

- Ra and MRR both values increase first and then
decrease.

+ Raand MRR both values increase with the increase
in nose radius.

Conclusion

It is discovered that the feed rate and nose radius of the
insert substantially influence MRR value and surface
roughness (Ra) value. We have applied the utility notion of
multi-response optimization. The recent analysis reveals that
cutting speed =300 m/min, feed rate =0.15 mm/rev, depth
of cut=0.75 mm nose radius = 1.2 mm delivers the greatest
MRR value and least surface roughness (Ra).
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