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ABSTRACT
To create a technique to used the hydrodynamics equation and Bogoliubov quasi-particle 
distribution function of an isotropic superfluid contain three coefficient of second viscosity in 
presence of momentum conservation law and the acceleration of the superfluid .The evaluated 
value of second viscosity coefficient is good agreement of experiment value at 7.0=λ .
Keywords: Hydrodynamic equation for isotropic superfluid, Bogoliubov distribution function, 
Quasi-particle, Superfluid liquid Phase- A and Phase-B, Nuclear Magnetic Resonance,

INTRODUCTION
The liquid He 3 is known as Fermi liquid and lies between 
3 mK to 100 mK, it behaves as normal Fermi liquid. Below 
3mK it under goes phase transition 1-2 to super fluid phase 
obtained in nuclear magnetic resonance measurement. 
Basically two super fluid phase are very important naming 
He 3- A phase and He3 – B phase. These phases are highly 
spin polarized phase. Theoretically He 3 –A phase is known 
as Anderson and Merel 3 state and He3 – B phase is known 
as Balian and Wethamer4 state. In Anderson etal 3 state , it 
has p-wave and odd parity and spin function is symmetric 
and on the other hand Balian et al4 state is a combined of 
triplet pairing and spin symmetric and the inter-particle 
interaction is lower than Anderson et al 3. .

In this paper, using the hydrodynamics equation of 
an isotropic superfluid and evaluated value of second 
viscosity for Balian et al4 state as a function of reduce 
temperature. Taking value of 0 0.12γ =  and 0 0.29δ =  
and pressure 20 bars. Theoretical value for Balian 4 state 
as function of reduced temperature varies very slow. At 
low temperature,it decreases very firstly and after that 
it is almost constant and then increases very slow. The 
evaluation of transport coefficient of an s-wave pairing 
Fermi gas has been reported by Shumeiko et al5. The shear 
viscosity of superfluid He 3 has been considered by Seiden 

et al6 , Chechetkin et al7, Fujiki et al8,Shazamanian et al9, 
Pethick et al10. These evaluations have a more or less 
exploratory character. On the other hand there are some 
exact results available on the shear viscosity and second 
viscosity near the transition11, 12 . For the case of isotropic 
quasi-particle scattering there is also recent calculation of 
the B-phase viscosity for whole temperature range by Ono 
et al13.

Mathematical Technique used in the evaluation 
of second viscosity coefficient of He 3 Phase –B liquid: 
The shear viscosity coefficient η describes the response of 
the momentum current density 

ijδπ to transverse velocity 
field n

jv  exposed in the normal component as
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Now ijδπ  is written in term of the Bogoliubov quasi-
particle distributive function
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where '
pvδ  is the deviation from local equilibrium .

The quasi-particle velocity is written as
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where p and m* are the momentum and effective mass 
of quasi-particle.

The hydrodynamics equation of an isotropic superfluid 
contains three coefficients of second viscosity appearing in 
the momentum conservation law and acceleration equation 
of the superfluid. Use stress tensor in corresponding terms 
as

( ){ }1 2 .s n n
ij ij sdiv v v div vπ δ ς ρ ς = − +   	 (4)

When the limit cTT → , then term 1ς  vanishes, 
while term 2ς is identified with the usual coefficient of 
bulk viscosity. 1ς  and 2ς  describe the response of the 
momentum current to longitudinal velocity field of 
normal and super fluid liquid nv  and sv . The change in 
the distribution function induced by such a disturbance is 
isotropic. The diagonal part momentum current is given 
by
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Using equation (3), we have
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for the density charge

( )
2

'
3 tanh .

2 2
p p

p p
p p p

E
n v

E E T
ξ

δ δ δε δµ
  ∆

= − −  
   

∑ (6)

where ∑ =
p

p
p

p V
E

0'δ
ξ

Thus equation(5) reduced to

		  ( )
2

2

1 0
3 ij

p

Ttr π
ε

 
=   

 
 	 (7)

In the case of 2ς  there is an additional factor of 2
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from the streaming part of the kinetic equation such that 

2ς  is of order 4
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small compared to the coefficient of 

first viscosity. 1ς  is of order 2
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 small. Both coefficients 

are negligible in liquid He3 –Phase- B. The remaining 
coefficient 3ς governs the response of the chemical 
potential to normal super fluid counter-flow, which 
introduces dissipation into the equation of motion of Sv .
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where 1µ is the local equilibrium value of the 
chemical potential. 1δµ is determined by the requirement 
that the local equilibrium distribution function.
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The correct charge density
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The isotropic part of pδε  is given by

0
p nδε δ= ∫  (11) as local its equilibrium value.

The difference between nδ  and 'nδ  is
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The kinetic equation is defined as
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Derive the relation between 'δµ and '
pvδ  from 

equation (12), we have
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where FN may be interpreted as the thermodynamics 
derivative of the charge density with respect to the 
chemical potential at fixed quasi-particle distribution.

The left hand side of the kinetic equation in this case 
is approximated by substituting the local equilibrium 
distribution function
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The isotropic part of 1
pEδ  is given by
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Use the continuity equation to eliminate nωδ in 
favour of jq. , obtain the isotropic part of the kinetic 
equation
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The scattering term of isotropic and odd parity in pξ
, is approximated by
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The scattering term of equation (18) satisfies 
approximately the relation of the exact inscattering 
integral.A approximation involving two relaxation time. 
Introducing a dimensionless function ( )ξφ by
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Again rewrite the kinetic equation
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This separable integral can be easily solved. 
Substituting the result of equation (20) in equation (17) 
and find the second viscosity coefficient as
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At the transition, second term in the square brackets 

diverges as 
∆
1 , and also
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Under the limit of low temperature, the second 

viscosity of coefficient 3ξ becomes independent of 
temperature, thus
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Numerically evaluated value from equation (21) by 
using the value 0 0.12γ = , 0 0.29δ =  and appropriate 
pressure of 20 bar. Evaluated value shown in table (T1).

Evaluated result of second viscosity of coefficient of 
He3 liquid of phase-B for Balian and Wethamer state4 as 
function of reduced temperature for 7.0=λ

Table-T 1









−

cT
T1

0

3

)0( ∆
∆










cN

F

T
N

τ
ξ

0.100 0.762

0.200 0.723

0.300 0.656

0.400 0.629

0.500 0.607

0.600 0.584

0.700 0.558

0.800 0.535

0.900 0.598

1.000 0.612

DISCUSSIONS
In this paper, I have evaluated the second viscosity of 
coefficient of normalized liquid He 3 of phase-B at low 
temperature. The hydrodynamics equation of an isotropic 
super fluid contains three coefficient of viscosity appearing 
in the momentum conservation law and the acceleration 
equation of super fluid. By using equation (22), I have 
evaluated second viscosity coefficient 3ξ  for the Balian 
and Wethamer 4 state as a function of reduced temperature 









−

cT
T1 . In this calculation, I have taken the parameters 

value 0 0.12γ = and 0 0.29δ = and pressure 20 bars. Our 
theoretical evaluated value shows that the normalized 

second viscosity coefficient 3ξ  for the Balian and 
Wethamer state as a function of reduced temperature varies 
very slowly. At lower value of temperature,it decreases 
very fastly and after that it is almost constant and then 
increases very slowly . The evaluated results are shown in 
table (T1). The theoretical results were evaluated by using 
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kinetic equation for Bogoliubov quasi-particle in a well 
control approximation 14-27.
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