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ABSTRACT
In this paper, we have used a technique , when a weak link is created between two systems 
which have undergone some type of gauge symmetry breaking. In fact the Josephson effect 
has been observed in superfluid .Bose condensate atomic gases is generally expected. A system 
whose gauge symmetry has been spontaneously broken can be described by order parameter that 
behaves in much respect like a macroscopic function )(rΨ . For Bose Einstein Condensates of 
dilute alkali gases )(rΨ is the wave function of the macroscopically occupied one atomic state.
Keywords: Josephson, Bose condensate, Superfluid, Gauge symmetry, Rabi dynamics, and 
Rabi oscillation.

INTRODUCTION
In this paper, we have study of Josephson Effect 
between Bose condensate with help of Thomas- Fermi 
approximation and Wentzel-Kramers and Brillouin 
method. Josephson theoretically has played a major 
role in physics and technology of superconductor 1. The 
physics of the Josephson effect becomes manifest when 
a weak link is created between two systems which have 
undergone some type of gauge symmetry breaking. 
Josephson effect has been observe in superfluid 2. Bose 
condensate atomic gases is generally expected in a system 
whose gauge symmetry has been spontaneously broken 
can be described by an order parameter like macroscopic 
wave function )(rΨ . In the simplest cases, the parameter 
reduces to a complex scalar function )()()( rierr φρ=Ψ
, where )(rρ is the super fluid density and )(rφ is the 
phase. For Bose Einstein condensate of dilute alkali 
gases )(rΨ  is the wave function of the macroscopically 
occupied one atom state.

In his epoch making3, Josephson predicted that 
between two weakly connected superconductors of phases 

1φ and 2φ , a non –dissipative particle ( Cooper pair ) 
current flow between them, Whose value is φφ SincΙ=Ι )(  
(1), where cΙ  is the critical current and 21 φφφ −= is the 
relative phase .He also predicted that in the presence of 

a nonzero chemical potential difference 21 µµµ −= , 
the relative phase rotates as 



µφ −
=

.
 (2). He obtained as 

the equation of motion of the “Pendulum Hamiltonian” 

a s 2

2
1)cos1(),( NEEN cJ +−=Η φφ ( 3 ) , w h e r e 

cJE Ι=   is the Josephson coupling , 2/)( 12 NNN −=
is the number of transferred particles and 

N
Ec ∂

∂
=

µ is the 
capacitive energy due to interactions. In the absence of 
external constraints, the chemical potential is NEc=µ
. In a superconducting link the critical electric current 

is ceΙ2  and the capacitive energy is 
C
eEc

22
= , where 

C is the electrostatic capacitance. cE can be obtained 
from Thomas-Fermi calculation4 of the chemical 
potential for trapped BEC. When capacitive energy 
and TK B  are much less than Josephson coupling, then 
Josephson pendulum Hamiltonian can be approximated 
as harmonic oscillator 22

2
1

2
1),( NEENH cJ += φφ  (4) 

, whose frequency 


JC
JP

EE
=ω  (5) is called the 

Josephson plasma frequency. At low temperature, 
collective dynamics of an in homogeneous BEC is 
well described by the Gross-Pitaevskii Hamiltonian5
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

(6) , where mg /4 π=  is the s-wave scattering length.

RESULTS AND DISCUSSIONS
External Josephson effect : Let us suppose our 
system has the structure of two weakly connected 
condensate sites 1 and 2. One assume that condensate 
are confined within spherical harmonic wells of the 
frequency 0ω . First one wishes to analyze the semi 
classical dynamics, then N and φ  can be treated as 
simultaneously well defined and writes wave functions 
a s ))(;()(2/;(~),( 2/2

)(
1

~
tNNretNNrtr T

ti
T +Ψ+−ΨΨ φ  

(7), where );( triΨ  is the real equilibrium wave function 
for the isolated well I containing n bosons. It is straight 
forward to show that induced by local variation )(rφ  
in the region of only active dynamical variable. From 
the theory of phase transition, one knows that some type 
of ‘rigidity’ is exhibited in the ordered phase below the 
critical temperature6. In the case of superconductor, super 
fluid and BEC, one may speak of ‘phase rigidity’ because 
given an electromagnetic gauge, the phase is determined 
everywhere once it has been fixed at given point. 
Alternatively gauge and phase are intimately connected in 
quantum mechanics, one can say that given of phase, one 
has lost the freedom to choose the gauge, hence the term 
‘gauge symmetry braking’.

For long range phase coherence can be destroyed by 
quantum fluctuation and occurs can developed by analyzing 
the Josephson Hamiltonian equation (3), which may be 
viewed as a two-site reduction of the more general energy 
function equation (6). In equilibrium good phase coherence 
between sites 1 and 2 is obtained in the harmonic limit 
equation (4). When JB ETk ≥ , the quantum fluctuation 
can destroyed the two site phase coherence , one notes that 
N and )(rφ  are canonically conjugate variables, where 

φ∂∂= /iN  in a quantum description. As a consequence, 
the capacitive term in equation (3) plays the role of kinetic 
energy for phase variable. At zero temperature, quantum 
lowest order in the overlap integrals ∫ ΨΨ 21

, the energy 
functional for 

~
Ψ  takes the from

( , ) ( ) ( )(1 cos )B JH N E N E Nϕ ϕ= + −  (8), where 
)(NEB the bulk energy of the two isolated wells with N 

is transferred atoms and )(NEJ  is the Josephson coupling 
energy. In the Thomas- Fermi limit equation (7) , the bulk 
energy )(NEB  is mostly due to interactions and it may 
be expanded as

/ 2 " 4
0 0

1( ) (0)
2 12 2

T T
B B

N NE N E N Nµ µ   ≈ + +   
   

 (9)

To avoid complications stemming from possible 
resonance between Josephson oscillation and inter well 
excitations, one requires 002 ωµ ≤N , where one uses 
the result that the first normal mode of a spherical well 

lies approximately at 0ω  above the ground state 7-8. 

This condition is realized when 5/25.4 −≤ T
T

N
N
N

 for typical 

parameters. This upper bound is order of 2-10% for 
4 6~ 10 10TN − .

Wentzel Kramers and Brillouin (WKB) theory: If 
the equilibrium density can be factorized in the controlling, 
one can writes )(),()( zgyxfr =ρ  and the two bounds 
becomes identical. At r=0, the middle point of the double 
well configuration and choosing x = y = 0 to be the line 
connecting the two well centers, one can writes9

	
122

01 (0,0, )J
dzE A

m zρ

−
 

=  
 
∫



 	 (10)

, where ∫= ),(
)0,0(

1 yxdxdyf
f

A being an effective 

area. For two identical wells in equilibrium, the ground 
state wave function is symmetric in z. Focusing on the 
x=y=0 , the wave function be

	
2

0
1

1( ) cosh ' ( ')
( )

Bz dz z
hz

ρ
ρ

 
Ψ =  

 
∫  	 (11) 

where [ ]2
1

0),0,0((2)( µρ −= zVmz ext
and B is a 

constant to be determined. Combined equation (10) and 
(11) , obtained

	
2 1

2 tanh
2J

A B SE
m

−
  ≅     

  	 (12)

where 
2

1

( ) /S z dzρ≡ ∫   is the dimensionless action 

constant. Thus finally Josephson coupling obtained 9
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

	 (13)

The 3/1
TN  dependence can be understood 

qualitatively by noting7-8,10 that 3/2~ RA  and 3/2~ RB . In 
the T-F approximation. 5/1~ TNR , obtains 3/1~ TJ NE .One 
Knowing that the critical temperature satisfied the Giorgini 
et al11

0
3/1 ωTcB NTk ≈ , one may rewrites equation (13) as 

for large S and typical parameters

		  S
cbJ eTkE −≅  	 (14)

, which reminiscent of the Ambegaokar-Baratoff 
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formula for superconductor12, if one notes Se− is the 
probability amplitude for a particle to traverse the potential 
barrier .

Josephson Plasma frequency : From equation (3) 

and (9) , one has capacitive energy 





=

2
2 '

0
T

C
NE µ , which 

in the T-F approximation 4 reads
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T
C

N aE
a

ω−    ≅     
    



	 (15)

Now find the product of Josephson coupling and 
capacitive energy and one have

4/15
2 20
0

21
5 15 tanh

2

S

J c
T

a eE E
SaN

ω
− 

=       
 

  (16)

From equation (5) ,Josephson plasma frequency is 
defined as

2
215

0
0

21
155

tanh
2
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a e
aN S

ω ω
 

=  
  
 
 

 	 (17)

Since, usually 0 2 10 100Hzω π= ≈ − , one conclude 

that 10
2

JP Hzω
π
− ≤ .

The ratio of Josephson coupling to capacitive energy 
is good measure of the classical character of the relative 
phase φ . Now one finds

1
15

0 021
24 15 tanh

2

S
j T

C T

E N a a e
SE a aN

−  =         
 

 	 (18)

From classical regime CJ EE ≥  to strong quantum 
limit CJ EE ≤ , quantum effects are only important, 
if operate at ultralow temperature CB ETk  . From 
equation (18) ,one conclude that for typical number S must 
be roughly ≥ 10 for quantum fluctuation to be important. 
One consider the damping is the incoherent exchange of 
normal atoms and a quantitative requires a generalization 
of our results to nonzero temperature. The thermally 
excited normal atoms to obey Ohm law and give an Ohmic 
contribution to the current

			   µGI n −= 	 (19)
Josephson equation is modified to read

		  sinJ
n

EdN I
dt

ϕ= +


 	 (20)

For small fluctuation

		  2 0C JP
d d GE
dt dt ϕ

ϕ ω ϕ  + + = 
 

 	 (21)

For classical harmonic oscillator under damped if

		  11
≥≡

C

J

E
E

G
σ 	 (22)

If 1
0 ~

2
VTkB

ω
≥ , the thermal cloud lies mostly above 

the barrier and a radically approach is needed to study 
its transport properties. For simplicity , one introduce 
the drastic approximation that particle impinging on the 
barrier with energy E are transmitted with probability if 

0VE >  and zero if  0VE < . Then the flow of normal atoms 
due to a fluctuation in chemical potential is only limited 
by the ‘contact resistance’ a concept taken from ballistic 
transport in nanostructure11Equation (22) rewritten as

2
7/15 /20
0~ 2 S

B

N e
k T
ωσ π

 
 
 



	 (23)

Interestingly, some result is formally obtained in the 
high barrier limit, where normal atoms tunneling also lies 
in the WKB regime 9. The value of σ if 5~S , ~ 0.38σ
for 4~ 10N and 3.3~σ  for 6~ 10N . The equivalent 
numbers for 1~S are 2.8 and 24. The conclusion is that 
coherent Josephson dynamics can be observed in current 
atomic Bose condensates if the barrier is low. Under 
damped dynamics can be further favoured by decreasing 
temperature T and increasing atomic number N.

Internal Josephson effect: If laser pulse is applied to 
a macroscopic condensate, then it is the whole ensemble 
of atoms evolves coherently. It is possible to prepare a 
condensate in which each atom is in the same coherent 
superposition of the two states has been realized by Hall 
et al13 with the 1,1 −  and 1,2  states of 87Rb. Using a 
techniques, it will be possible to study the novel and 
potentially extremely rich internal Josephson effect which 
bears some analogies with the physics of superfluid phase-A 
of liquid He3 as noted by Leggett et al14. The analysis of 
the spatial (external) Josephson effect is based on the 
knowledge of )(rVext

, where r can varied continuously 
between wells. A similar study of the internal Josephson 
effect would not be practical. Fortunately, it is really 
needed is the value of the matrix element connecting states 
A and B . Then it is most convenient to employ a two 

site description of the Josephson link. The Hamiltonian

( ) ( ) ( )[ ]aabbuabbaH R ++++ +++=
2

22
ω

	  (24)

where Rω is the Rabi frequency. One assumes 
that the two atomic energies as well as the interspecies 



116 Vol. XI, No 1-2, January-July, 2020 | The Scientific Temper

interaction are equal and neglect the interspecies 
interaction. Particle number conservation requires 

02NNbbaa T ≡=+ ++ . The particle eigenstate can be 

written as φ

π
φ iN

N e−=Φ
2
1)( . One have

	 ( )[ ] 2/1
00 )1(1 +−+= NNNNE RJ ω  	 (25)

In limit 01 NN <<<< equation (25) becomes

		  RJ NE ω0=  	 (26)
which is a clear manifestation of the phenomenon 

of Bosonic amplification. The identification of equation 
(24) with the pendulum Hamiltonian is completed by 
noting that the interaction term can be written uN2 that is 

2/CEu = . For small value of φ and N , the harmonic 
form

	 22

2

0

2

0
N

N
ENH R

CR 







++−=

ωφω


  	 (27)

With a natural oscillation frequency

	 222
RJP ωωω += 20

RR
CEN

ωω +





=


 	 (28)

It is clear that for a given interaction , the double BEC 
system can be driven continuously from the Josephson 
to the Rabi regime by varying Rω , something feasible 
with current laser technology. Quantum self trapping 
cannot be realized in superconducting Josephson junction 
because the chemical potential difference would have to 
be greater that the superconducting gap 15. , thus allowing 
quasiparticles to intervenes and complete the dynamics. 
This is not a important limitation in the case of BECs. 
There exists a close and well studied analog of quantum 
self trapping in the longitudinal nuclear resonance (NMR) 
of He3 - A phase14. Equation (27) described in a unified 
way Josephson and Rabi ( 0=CE ) dynamics. This is 
analogous to how equation (6) can yield both the G-P 
and Schrodinger equation for the wave function of a 
many boson system. The crossover between collective 
Josephson and individual Rabi dynamics cannot be 
studied in superconducting and superfluid , because there 
interactions are never completely negligible. It is nice 
feature of Bose-Einstein Condensation that it will allow 
us to study the crossover between these two qualitatively 
different dynamical regimes in an elegant fashion.

It is important to emphasis that the diffusive mechanism 
only applies if the normal particle reservoir is common 
to both condensates. In the above one has considered a 
situation in with although the two condensates have been 
separated, the two thermal clouds remains connected to 
the point of behaving as a single one. In superconductors, 

an equivalent arrangement is not fundamentally difficult. 
In case of Bose Einstein Condensation, one may has a 
common thermal clouds when the increase in the barrier 
height is large enough to render the two condensates 
unconnected, but still sufficiently small to allow for an 
essential single thermal cloud 16-18.

CONCLUSION 
In this paper , we have presented an overview of the physics 
of the Josephson effect between Bose condensed systems 
with emphasis on the recently achieved Bose Einstein 
Condensation in trapped alkali gases. We have mostly 
focused on these physical phenomenons that are likely to 
be observed only in those novel systems. Thus , we have 
omitted the discussion of problems (such as e.g steady 
particle flow under the action of an alternating chemical 
potential) which may be viewed as straight forward 
application of well known Josephson Physics19 ,We have 
tried to underline the potential richness of the Physics 
displayed by weakly connected BECs. We may have 
an external (spatial) and internal (hyperfine) Josephson 
effect. It seem possible to explore the crossover between 
collective Josephson behavior and independent Boson 
Rabi dynamics. Finally, the observation of fascinating 
phenomena such as quantum self trapping and macroscopic 
interference between separate Bose condensates seem also 
within reach of the emerging BEC technology. Everything 
indicates that the experimental and theoretical study of the 
Josephson effect between Bose Einstein Condensates will 
leads us to the exploration of most exciting new physics. 
There are some recent calculations 20-24 also above the 
Josephson effect between Bose Einstein Condensate and 
they also indicate the similar observation.
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