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Abstract
Most of the time, thin walls may be developed during milling operations to manufacture 
complicated dies and moulds. In current high-speed machining, bending these thin walls 
is expected owing to thermal expansion, making it a common source of dimensional error. 
Workpiece temperature (WT) with a response Machine time has been considered output 
responses. By adopting a unique technique, the response surface methodology during 2.5 D 
milling of Inconel 718, an anti-corrosive material, we could reach the best process parameters 
combination for minimizing workpiece temperature. The workpiece’s temperature was 
determined by three sets of combinations of k-type thermocouples while the surface tester 
measured surface quality. Box–Behnken design has been used to conduct 26 trials to determine 
the best combinations of parameters. Several process variables were examined, including 
cutting speed, feed per tooth, depth of cut, and tool nose radius, and ANOVA has been used 
to quantify the impact of these variables. A multi-objective genetic algorithm based on the 
regression model has been applied to optimize the parameters. Five structural experiments were 
also conducted to verify this optimized process parameters combination, which was proven 
more successful.
Keywords: W/p Temperature, RSM, BBD, k-type thermocouple, MOGA etc.

Introduction
Modern machining technologies are constantly under 
pressure to cut prices while improving quality. To remain 
competitive, firms are always seeking ways to reduce 
production costs without compromising product quality. 
It will be essential to improve the overall performance 
of cutting operations in order to achieve these goals. 
End milling is a very versatile machining process that is 
employed in a wide range of industrial applications.. End 
milling activities typically include the removal of metal 
from a work item using a multiple point cutting tool. 
End milling is a procedure that is used in the aerospace 
and automotive sectors to create deep slots, Sheet metal 
works, profile recesses, and steps. (M.T. Hayajneh, M.S. 
Tahat, 2007) In the present study Inconel-718 super 
alloy was used extensively in virtually every branch of 

sophisticated manufacturing. Other high-temperature 
applications of nickel-based alloys include amplitude 
vehicles, rocket engines, nuclear reactors, submarines, 
and other petrochemical equipment. Nickel-based alloys 
are currently used in a variety of applications, including 
aviation, marine, automated, and vehicular gas turbines. 
(E.O. Ezugwu, Z.M. Wang, 1999) Nevertheless, because 
of its exceptional quality and limited heat conductivity, 
Inconel-718 is frequently considered a complex 
material. As a result, standard machining this material 
is prohibitively expensive compared to nontraditional 
methods. (K. Venkatesan, R. Ramanujam, 2016) The 
cutting characteristics of Inconel-718 materials, which 
include a high cutting force, high heat absorption, tool 
failure due to plastic deformation at high cutting speeds, 
a short tool life, and a work hardening effect, present 
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significant challenges when machining nickel-based super 
alloys conventionally. The Inconel-718 material exhibits a 
high degree of attraction due to its chemical characteristics, 
poor conductivity due to its thermal properties, and a 
high strength when the tool comes into contact with 
the specimen’s surface, all of which contribute to the 
specimen’s fatigue life being prolonged. (L. Chang, R. 
Chengzu, W. Guofeng, Y. Yinwei, 2015)

Metal cutting is a very complicated thermo-mechanical 
event in which heat is created during machining operations 
due to metal plastic deformation and friction at the tool–
chip and tool–workpiece interfaces. Due to the complexity 
of machining mechanics, predicting the intensity and 
dispersion of heat is challenging. For many years, the 
complicated interaction between plastic deformation and 
temperature fields has been a subject of investigation. 
Because the plastic deformation of metals occurs in a small 
zone during machining, very high temperatures are predicted 
in this area. The tool–chip contact reaches its maximum 
temperature. At elevated temperatures, the tool wear rate 
and fracture significantly increase, limiting tool life. High 
cutting temperatures are detrimental in several ways. As a 
result, the cutting temperature must be reduced as much 
as feasible.(Bhirud & Gawande, 2017.) It was discovered 
that strong local heat may change various attributes such 
as heat treatment, artificial aging, hardness, and residual 
stress of the material, affecting the part’s fatigue life. The 
increase in temperature of the work item will also impact 
dimensional tolerances.(Brinksmeier E, Minke E, 2003) It 
has also been observed that the component of Inconel 718 
has a thermal expansion coefficient of 13 µm/m⋅K, and a 
length of 100 mm has increased to approx 102 µm on the 
rise in workpiece temperature by 100°C approximately. 
Most dies and moulds require high accuracy with less than 
50 µm by an increase in workpiece temperature of more 
than 100°C, and their accuracy may be compromised. Many 
times, large-sized, thin-walled components with bounded 
sides may buckle if the temperature rises above a certain 
threshold. Therefore, it is essential to study the workpiece’s 
temperature to improve the components’ accuracy.

Using dry machining to reduce production costs and 
environmental impact while safeguarding workers’ health 
is an excellent idea. Because of its detrimental effects 
on human and ecological health, the lubricant used in 
machining cannot be relied upon in the long term. The 
pollution may harm the skin and lungs of the operator in 
the air caused by applying lubricant. 7–17 percent of the 
tool cost is spent on lubrication (Ryzhkin, A.A.; Shuchev, 
K.G.; Aliev, M.M.; Gusev, 2008). Dry machining, as 
opposed to the more typical method, is a popular choice 
for reducing or eliminating the detrimental effects of 

lubrication. It is connected with excellent energy efficiency, 
minimal environmental concerns, better material flow, and 
lower health safety. It is thus an intelligent approach to 
sustainable production that employs the dry condition. 
Published studies have examined how machining behaves 
when it is dry. Roughness and cutting temperature 
correlations were developed using the fuzzy system (FS)
(Aydın, M.; Karakuzu, C.; Uçar, M.; Cengiz, A.; Çavuşlu, 
2013).

In the recent past, researchers have adopted various 
techniques for reducing the temperature of the workpiece, 
such as improvement in cutting strategy, the geometry of 
the tools, optimization of machining parameters etc. To 
optimize the workpiece’s temperature, it is necessary to 
build a mathematical model to predict the temperature 
with the input parameter. These models developed by 
the researchers can be classified into three categories: 
statistical, artificial intelligence (AI), and analytical 
techniques. Researchers have commonly utilized Taguchi 
techniques in the recent decade to study experimental 
design to improve industrial processes effectively. It’s 
an iterative experimental strategy aimed at determining 
the importance of individual process factors and their 
interactions’ impact in eliciting reactions. Taguchi’s design 
of experiments (DOE) approaches use orthogonal arrays 
to reduce the number of tests needed to assess the effect 
of process factors on process responses. (Ashutosh, 2019)
(Jamil et al., n.d.) (Raza et al., 2020) minimum quantity 
lubrication (MQL Several researchers have turned to 
statistical modeling approaches to estimating work piece 
temperature and other reactions throughout the milling 
process. A significant number of experiments have been 
carried out using design of experiment methodologies such 
as response surface methodology, and regression models 
have been built based on these experiments to demonstrate 
the relationship between the dependent and independent 
variables(Suhaily et al., 2011)feed rate, and axial depth of 
cut using design of experiments and the response surface 
methodology (RSM, (Mokhtar et al., 2011) feed rate, 
and axial depth of cut using design of experiments and 
the response surface methodology (RSM, (Gopal, 2020). 
Several studies have investigated the effectiveness of the 
RSM method in end-milling optimization. Various studies 
have been used to optimize the machining characteristics 
(Sridhar & Sellamani, 2020) (Mangaraj & Singh, 2011)
(Nurul Amin et al., 2012). In contrast, Surface roughness 
and quality, including topology, were investigated in 
various studies (Kumar et al., 2021) the Wire EDM is more 
popular due to its outstanding features of high dimensional 
accuracy, lower cost of production and good surface finish 
as there is no physical contact between the wire and work 
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piece. However, for the steel with higher hardness, it is 
difficult to obtain these features up to the required extent. 
Moreover, with the help of optimum process parameters 
selection the WEDM performance characteristics should 
be improved. The most commonly studied responses for 
this process are material removal rate (MRR (Bhardwaj 
et al., 2014) (Gopikrishnan et al., 2018). A number of 
studies have focused on the successful prediction model of 
temperature generation, Tool wear, the Power consumption 
etc. (Gopal, 2020) (Aruna & Dhanalakshmi, 2012) Inconel 
718 is extensively used in sophisticated applications due to 
its unique properties desired for engineering applications. 
Due to its peculiar characteristics, machining of Inconel 
718 is complicated and costly. The present work is an 
attempt to make use of Taguchi optimisation technique 
to optimise cutting parameters during high speed turning 
of Inconel 718 using cermet tool. The performance 
of the cermet tool is described using response surface 
methodology (RSM(Sahu et al., 2014)a novel hybrid 
Differential Evolution (DE.

This study aims to determine the workpiece 
temperature, machining time consumption, and surface 
quality during 2. 5-D milling of Inconel 718 alloy using 
parameters such as Spindle speed (SS), feed per tooth 
(FT), axial depth of cut (D), and nose radius (NR). 
The temperature distribution was determined using a 
pyrometer and a k-type thermocouple, while the surface 
quality was determined with a surface tester. Additionally, 
the statistical model was designed to optimize the 
machining settings in order to achieve the lowest possible 

temperature increase, the shortest possible machining 
time, and the best possible surface quality using the 
Multi-Objective Genetic Algorithm (MOGA). The Box–
Behnken design (BBD) model was explored for three 
levels of input process parameters. ANOVA was used 
to determine the significance and the impact of process 
factors on the temperature of the workpiece. Numerous 
responses, WT, MT, and SF, associated with the interaction 
impact of 2.5 D end milling process parameters have also 
been examined, assisting in selecting process parameters 
that maintain optimal values. The experimental findings 
were compared to those predicted by the predictive 
regression model. The prognostic model used in this work 
aims at providing response values close to those obtained 
experimentally. MOGA was used in the prognostic model 
in order to improve the machining settings. Additionally, 
conformational studies with a 5% error were done to 
confirm the findings.
Experimental setup and Work-piece Material:
For investigating the relationships between input 
parameters and workpiece temperature, time consumed 
during machining (MT), and surface finish, three levels 
of each input parameter were evaluated based on the 
material Inconel 718 and the machine tool specification. 
Experiments were done on a Bharat Fritz Werner, Agni++, 
BMV45++ TC24 vertical milling machine (in figure 1) 
at Dhiman plastic industry, Ambala district, using a CNC 
milling machine with a maximum spindle speed of 8000 
rpm and a drive motor of 13.5 kW.

Process 
Parameter

Cutting 
Speed

Responses

Work-piece 
Temperature

Machining 
Time

BBD Design of Experiment

Feed per 
Tooth

Axial 
DoC

Nose 
Radius

Figure 1: Experimental setup
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Table 1: Chemical composition and properties of inconel 718.

Chemical Composition Physical and Mechanical Properties

Element Percentage Property Inconel 718 Tungusten Carbaide

Chromium 16.5% Density (g/cc) 8.19 15.25

Nickel 51.5% Melting point(°C) 1260-1336 2870-3000

Molybdenum 2.80% Elastic Modulus (GPa) 205 560

Columbium 4.20% Thermal conductivity (W/mK) 11.4 84.02

Titanium 1.12% Specific heat (J/KgK) 435 512

Cobalt 0.88% Poisson’s ratio 0.284 0.2

Aluminum 0.80% Tensile strength (MPa) 1100 370

Iron Balance Hardness Rockwell C scale (HRC) 36 85

A three-set of k-type thermocouples was used for 
calculating the workpiece temperature, and Mahr Pocket 
Surf- surface tester was used for the testing degree 
of surface finish, as shown in figure 2. The range of 
temperature measurement is from -270oC to 1250oC, 
with the precision of ±0.75 to ±2%, and Special Limits 
of Error: +/- l°C or 0.4%. The responses were chosen for 
the experimental work at various input variables using 
Inconel 718 super alloy as a workpiece, and a flat end 
tungsten carbide with flutes and 20 mm diameter having 
two flutes has been used as a cutting tool. The chemical 
composition and mechanical properties of Inconel 718 are 
given in Table.

Figure 2. K typr thermocouple and surface tester used for 
calculating responses

The chromium component of the work material 
enhances its hardness, making it harder to treat 
conventionally.(Khullar et al., 2017) The workpiece 
material was provided as a rectangular piece with 
dimensions of 100mm × 50mm ×20 mm for experimenting. 
The workpiece was secured to the worktable utilizing 
an integrated component. The tool with two flutes and a 
20mm diameter was fastened on the machine tool’s tool 
holder by default. The tool holder had a mechanism for 
adjusting the electrode’s alignment about the workpiece.

Design of experiments:
The design of an experiment (DOE) is arranging an 
investigation to examine control variables. Instead of 
analyzing one component at a time, the impact of all 
control factors on responses is examined collectively 
during this procedure. For this study, four control criteria 
were employed to arrange the trials. BBD was used in a 
total of 26 trials, and the input control factors with their 
range and levels are listed in Table 2.
Table 2: Independent parameters with their levels.

Control Variable 
Name

Units Range Levels
–1 0 +1

Cutting Speed rpm 3000-5000 3000 4000 5000
DoC mm 0.50-1.50 0.50 1.00 1.50
Feed mm/

tooth
0.05-0.15 0.05 0.10 0.15

Nose Radius mm 0.40-1.20 0.40 0.80 1.20
Tool Diameter mm 20

The DOE conditions for executing the experimental 
runs are shown in Table 2. The trials were carried out in a 
particular order to ensure the machine’s stability.
Table 3: Experimental results

Std Run Cutting 
Speed

DoC Feed Nose 
Radius

W/P 
temp

MT

12 1 5000 1 0.15 0.8 114.0 205
23 2 3000 1 0.1 0.4 95.9 297
17 3 4000 0.5 0.1 1.2 90.9 251
4 4 4000 1 0.15 1.2 119.1 181
18 5 5000 1 0.05 0.8 85.1 248
1 6 5000 1 0.1 0.4 110.3 236
8 7 5000 0.5 0.1 0.8 93.3 247
21 8 3000 1 0.15 0.8 117.1 216
6 9 4000 1 0.15 0.4 126.2 212



5Multi-response Optimization of Machining Parameters in Inconel 718 End Milling Process Through RSM-MOGA

26 10 3000 1 0.05 0.8 72.3 315

20 11 3000 0.5 0.1 0.8 81.1 330

22 12 4000 1.5 0.1 0.4 111.9 221

25 13 3000 1.5 0.1 0.8 107.9 209

15 14 4000 1.5 0.1 1.2 112.7 170

2 15 4000 1 0.05 0.4 79.4 305

10 16 4000 1.5 0.15 0.8 127.0 179

5 17 4000 0.5 0.1 0.4 94.4 301

11 18 4000 1.5 0.05 0.8 91.3 214

16 19 4000 1 0.05 1.2 80.9 231

13 20 4000 1 0.1 0.8 95.3 243

3 21 4000 0.5 0.05 0.8 67.3 357

7 22 4000 0.5 0.15 0.8 106.7 227

19 23 4000 1 0.1 0.8 94.3 220

14 24 5000 1 0.1 1.2 105.5 200

24 25 3000 1 0.1 1.2 94.9 235

9 26 5000 1.5 0.1 0.8 118.7 198

Results and Discussion:
Table 2 shows the findings of the experiments, which 
were used to create several response surfaces, each with 
two parameters along the X- and Y-axes and one output 
parameter along the Z-axis. The response surface is 
presented for each output parameter, namely WT, MT, and 
SR and the data is analyzed using the computer programme 
Design Expert-12. Tables 3, 4, and 5 provide the results 
of the ANOVA tables for each answer. The findings are 
analyzed using the standard distribution curve, P-value, 

and lack of fitness test for the model’s goodness of fit 
utilizing WT, MT, and SR acquired from the experimental 
study.
Workpiece Temperature:
Table 3 summarises the ANOVA findings for WT 
after pooling the parameters that were not statistically 
significant (i.e., P value > 0.05). The fit outline indicated 
a quadratic model for data analysis. The model’s F-value 
is 129.90 with a P-value less than 0.05, indicating that 
it is a good model. ANOVA analysis shows that the 
quadratic terms of DoC and NR and the interaction 
between CS and Feed significantly determine the 
Workpiece temperature.

A significant model combined with a nonsignificant 
model The absence of fit shows that the model is good. 
Both of these scenarios are excellent models. R2 is a 
measure of the process’s variability as a result of both 
non-significant and significant terms in the data. The WT 
model can explain 98.06 percent of the variability when 
applied to the current research. Since adjusted R2 solely 
explains the variability caused by major terms, its value 
is always less than or equal to R2. The difference between 
adjusted R2 and projected R2 is less than 0.2 for a good 
model, and less than 0.3 for a flawed model. In this case, 
the difference between the two is less than 0.2, and the 
model is considered good. The S/N ratio test is a new type 
of test, and the value of the S/N ratio must be larger than 
4. The S/N ratio, which is the ratio of significant and non-
significant factors, is determined by adequate precision. 
The value of acceptable accuracy in this ase is 41.34, 
which indicates that the model is fine.

Table: 4 ANOVA table for Work-piece Temprature

Source Sum of 
Squares

DF Mean Square F-value p-value Significant/ Non 
Significant

Contribution

Model 6568.68 7 938.38 129.90 < 0.0001 significant
A-Cutting Speed 277.54 1 277.54 38.42 < 0.0001 significant 04.23%
B-DoC 1537.83 1 1537.83 212.89 < 0.0001 significant 23.41%
C-Feed 4551.93 1 4551.93 630.14 < 0.0001 significant 69.29%
D-Nose Radius 16.37 1 16.37 2.27 0.1496 significant 00.24%
AC 63.12 1 63.12 8.74 0.0085 significant 00.96%
B² 24.06 1 24.06 3.33 0.0846 significant 00.36%
D² 116.08 1 116.08 16.07 0.0008 significant 01.76%
Residual 130.03 18 7.22
Lack of Fit 129.53 17 7.62 15.24 0.1991 not significant
Pure Error 0.5000 1 0.5000
Cor Total 6698.71 25
R2 0.9806 Predicted R2 0.9518
Adjusted R2 0.9730 Adequate Precision 41.3410
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Figure 3 (a) illustrates a normality test, which is an 
extra check for the perdition of an acceptable model. 
It can be seen that the residuals for the test are linear, 
indicating that the model is significant. Whereas, Figure 
3(b) illustrates the residual vs. expected relationship. All 
points in this graph are dispersed randomly to ensure that 
the model is valid. The regression model is denoted by the 

Figure 3 (a) Normality test Figure 3(b) The residual vs. expected relationship

following equations 1 and 2 in terms of both coded and 
actual parameters:
W/P temp = 96.83 + 4.81*A + 11.32*B + 19.48*C - 
1.17*D -3.97*A*C + 1.99*B² + 4.36*D²	                   (1)
W/P temp = 11.96 + 0.01*CS + 6.75*DoC + 707.32*F - 
46.56*NR - 0.08*CS*F + 7.95* DoC² + 27.28* NR²   (2)

Figure 4: 3d interaction and Contour plot of F and Cs for W/P temp
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Table: 4 ANOVA table for Machine Time

Source Sum of 
Squares

DF Mean Square F-value p-value Significant/ Non 
Significant

Contribution

Model 58426.35 9 6491.82 94.78 < 0.0001 Significant
CS 6004.98 1 6004.98 87.67 < 0.0001 Significant 10.28%
DoC 22654.21 1 22654.21 330.74 < 0.0001 Significant 38.77%
Feed 16827.41 1 16827.41 245.67 < 0.0001 Significant 28.80%
NR 7675.61 1 7675.61 112.06 < 0.0001 Significant 13.17%
CS*DoC 1296.33 1 1296.33 18.93 0.0005 Significant 02.29%
CS*F 780.96 1 780.96 11.40 0.0038 significant 01.33%
Doc*F 2280.39 1 2280.39 33.29 < 0.0001 significant 03.90%
F*NR 480.96 1 480.96 7.02 0.0175 significant 00.82%
CS² 425.50 1 425.50 6.21 0.0240 significant 00.72%
Residual 1095.94 16 68.50
Lack of Fit 835.50 15 55.70 0.2139 0.9528 not significant
Pure Error 260.44 1 260.44
Cor Total 59522.29 25
R2 0.9816 Predicted R2 0.9518
Adjusted R2 0.9712 Adequate Precision 33.8055

Figure 4 shows the 3d surface plot and contour plot 
of F and Cs for W/p temperature. It can be seen from 
the graphs that with increasing the values for feed and 
cutting speed, W/p temperature increases. Contributions 
of the independent parameters in the calculations of W/p 
temperature have been observed in table 3. ANOVA 
reveals that F and DoC are the major contributing factors 
for generating the W/p temperature.
Machine Time analysis:
Table 5 illustrates the ANOVA findings for MT after 
pooling the parameters that were not statistically significant 
(i.e., P value > 0.05). The fit outline indicated a quadratic 
model for data analysis. The model’s F-value is 94.78 with 
a P-value less than 0.05, suggesting it is a good model. 
ANOVA analysis shows that the quadratic terms of CS and 
the interaction between CS and DoC, CS and F, Doc and 
F, and F and NR are very significant in determining the 
machine time.

Like Workpiece temperature, ANOVA analysis 
shows a not-significant lack of fir for a significant model, 
implying an acceptable model. R2 refers to the process’s 
variability as a result of both non-significant and effective 
terms. The MT model can account for 98.16 percent of the 
variability in the current investigation. Because adjusted 
R2 describes just the variability caused by important terms, 
its value is always less than or equal to R2. For a decent 
model, the difference between adjusted and projected R2 
is less than 0.2. The difference between the two is less than 
0.2 in this case, indicating a reasonable model. The S/N 

ratio test is a specific test; the S/N ratio must be larger than 
4. Good accuracy results in the S/N ratio, which is the ratio 
of significant to non-significant components. The value of 
acceptable precision is 33.80 in this case, indicating that 
the model is valid.

Figure 5 (a) illustrates a normality test, which is an 
extra check for the perdition of a fine model. It can be 
seen that the residuals for the test are linear, indicating that 
the model is significant. Whereas, figure 5(b) illustrates 
the residual vs. expected relationship. All points in this 
graph are dispersed randomly to ensure that the model is 
valid. The regression model is denoted by the following 
equations 3 and 4 in terms of both coded and actual 
parameters:
Machine Time= + 236.53 - 22.37*A - 43.45*B - 
37.45*C - 25.29*D + 18.00*A*B + 13.97*A*C + 
23.88*B*C+10.97*C*D + 8.11*A²		       (3)
Machine Time = 1063.39571 - 0.15124*CS - 
326.42399*DoC - 3260.45071*F - 118.05449*NR + 
0.03601* CS*DoC +0.27946* CS*F + 955.06896* DoC 
* F + 548.27027* F* NR + 0.00001* CS²		       (4)

Figure 6 shows the 3d surface plots and contour plots 
of various independent parameters interacting to influence 
W/p temperature. Contributions of the input parameters 
in the calculations of machine time have been observed 
from table 4. ANOVA reveals that D & F are the major 
contribution factors for the generation of the Machine 
Time.
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Figure 5 (a) Normality test Figure 5(b)Rresidual vs.Expected relationship

Multi-objective Genetic Algorithms (MOGA)
Multi-objective genetic algorithms have been widely used 
to optimize machining settings to get the best possible 
values for different machined surface characteristics, 
including surface roughness, cutting forces, and surface 
integrity. Genetic Algorithms have been primarily used to 
solve situations with a single purpose. However, a large 
number of real-world issues contain several objective 

functions. To be handled by a single-objective genetic 
algorithm, these objective functions need be integrated into 
a scalar fitness function. When numerous goal functions 
are combined with a constant weight, the search path in 
the MOGA algorithms is fixed in the multiple objective 
spaces, as shown in figure 8. (Murata & Ishibuchi, 1995)
Objective 1 (Workpiece Temperature)
Objective 2 (Machine Time)
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Figure 6(a): Contour plots for MT Figure 6 (b): 3d Interactions for MT
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Final Solution

(To be maximized) 

X (To be minimized)

Y

Fig 8(a): Direction of search on MOGA

	 Fig 8(b): Pareto front

MOGA can consider various responses, such as 
Machine time and Surface finish in the present work for 
optimizing the workpiece temperature. While GA may 
solve problems with several objectives, it must choose 
one as the objective function; other functions must be 
sacrificed. To achieve the lowest possible workpiece 
temperature, getting a better surface with less machine 
time will be challenging, similar to obtaining the highest 
possible surface finish, less machine time, or temperature 
generation, which might be difficult. As a result, using 
MOGA processes maintains a balance between the 
workpiece temperature, a high-quality surface finish, and 
the machine time restriction. Figure 9 shows the block 

diagram for MOGA how it works. At the beginning of the 
MOGA, initial population (N(pop) is generated thereafter 
calculating the resulting string’s value for each objective 
function with updating a collection of Pareto optimum 
solutions. In the next step, select a pair of strings from the 
current population according to the selection probability, 
then crossover occurs, generating two strings. Mutation 
probability will be pre-specified for each bit of string that 
was developed by the crossover function. In the elitist 
strategy, N (elite) string will be removed randomly from 
N (pop), which was generated by the Mutation, and it will 
replace with N (elite) strings which are further randomly 
selected from a tentative set of Pareto optimal solutions.
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Elite Strategy

Updation of Tentative set 
for Pareto solutions

Researcher Selection for optimal 
solutions

Termination

Crossover

Mutation

Selection

Evaluation

Begin with initial population

Figure 9: Block diagram of MOGA

Table 6: Pareto optimal solutions

Sr. 
No

CS DoC F NR W/p 
Temp

Machine 
Time

1. 3104 0.64 0.05 0.80 64.0 368

2. 3116 0.56 0.06 0.67 65.5 386

3. 3096 0.54 0.05 0.45 65.8 418
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Table 7: Confirmatory Experiments

S. 
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1 3096 0.54 0.05 0.45 65.8 67.1 1.84 418 422 0.96 0.228 0.223 2.19

2 3096 0.54 0.05 0.45 65.8 66.3 0.65 418 427 2.15 0.228 0.232 1.75

3 3096 0.54 0.05 0.45 65.8 67.5 2.44 418 415 0.72 0.228 0.23 0.88

4 3096 0.54 0.05 0.45 65.8 64.8 1.65 418 430 2.87 0.228 0.235 3.07

5 3096 0.54 0.05 0.45 65.8 67.4 2.29 418 424 1.44 0.228 0.225 1.32

After all, if the pre-specified stopping conditions are 
not satisfied, then the algorithm will run from the evaluation 
process, i.e., step 1. At last, the final set of Pareto solution 
(in table 6) combinations will be displayed by MOGA 
to the user. After that, the selection of the best solution 
according to the user preference can be made. Figure 8(b) 
shows the Pareto front graphs taken out by using MOGA 
on Matlab software it may be noticed that algorithm takes 
Workpiece temperature as objective function one while 
machine time as objective function 2, and the solutions 
of these can be seen as Pareto front analysis. It has been 
noticed that there is an inverse relationship in both of these 
objective functions.

Further, table 7 shows the results of five optimal 
trials of the MOGA set selection and confirmation studies 
conducted to ensure the response of the 2.5-D end milling 
process parameter was genuine. The most significant 
percentage error [10] is 2.44% for W/p temp, 2.87% for 
MT, and 3.07% for SF, and the results of the relevant 
combination from the conformational experiments are 
reported in table 7.

To sum up, the suggested MOGA regression model has 
a lower proportion of errors in its prediction performance 
and, as a result, is at least passable in its current state of 
development.

Conclusion:
The response curves derived from the data provide the 
best results for Inconel 718 nickel-based super alloy 
within the range evaluated in this study. The WT and 
Machine time are evaluated using an integrated technique 
of RSM (BBD) and MOGA. According to the research, 
the following findings have been made:

W/p temp is mainly affected by F and DoC compared 
to CS and NR and increases with F and CS.

MT is mostly affected by DOC and F, compared to 
NR and CS

With the help of an integrated methodology, users can 
choose the best solution based on their needs for increased 
productivity or quality. According to the algorithm’s 
predictions, the experimental findings are similar to the 
projections.

The proposed model’s percentage error is less than 
4%.

Minimum W/p temperature 670 with MT 430 sec 
have found with the optimum combination of machining 
parameters as CS (3096 rpm), DoC (0.54mm), Feed 
(0.05mm/tooth), and NR (0.45mm)
Acknowledgments: 
We express our sincere thanks to the Head of the Department 
for his critical suggestions and encouragements. We also 
declare that we have followed all ethical guidelines while 
pursuing the present study.

Declaration: We also declare that all ethical 
guidelines have been followed during this work and there 
is no conflict of interest among authors.

References
Aruna, M., & Dhanalakshmi, V. (2012). Optimisation of 

turning parameters of Inconel 718 alloy using 
RSM. In Int. J. Manufacturing Technology and 
Management (Vol. 25, Issue 3).

Ashutosh. (2019). Parametric Optimization of CNC milling 
of Al-7075 Based MMCs. 377–388.

Aydın, M.; Karakuzu, C.; Uçar, M.; Cengiz, A.; Çavuşlu, 
M. . (2013). Prediction of surface roughness and 
cutting zone temperature in dry turning processes 
of AISI304 stainless steel using ANFIS with PSO 
learning. Int. J. Adv. Manuf. Technol, 67, 957–967.

Bhardwaj, B., Kumar, R., & Singh, P. K. (2014). An improved 
surface roughness prediction model using Box-Cox 
transformation with RSM in end milling of EN 353. 
Journal of Mechanical Science and Technology, 



13Multi-response Optimization of Machining Parameters in Inconel 718 End Milling Process Through RSM-MOGA

28(12), 5149–5157. https://doi.org/10.1007/s12206-
014-0837-4

Bhirud, N. L., & Gawande, R. R. (2017). OPTIMIZATION 
OF PROCESS PARAMETERS DURING END. 
LXIV. https://doi.org/10.1515/meceng-2017-0020

Brinksmeier E, Minke E, N. L. (2003). Residual stresses 
in precision components. Proceedings of the 5th 
International Conference on Industrial Tooling, 
Southampton.

E.O. Ezugwu, Z.M. Wang, A. R. M. (1999). The machinability 
of nickel-based alloys: a review. J. Mater. Process. 
Technol, 86.

Gopal, M. (2020). OPTIMIZATION OF MACHINING 
PARAMETERS ON TEMPERATURE RISE IN 
CNC TURNING PROCESS OF ALUMINIUM 
6061 USING RSM AND GENETIC ALGORITHM. 
In International Journal of Modern Manufacturing 
Technologies: Vol. XII (Issue 1).

Gopikrishnan, P., Akbar, A., Asokan, A., Bhaskar, B., & 
Sumesh, C. S. (2018). Numerical Modelling and 
Optimization of Surface Finish during Peripheral 
Milling of AISI 4340 Steel using RSM. In 
Materials Today: Proceedings (Vol. 5). www.
sciencedirect.comwww.materialstoday.com/
proceedingsIConAMMA_2017

Jamil, M., Khan, A. M., Hegab, H., Gupta, M. K., Mia, M., & 
He, N. (n.d.). Milling of Ti – 6Al – 4V under hybrid 
Al 2 O 3 -MWCNT nanofluids considering energy 
consumption , surface quality , and tool wear : a 
sustainable machining.

K. Venkatesan, R. Ramanujam. (2016). Statistical approach 
for optimization of influencing parameters in laser 
assisted machining ( LAM ) of Inconel alloy. 
Measurement, 89, 97–108.

Khullar, V. R., Sharma, N., Kishore, S., & Sharma, R. (2017). 
RSM- and NSGA-II-Based Multiple Performance 
Characteristics Optimization of EDM Parameters 
for AISI 5160. Arabian Journal for Science and 
Engineering, 42(5), 1917–1928. https://doi.
org/10.1007/s13369-016-2399-5

Kumar, S., Gupta, A. K., Chandna, P., Bhushan, G., & 
Kumar, A. (2021). A novel approach of GEF and 
GA for the optimization of multi-objective wire 
EDM process during the machining of DC53 super 
alloy. Proceedings of the Institution of Mechanical 
Engineers, Part E: Journal of Process Mechanical 
Engineering, 235(4), 1119–1131. https://doi.
org/10.1177/0954408921992918

L. Chang, R. Chengzu, W. Guofeng, Y. Yinwei, Z. L. (2015). 
Study on surface defects in milling Inconel 718 
super alloy. Journal of Mechanical Science and 
Technology, 29, 1723–1737.

M.T. Hayajneh, M.S. Tahat, and J. B. (2007). A study of 
the effects of machining parameters on the surface 
roughness in the end-milling process. Jordan 
Journal of Mechanical and Industrial Engineering, 
1(1), 1–5.

Mangaraj, S., & Singh, K. P. (2011). Optimization of Machine 
Parameters for Milling of Pigeon Pea Using RSM. 
Food and Bioprocess Technology, 4(5), 762–769. 
https://doi.org/10.1007/s11947-009-0215-x

Mokhtar, S., Amin, A. N., & Patwari, A. U. (2011). 
Machinability improvement by workpiece 
preheating during end milling AISI H13 hardened 
steel. Advanced Materials Research, 264–265, 888–
893. https://doi.org/10.4028/www.scientific.net/
AMR.264-265.888

Murata, T., & Ishibuchi, H. (1995). MOGA: multi-objective 
genetic algorithms. Proceedings of the IEEE 
Conference on Evolutionary Computation, 1, 289–
294. https://doi.org/10.1109/icec.1995.489161

Nurul Amin, A. K. M., Mokhtar, S., & Arif, M. D. (2012). 
Analysis of machinability of inconel 718 in 
high speed end milling with ceramic inserts 
under room temperature conditions. Advanced 
Materials Research, 538–541, 1351–1355. https://
doi.org/10.4028/www.scientific.net/AMR.538-
541.1351

Raza, M. H., Hafeez, F., Zhong, R. Y., & Imran, A. (2020). 
Investigation of surface roughness in face milling 
processes. International Journal of Advanced 
Manufacturing Technology, 111(9–10), 2589–2599. 
https://doi.org/10.1007/s00170-020-06188-8

Ryzhkin, A.A.; Shuchev, K.G.; Aliev, M.M.; Gusev, V. V. 
(2008). Dis- sipative properties of lubricant and 
coolant fluid in cutting and friction. Russ. Eng. Res.

Sahu, R. K., Panda, S., & Yegireddy, N. K. (2014). A novel 
hybrid DEPS optimized fuzzy PI/PID controller for 
load frequency control of multi-area interconnected 
power systems. Journal of Process Control, 
24(10), 1596–1608. https://doi.org/10.1016/j.
jprocont.2014.08.006

Sridhar, S., & Sellamani, R. (2020). Investigation of input 
variables on temperature rise while end milling 
Al/SiC metal matrix composite. World Journal 
of Engineering, 17(4), 599–607. https://doi.
org/10.1108/WJE-01-2020-0031

Suhaily, M., Nurul Amin, A. K. M., & Patwari, M. A. 
U. (2011). Prediction of surface roughness in 
high speed machining of Inconel 718. Advanced 
Materials Research, 264–265, 1193–1198. https://
doi.org/10.4028/www.scientific.net/AMR.264-
265.1193

https://www.scientifictemper.com/archives/volume13.2.2022


