
Abstract
The explosive growth of e-Governance platforms will necessitate transitioning from lifecycle reactive handling to proactive rather 
than just reactionary methods for handling e-Governance workloads and therefore managing resources effectively. Given that 
e-Governance workloads consist of highly dynamic content, load predictions must be sufficiently accurate for efficient resource selection 
and provisioning, continual discussion between workloads that need to comply with SLAs, and enabling the systematic handling of 
e-Governance workload. Machine learning-based approaches will provide strong predictive capabilities; however, careful consideration 
must be given to how those ML-based approaches will be deployed into the environment of an e-Governance system with regards to 
predictive accuracy, computational performance, scalability and robustness. This research paper will present a complete multi-metric 
evaluation framework that was developed to assess Load Prediction Models for e-Governance Platforms. The evaluation framework 
will consist of regressors, including Linear Regression, Instance-Based Learning, and Ensemble Approaches such as Random Forest, 
Gradient Boosting, XGBoost, LightGBM and CatBoost; however, when conducting the evaluation of each of the regression models it 
should not only include the traditional manner of evaluating for accuracy but also include training time, prediction latency, amount of 
Memory consumed for model training, amount of Data Inference Processed, Worst Case Error Percentiles, and Scalable Assessment of 
All Proposed Regression Models with respect to Data Size. The experimental results show that both Ensemble and Gradient Boosting 
Models significantly outperform conventional Baseline Approaches in terms of the Accuracy of the Prediction of the Response Variable. By 
combining the various advantages of all models tested and evaluating them based upon completed multi-metric evaluation framework, 
LightGBM has the overall best combination of Accuracy, Scalable Assessment, High Inference Efficiency and Lower Memory Usage. The 
results of this study provide insights into practical aspects of deploying intelligent load prediction solutions designed to improve the 
performance and reliability of e-Governance platforms.
Keywords: e-Governance, Load Prediction, Machine Learning, Resource Management, Scalability Analysis, Ensemble Learning, Inference 
Latency, Model Selection, Cloud Computing, Performance Evaluation.
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Introduction
The rapid transition of many public sector organizations to 
digital services has resulted in the creation of e-Governance 
platforms to deliver special citizen-centric services, such as 
online application systems, grievance redressal systems, 
electronic payment systems and information dissemination 
(Abbas et al., 2024; Udoh, 2024). e-Governance platforms are 
designed to operate under very dynamic and unpredictable 
workloads, which often include a number of factors that 
contribute to the workload increased fluctuations, for 
example: temporal fluctuations, surges in demand due to 
new policies and high numbers of concurrent users on the 
same platform (Ajayi et al., 2024). Thus, e-Governances faces 
many challenges in providing and maintaining availability 
for users, responsiveness, and reliability, particularly in 
resource-constrained computing scenarios that commonly 
accompany government use of technology for e-Governance 
(Osah & Pade-Khene, 2020).

THE SCIENTIFIC TEMPER (2026) Vol. 17 (1): 5570-5581	 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2026.17.01.20	 https://scientifictemper.com/



5571	 THE SCIENTIFIC TEMPER, January 2026

Accurate prediction of future workload and resource 
utilization is a critical factor in successfully addressing 
these challenges through proactive resource provisioning, 
efficient load balancing, and Service Level Agreement (SLA) 
compliance. The traditional method of scaling e-Governance 
Systems reactively by providing additional resources only 
after the system experiences performance degradation will 
not work for e-Governance systems because of the impact 
on citizen satisfaction and trust in services that comes with 
delays in delivering service (Khadka, 2024). Consequently, 
predictive load modeling has emerged as a key enabler for 
intelligent resource management in modern e-Governance 
infrastructures.

Recent advancements in machine learning have enabled 
better modeling of complex, non-linear workload patterns 
for large scale systems. In particular, ensemble learning 
provides extremely good predictive capabilities for Cloud 
and Cluster technologies because of the ensemble’s 
capability to account for both temporal dependencies and 
interactions between features (Rane et al., 2024). However, 
even with strong predictive capabilities, e-Governance 
systems must also meet strict requirements regarding 
how the models will operate with regard to computational 
complexity, including low training time, low inference 
latency, limited memory usage, and robust performance for 
varying workload intensities, in other words, e-Governance 
systems must be able to quickly respond to changing 
demands on their resources (Menghani, 2023).

To develop a comprehensive evaluation framework for 
load prediction models used in e-Governance applications, 
this study expands upon previous research that has generally 
focused on measuring model accuracy by providing an 
organized approach for assessing multiple regression 
algorithms (linear, instance based, and ensemble) such as 
Random Forests, Gradient Boosting, XGBoost, LightGBM and 
CatBoost (Kumar et al., 2025a; Kumar et al., 2025b).

In addition to allowing researchers to compare model 
accuracy more easily, the framework will also help identify 
models that are candidate solutions for real-time production 
use by providing additional information regarding training 
time, prediction latency, maximum memory usage, 
throughput and high-level error and robustness metrics. The 
study captures both model accuracy and processing costs 
associated with running the prediction model.

Another component of this research is a thorough 
evaluation of the scalability of candidate prediction models 
via increasing the size of the training dataset, simulating 
realistic hypergrowth scenarios that could occur within an 
e-Governance application.

This research provides valuable information for 
government officials, system design professionals and 
system managers that want to implement a smart, data-
driven resource management approach to e-Governance 
platforms.

Related Work
A lot of research has been done on accurately predicting 
workloads related to distributed systems, cloud computing, 
and managing resources in data centres (Khan et al., 2022). 
When workload prediction research first started, it focused 
on statistical approaches like exponential smoothing models 
and ARIMA (autoregressive integrated moving average) to 
help forecast how demand for resources would be utilized. 
These techniques work well when used with short-term 
and stationary trends but often have difficulty capturing 
the sudden fluctuations in workload that develop over 
time in the environment of a real-world distribution (Fu & 
Jamaludin, 2022).

Machine learning has provided a new avenue for 
workload prediction by using regression-based and neural 
network-based methods. Due to their ease of use and 
potential for interpretation, both linear regression and 
support vector regression have been applied to forecast 
CPU and memory usage. Still, they tend to perform poorly in 
dynamic environments where workload patterns are highly 
variable (Yekta & Shahhoseini, 2023).

Instance-based techniques, such as k-nearest-neighbor 
classifiers, provide alternatives for workload prediction 
but have difficulty maintaining good performance when 
working with large datasets (Halder et al., 2024).

A few studies have explored the effectiveness of 
combining weak learners using ensemble techniques to 
improve workload prediction performance. The Random 
Forest and Gradient Boosting methods have increased 
predictive accuracy by combining the outputs of multiple 
weak learners (Liu et al., 2022; Kavzoglu & Teke, 2022). More 
recently, the use of the gradient-boosted frameworks such 
as XGBoost and LightGBM in the cloud environment and 
cluster workloads has achieved better accuracy and quicker 
convergence when compared to the traditional methods 
(Bawa et al., 2025).

Recently there have been more improvements to how 
CatBoost handles categorical features and also to how 
it helps businesses deal with the issue of overfitting due 
to non-linear algorithms (Verma et al., 2025). Most of the 
research being conducted today still focuses more heavily on 
metrics related to prediction accuracy, and less so on metrics 
associated with hardware/software use (i.e., computational 
efficiency, memory overhead, and inference latency) which 
are critical to the success of real-time operational systems 
(Ahmadilivani et al., 2024).

On the topic of e-governance, there has not been much 
research done on using machine learning for proactive load 
prediction or predictive resource management (Kamruddin 
& Chary, 2024). Most of the current research has only been 
done on monitoring the quality of services, or on developing 
rules for automating the process of dynamically scaling 
those services (Syed & Anazagasty, 2024). Very few studies 
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have conducted comprehensive evaluations that analyze 
the accuracy, scalability, robustness, and resource efficiency 
of these techniques in conjunction with each other, and 
therefore this research will address this gap by providing a 
comprehensive evaluation framework that can be used for 
the purpose of e-governance workload predictions.

Research Methodology

Objective
This study makes three major contributions. First, this 
research has designed and built a metric-driven framework 
for determining load prediction for e-Governance systems. 
Second, this research has conducted a study on scalability 
and efficiency of the leading machine learning models as the 
size of the workload increases. Third, this research identified 
the most well-rounded load prediction model that is able 
to accurately predict load and meet real-time and resource 
efficiency requirements.

Dataset and Preprocessing
This research aims to predict the e-Governance platform’s 
system load so that system resources can be allocated 
proactively, and load balancing can be done efficiently. 
A key resource used in this study is a dataset containing 
Borg Traces, which can be accessed through Kaggle: www.
kaggle.com/datasets/ericgitonga/borg-traces. This dataset 
has 405,894 records, and it was created using data collected 
from Google’s Borg cluster management system. This 
dataset contains very good detail about how the system 
operates (CPU and memory use), job scheduling, priorities, 
and the time of day when the resources are being used. 
Because of the breadth of information and the density of 
time stamps provided by this dataset, the dataset is suitable 
for evaluating workload forecasting, load distribution 
strategies, and optimization of resource management. 
The dataset consists of both categorical and numeric 
attributes, and also contains a complex hierarchy among 
these attributes. Therefore, appropriate pre-processing and 
transformation of the data must be accomplished before 
model creation. 

This dataset contains historical workload traces that 
show how a system has been used in the past (i.e., the 
user’s workload). The preprocessor applies normalization 
to the data, handles any missing values and uses feature 
engineering to extract temporal characteristics from the 
data. After removing the missing values records for critical 
parameters like cycles_per_instruction, memory_accesses_
per_instruction, resource_request and time total 110689 
records were available for model training and testing. After 
partitioning the data in 80:20 ratio for training and testing 
dataset, a total of 88551 records for training and 22138 
records for testing the models were available. To assess 
scalability of the algorithms, we increase the number of 

records in the training dataset from 10,000 to 80,000 which 
will allow us to simulate realistic growth of e-Government 
service usage.

Models Under Evaluation
A wide variety of regression techniques have been analysed 
in this research in order to capture the complete range of 
learning techniques:
•	 Baseline Model(s): Linear Regression, k-Nearest 

Neighbors
•	 Kernel Method Model: Support Vector Regression
•	 Ensemble Model(s): Random Forest, Gradient Boosting
•	 Advanced Boosting Model(s): XGBoost, LightGBM, 

CatBoost
Hyperparameters for all models were carefully selected to 
provide both prediction quality and computation efficiency, 
in order to ensure equitable comparison among models.

Evaluation Metrics for the Models 
To effectively evaluate predictive performance and design 
factors for e-Governance systems, a comprehensive 
evaluation methodology was utilised (i.e., multiple metrics):

Overview of the Metrics
This section provides the overview of relevant metrics that 
can be used to assess the performance of models.
•	 Prediction Quality Metrics: Mean Absolute Error 

(MAE), Root Mean Square Error (RMSE), Coefficient of 
Determination (R²), Mean Absolute Percentage Error 
(MAPE)

•	 Performance Metrics: Training time (in seconds), 
Prediction latency (in milliseconds), Peak Memory (in 
MB), Inference Throughput (in predictions/sec)

•	 Robustness Metrics: Residual-SD, 95th Percentile 
Absolute Error, 99th Percentile Absolute Error

•	 Efficiency Metrics: Prediction Quality per Unit Training 
Time, Prediction Quality per Unit Memory Consumption

•	 Decision-Centric Metrics: Under prediction rate
By taking relevant metrics into account, the remaining 
models were determined to fit the performance and 
operational requirements of e-Governance systems.

Metrics Selection Criteria for Composite Performance Score 
(CPS) Calculation
Another approach to determining the best model for 
predicting e-Governance loads was an alternative via 
each model’s Composite Performance Score (CPS), which 
was calculated from a combination of three variables for 
each model. These three variables are Prediction Accuracy, 
Computational Efficiency, and Resource Utilization.
•	 Error/Cost Based Metrics (to be Min/Max Normalized 

with Lower Values = Better) include the following:  
MAE, RMSE, p95, p99, Training Time, Prediction Time, 
Memory Usage.

•	 Benefit Based Metrics (to be Max/Min Normalized 
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with Higher Values = Better) include the following: R², 
Throughput, etc.

•	 The CPS score is represented in the range of [0,1].

Metrics Normalization
Developing metric Normalization methodology is crucial 
for making comparisons among models because there are 
many different Evaluation Metrics that have inconsistent 
units, and necessitate Optimizing in different directions 
(Cabello-Solorzano et al., 2023).

Error/Cost-Type Metrics, Lower is better: For normalizing 
the metrics such as MAE, RMSE, p95, p99, Training Time, 
Prediction Time and Memory Usage equation 1 is used.
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Benefit-Type Metrics, Higher is better: For normalizing the 
metrics such as R² and inference throughput equation 2 is 
used.
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Where:
•	 ,i jM  denotes a metric value j  for a model i
•	 min

jM  and max
jM  represent the Minimum and Maximum 

Values of a Metric j amongst all evaluated models.
•	 [ ]'

, ü∈i jM  indicates a Normalized Metric Value j  for a 
model i .

Category-Level Scoring
The performance scores by category are averaged to obtain 
the category-level performance score, which is the basis of 
the normed metrics.
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Training Cost Score
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,Training Time=i iS M 				     (5)

Resource Usage Score

mem '
,Peak Memory=i iS M 				    (6)

Calculating Composite Performance Score

The final Composite Performance Score (CPS) for all 
experiments is the weighted linear combination of category-

level performance scores. The suggested weights for 
each category of metrics are given in Table 1 and the final 
composite performance score will be calculated by following 
equation:

acc inf train memCPS 0.50 0.25 0.15 0.10= ⋅ + ⋅ + ⋅ + ⋅i i i i iS S S S 	 (7)

where [ ]iCPS 0,1∈ .

Table 1: Metric Categories and Weights for Composite Performance 
Score

Category Metrics Weight

Prediction Accuracy MAE, RMSE, 2R , p95, p99 0.50

Inference Efficiency Prediction Time, Throughput 0.25

Training Cost Training Time 0.15

Resource Usage Peak Memory 0.10

Total 1.00

Experimental Setup
Each experimental procedure was performed according 
to a shared evaluation protocol, guaranteeing equivalent 
methodology throughout the various models under review. 
In addition, this research utilized the default computational 
infrastructure of the Google Colab platform. Furthermore, 
all models were trained and assessed on the same hardware 
and software configurations, thereby providing consistent 
resource access for the experiments. Timing devices with 
very high resolution were implemented to document 
each training session and each prediction request so that 
accurate latencies could be calculated. Furthermore, peak 
memory consumption was recorded using peak memory 
tracing methods. Lastly, scalability tests were performed 
by increasing dataset sizes used in training the models 
stepwise. The results allowed for direct comparisons 
between the performance, computation efficiency, and 
resource utilization of the models based exclusively on their 
operational characteristics.

Results and Discussion
Scalability of the models in this analysis was evaluated 
based upon the sequentially increasing size of a training 
dataset from 10,000 to 80,000 records. The detailed results 
are documented in the Tables 2 and Table 3, same are 
demonstrated through various plots presented to clearly 
illustrate the results. As results are in close proximity to 
each other, logarithmic scale is used for clearer visual 
representation of the relative differences between the 
models.

While performing the comparative analysis of regression 
models, the MAE, RMSE, and R² gave clear evidence of 
differences in model performance across all models 
evaluated. Ensemble tree-based models outperformed 
all other model types consistently. For example, Random 
Forest yielded almost perfect performance (MAE ≈  0; RMSE 
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Table 2: Prediction Accuracy and Robustness Metrics Across Models

Sr. no Model Training 
Records MAE RMSE R² MAPE residuals_std p95 p99

1 Linear Regression 10000 0.0003 0.0005 0.9981 20182354747 0.0005 0.0012 0.0025

2 Linear Regression 20000 0.0003 0.0005 0.9981 20395668637 0.0005 0.0012 0.0025

3 Linear Regression 30000 0.0003 0.0005 0.9981 21010010640 0.0005 0.0011 0.0025

4 Linear Regression 40000 0.0003 0.0005 0.9981 20896606567 0.0005 0.0011 0.0025

5 Linear Regression 50000 0.0003 0.0005 0.9981 20900060250 0.0005 0.0011 0.0025

6 Linear Regression 60000 0.0003 0.0005 0.9981 20939526006 0.0005 0.0011 0.0025

7 Linear Regression 70000 0.0003 0.0005 0.9981 21066129615 0.0005 0.0011 0.0024

8 Linear Regression 80000 0.0003 0.0005 0.9981 21131973646 0.0005 0.0011 0.0024

9 KNN 10000 0.0008 0.002 0.9729 34154207613 0.002 0.0034 0.0082

10 KNN 20000 0.0006 0.0017 0.9797 26853424808 0.0017 0.003 0.0072

11 KNN 30000 0.0006 0.0015 0.9843 23945958438 0.0015 0.0027 0.0064

12 KNN 40000 0.0005 0.0014 0.9867 21847972568 0.0014 0.0025 0.0061

13 KNN 50000 0.0005 0.0013 0.9882 20687818194 0.0013 0.0023 0.0059

14 KNN 60000 0.0004 0.0013 0.9892 19551897760 0.0013 0.0022 0.0055

15 KNN 70000 0.0004 0.0012 0.99 18352417951 0.0012 0.002 0.0055

16 KNN 80000 0.0004 0.0012 0.9906 17335994636 0.0012 0.002 0.0052

17 SVM 10000 0.0856 0.0864 -49.3425 1.75822E+13 0.0122 0.0926 0.0926

18 SVM 20000 0.0856 0.0864 -49.3425 1.75822E+13 0.0122 0.0926 0.0926

19 SVM 30000 0.0856 0.0864 -49.3425 1.75822E+13 0.0122 0.0926 0.0926

20 SVM 40000 0.0856 0.0864 -49.3425 1.75822E+13 0.0122 0.0926 0.0926

21 SVM 50000 0.0856 0.0864 -49.3425 1.75822E+13 0.0122 0.0926 0.0926

22 SVM 60000 0.0856 0.0864 -49.3425 1.75822E+13 0.0122 0.0926 0.0926

23 SVM 70000 0.0856 0.0864 -49.3425 1.75822E+13 0.0122 0.0926 0.0926

24 SVM 80000 0.0856 0.0864 -49.3425 1.75822E+13 0.0122 0.0926 0.0926

25 Random Forest 10000 0.0001 0.0006 0.9974 1364860421 0.0006 0.0002 0.0008

26 Random Forest 20000 0 0.0004 0.9991 441898517.9 0.0004 0.0001 0.0005

27 Random Forest 30000 0 0.0002 0.9998 274089852.8 0.0002 0 0.0004

28 Random Forest 40000 0 0.0001 0.9999 191767714.3 0.0001 0 0.0003

29 Random Forest 50000 0 0.0001 0.9999 183333216.3 0.0001 0 0.0002

30 Random Forest 60000 0 0.0001 1 119362942.3 0.0001 0 0.0002

31 Random Forest 70000 0 0.0001 0.9999 115298990.6 0.0001 0 0.0001

32 Random Forest 80000 0 0.0001 1 100684365.2 0.0001 0 0.0001

33 Gradient Boosting 10000 0.0002 0.0005 0.9983 9322459970 0.0005 0.0006 0.0013

34 Gradient Boosting 20000 0.0002 0.0003 0.9993 10655317272 0.0003 0.0006 0.0011

35 Gradient Boosting 30000 0.0002 0.0003 0.9993 10952387546 0.0003 0.0006 0.0011

36 Gradient Boosting 40000 0.0002 0.0003 0.9993 10583700964 0.0003 0.0006 0.0011

37 Gradient Boosting 50000 0.0002 0.0003 0.9993 11025723760 0.0003 0.0006 0.0012

38 Gradient Boosting 60000 0.0001 0.0003 0.9992 10564397150 0.0003 0.0006 0.0011

39 Gradient Boosting 70000 0.0002 0.0003 0.9993 10813339816 0.0003 0.0006 0.0012
Cont...
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Sr. no Model Training 
Records MAE RMSE R² MAPE residuals_std p95 p99

40 Gradient Boosting 80000 0.0001 0.0003 0.9993 10745027080 0.0003 0.0006 0.0011

41 XGBoost 10000 0.0001 0.0004 0.9988 9649137778 0.0004 0.0005 0.0014

42 XGBoost 20000 0.0001 0.0003 0.9992 7421643965 0.0003 0.0004 0.0011

43 XGBoost 30000 0.0001 0.0003 0.9995 6480909045 0.0003 0.0004 0.001

44 XGBoost 40000 0.0001 0.0002 0.9996 6051301499 0.0002 0.0004 0.001

45 XGBoost 50000 0.0001 0.0002 0.9996 5774074157 0.0002 0.0004 0.0009

46 XGBoost 60000 0.0001 0.0002 0.9997 5483398346 0.0002 0.0004 0.0008

47 XGBoost 70000 0.0001 0.0002 0.9997 5108143550 0.0002 0.0003 0.0008

48 XGBoost 80000 0.0001 0.0002 0.9997 4864797700 0.0002 0.0003 0.0008

49 LightGBM 10000 0.0001 0.0007 0.9968 9087601392 0.0007 0.0005 0.0015

50 LightGBM 20000 0.0001 0.0006 0.9973 6092239984 0.0006 0.0005 0.0013

51 LightGBM 30000 0.0001 0.0005 0.9984 5575418230 0.0005 0.0004 0.0011

52 LightGBM 40000 0.0001 0.0004 0.999 5595904246 0.0004 0.0004 0.001

53 LightGBM 50000 0.0001 0.0004 0.9991 5926169580 0.0004 0.0004 0.001

54 LightGBM 60000 0.0001 0.0003 0.9994 6316484972 0.0003 0.0004 0.0009

55 LightGBM 70000 0.0001 0.0003 0.9995 5903794173 0.0003 0.0004 0.0009

56 LightGBM 80000 0.0001 0.0003 0.9995 6118083096 0.0003 0.0004 0.001

57 CatBoost 10000 0.0003 0.0007 0.9971 25419118656 0.0007 0.0011 0.002

58 CatBoost 20000 0.0003 0.0005 0.998 17363864908 0.0005 0.001 0.0017

59 CatBoost 30000 0.0002 0.0004 0.9989 11774404181 0.0004 0.0008 0.0016

60 CatBoost 40000 0.0002 0.0004 0.9988 12311806680 0.0004 0.0008 0.0015

61 CatBoost 50000 0.0002 0.0004 0.999 12478376239 0.0004 0.0008 0.0015

62 CatBoost 60000 0.0002 0.0004 0.9989 12659285320 0.0004 0.0008 0.0016

63 CatBoost 70000 0.0002 0.0004 0.999 11441713151 0.0004 0.0008 0.0016

64 CatBoost 80000 0.0002 0.0004 0.999 10313798165 0.0004 0.0007 0.0015

Figure 1: Prediction accuracy scalability (MAE) of machine learning 
models under increasing training dataset sizes

= 0.0001; R² = 1) indicating a very good model fit to the 
data. Furthermore, XGBoost, LightGBM, Gradient Boosting, 
and CatBoost yielded very low error values in addition to 
exhibiting R² values approaching 1, verifying the models’ 
strong ability to predict accurately as well as model highly 
complex, non-linear relationships.

Linear Regression has a good fit on the dataset with an 
R² value of 0.9981 and a relatively low error number, giving 
evidence that the dataset has a relatively strong linear 
component as well. However, Linear Regression is somewhat 
less accurate than the ensemble methods. KNN has higher 
RMSE and a lower R² value than SVM, which indicates that 
it is more likely to be sensitive to local data structures (data 
housing) and distance metric (e.g., Euclidean Distance, or 
Manhattan Distance).

Unlike KNN, SVM’s performance is poor; its error numbers 
are much higher, and its R² is negative (-49.3425), making 
it statistically impossible to generalize. We believe that the 
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Table 3: Computational Efficiency and Scalability Metrics Across Models

Sr. No Model Training 
Records

Training 
Time(sec)

Prediction Time 
(ms)

Inference Throughput 
(pred/sec)

Peak Memory 
(MB)

1 Linear Regression 10000 0.0808 20.0317 1105149.774 3.8645

2 Linear Regression 20000 0.066 4.6378 4773409.663 7.6552

3 Linear Regression 30000 0.1221 5.6733 3902124.329 11.4703

4 Linear Regression 40000 0.1326 7.5847 2918754.136 15.285

5 Linear Regression 50000 0.2272 9.8045 2257937.024 19.0998

6 Linear Regression 60000 0.1587 5.7757 3832963.94 22.9144

7 Linear Regression 70000 0.1845 16.4125 1348850.291 26.7294

8 Linear Regression 80000 0.2368 16.3733 1352077.401 30.5438

9 KNN 10000 0.041 1785.3544 12399.7788 3.6702

10 KNN 20000 0.0078 2539.636 8716.9973 7.3299

11 KNN 30000 0.0088 4593.9679 4818.9279 10.992

12 KNN 40000 0.0097 5038.3806 4393.8721 14.6541

13 KNN 50000 0.0118 6284.5367 3522.6145 18.3162

14 KNN 60000 0.0114 7490.4394 2955.5009 21.9783

15 KNN 70000 0.021 10540.6843 2100.2432 25.6404

16 KNN 80000 0.0166 11755.2523 1883.2433 29.3025

17 SVM 10000 0.0105 4.0815 5424032.793 3.7304

18 SVM 20000 0.0125 3.8036 5820228.093 7.3915

19 SVM 30000 0.0167 4.1046 5393485.961 11.0537

20 SVM 40000 0.0199 3.8063 5816137.747 14.7158

21 SVM 50000 0.0247 4.3527 5086053.741 18.3779

22 SVM 60000 0.0288 4.1467 5338694.053 22.04

23 SVM 70000 0.0345 4.192 5281051.764 25.7021

24 SVM 80000 0.0377 4.2798 5172624.484 29.3647

25 Random Forest 10000 34.6664 930.4418 23792.9971 2.7531

26 Random Forest 20000 68.1678 426.4742 51909.356 5.4991

27 Random Forest 30000 100.1091 725.4478 30516.3251 8.2457

28 Random Forest 40000 132.8332 772.7404 28648.6911 10.9923

29 Random Forest 50000 166.0558 440.5982 50245.3248 13.7389

30 Random Forest 60000 200.8818 419.8849 52723.9683 16.4855

31 Random Forest 70000 234.2825 417.2125 53061.6907 19.2321

32 Random Forest 80000 272.2216 425.0755 52080.1622 21.9786

33 Gradient Boosting 10000 17.489 69.6585 317807.3618 2.7531

34 Gradient Boosting 20000 34.0384 90.441 244778.3449 5.4991

35 Gradient Boosting 30000 50.2774 68.0262 325433.5651 8.2456

36 Gradient Boosting 40000 67.7428 66.0816 335009.9975 10.9922

37 Gradient Boosting 50000 86.0485 89.8961 246261.9668 13.7388

38 Gradient Boosting 60000 104.2094 66.6025 332389.6808 16.4854

39 Gradient Boosting 70000 123.0254 65.6528 337198.001 19.232
Cont...
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Sr. No Model Training 
Records

Training 
Time(sec)

Prediction Time 
(ms)

Inference Throughput 
(pred/sec)

Peak Memory 
(MB)

40 Gradient Boosting 80000 145.5222 67.203 329419.744 21.9785

41 XG Boost 10000 1.1064 106.2551 208347.6228 0.1529

42 XG Boost 20000 1.2203 108.8742 203335.604 0.2118

43 XG Boost 30000 1.4939 112.8938 196095.7442 0.2845

44 XGBoost 40000 4.3556 115.9281 190963.1457 0.3615

45 XGBoost 50000 1.9253 119.4236 185373.7996 0.4371

46 XGBoost 60000 2.1632 120.1864 184197.1907 0.5151

47 XGBoost 70000 2.3393 128.9896 171626.1798 0.5907

48 XGBoost 80000 2.7868 202.9913 109058.8402 0.6678

49 LightGBM 10000 2.5773 348.6897 63489.116 2.2883

50 LightGBM 20000 0.8355 182.5498 121271.0069 3.8328

51 LightGBM 30000 1.0169 195.6444 113154.2836 5.7387

52 LightGBM 40000 1.2408 180.7994 122445.0804 7.6485

53 LightGBM 50000 1.4081 212.8217 104021.3416 9.5534

54 LightGBM 60000 1.5873 180.5995 122580.5961 11.4609

55 LightGBM 70000 1.7979 281.8722 78539.1318 13.3681

56 LightGBM 80000 4.3284 175.0384 126475.0782 15.2761

57 CatBoost 10000 1.6689 14.2325 1555450.023 0.0935

58 CatBoost 20000 1.9156 11.633 1903040.524 0.0722

59 CatBoost 30000 2.2865 11.4207 1938408.213 0.0696

60 CatBoost 40000 2.5684 10.5636 2095685.688 0.0732

61 CatBoost 50000 4.8899 10.0877 2194549.195 0.0689

62 CatBoost 60000 3.2732 10.6056 2087384.056 0.0716

63 CatBoost 70000 3.6046 10.5606 2096281.614 0.0697

64 CatBoost 80000 5.7935 18.4879 1197434.295 0.0738

Figure 2: Scalability of coefficient of determination (R²) with 
increasing training dataset sizes

poor performance of SVM is likely due to its inappropriate 
kernel choice or the sensitivities of SVM due to scaling of 
its features.  

The radar plot provides a summary of the relative 
performance of regression models using multiple 
performance criteria (MAE, RMSE, R², p95, and p99). Each 
axis corresponds with one of these criteria, and the units of 
each of these performance criteria have been standardised 
so that you can quantitatively compare each performance 
criterion against the others, even if they differ in their 
measurements and unit values. In error-based performance 
criteria (MAE, RMSE, p95, p99) smaller values correspond to 
better performance, while larger values for R² correspond 
to better performance.

Multi-criteria Evaluations of Tree-based Ensemble 
Results show they provide superior performance compared 
with alternative methods based upon the greater accuracy 
of model predictions and the stronger explanation of 
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outcomes provided by each metric. Random Forest and 
XGBoost scored almost perfectly on the multi-criteria 
Evaluation by having virtually no error or R² values near 
one, so they were both deemed to be very reliable models. 
LightGBM and CatBoost had comparable performance but 
had slightly higher error scores, therefore LightGBM and 
CatBoost would also be appropriate to use in large-scale 
and time-sensitive situations. The Linear Regression model 
displayed moderate performance with an R² value near one 
but higher error rates than the previous models. Because 
Linear Regression cannot model nonlinear relationships as 
accurately, it produced prediction results with higher error 
scores. On the other hand, the KNN had the highest error 
score and demonstrated the highest degree of variability, 
making it less well-suited for accurate prediction purposes 
and exhibiting the highest degree of sensitivity to data 
characteristics.

Overall, the results show that ensemble models (e.g., 
boosting or bagging) will yield the best accuracy for load 
predictions, offering high accuracy and good generalization 
properties. Simplicity in general and incorrect adjustment 
of models can result in inaccurate representations of the 
underlying data.	

While R² and MAE are important predictive accuracy 
metrics, they do not provide complete guidance in 
determining which model type is best suited for a problem. 
In practice, it is important to consider other factors when 
choosing a model type, such as training time, inference 
latency and resource consumption, as these also have a 
significant impact on overall model performance. 

The time taken for training and maximum memory 
utilized was recorded for each configuration. As illustrated 
in Figure 4 and 5, with reference to Table 3, KNN had 
the shortest Training time of 0.0166 seconds for the 80K 
records requested. However, KNN consumed the second 

largest amount of memory at 29.3025 MB (as reported). On 
the other hand, ensemble-based models (e.g. boosting) 
consumed approximately tenfold more time, and the 
staff analysis consistently indicated higher accuracy from 
these models over the KNN family and all other modeling 
approaches. Through analysis, our data demonstrates that 
ensemble-based models provided superior accuracy levels 
(compared to any other modeling methods) at the expense 
of increased computation times and memory consumption. 
Thus, showing an inherent tradeoff between model accuracy 
and model computation scalability, particularly for large-
scale cloud computing environments.

In addition, training times, peak memory consumed 
and prediction latency for all models were also measured 
to determine which models were suitable for deployment 
in near-real-time prediction scenarios and results are 
demonstrated in Figure 4, 5 and 6. Although ensemble 
models (e.g., XGBoost, Random Forest) had substantially 
higher training latencies compared with all other models, 
their corresponding prediction latencies were still well within 

Figure 3: Multi-Criteria Model Comparison (Radar Plot) for Prediction 
Accuracy

Figure 4: Training time scalability of machine learning models under 
increasing workload sizes

Figure 5: Peak memory consumption of evaluated models during 
training
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acceptable limits. Therefore, ensemble model predictions 
are feasible for near-real-time workload prediction in cloud 
computing environments. This indicates a clear trade-off 
between model accuracy and computational efficiency.  

Radar chart in Figure 7 compares various machine 
learning (ML) models with respect to the three dimensions 
of Operational Efficiency for each of the models were 
evaluated by determining the average Prediction Time (in 
milliseconds), Training Time (in seconds), and Peak Memory 
Usage (in megabytes). All Operational Efficiency metrics 
were normalized so that the further from the origin (0,0) a 
value is, the greater the cost.

The efficiency study indicates differences among the 
two types of models in terms of computation costs and the 
amount of resources that each requires. KNN has the highest 
inference latency and the greatest memory requirements 
because it uses an instance-based prediction procedure. 
Random Forest has the highest training cost due to having 
to take into account the overhead of creating many decision 
trees. Gradient Boosting has moderate training and a 
relatively low amount of memory used to create the model, 
yet has a fast inference time due to the architecture of the 
algorithm. In contrast, LightGBM, XGBoost and CatBoost 

Figure 6: Inference latency measured in milliseconds as a function 
of training dataset size

Figure 7: Multi-Criteria Model Comparison (Radar Plot) for Inference 
Efficiency, Training Cost and Resource Usage

Table 4: Performance Comparison of Machine Learning Models Using 80K Training Records

Model MAE RMSE R² p95 p99 Training 
Time (sec)

Prediction 
Time (ms) Throughput Peak Memory 

(MB)

Linear Regression 0.0003 0.0005 0.9981 0.0011 0.0024 0.2368 16.3733 1352077.401 30.5438

KNN 0.0004 0.0012 0.9906 0.002 0.0052 0.0166 11755.2523 1883.2433 29.3025

Random Forest 0 0.0001 1 0 0.0001 272.2216 425.0755 52080.1622 21.9786

Gradient Boosting 0.0001 0.0003 0.9993 0.0006 0.0011 145.5222 67.203 329419.744 21.9785

XGBoost 0.0001 0.0002 0.9997 0.0003 0.0008 2.7868 202.9913 109058.8402 0.6678

LightGBM 0.0001 0.0003 0.9995 0.0004 0.001 4.3284 175.0384 126475.0782 15.2761

CatBoost 0.0002 0.0004 0.999 0.0007 0.0015 5.7935 18.4879 1197434.295 0.0738

have the best resource efficiency by providing very fast 
predictions and using fewer resources than other algorithms. 
Linear Regression has the lightest training and inference 
costs but does not have the ability to model complex non-
linear relationships as well as some of the other models do.

Ensemble methods such as Random Forest have rigorous 
training requirements and strong performance for a near-
constant memory footprint, while, at the same time, these 
have a longer duration of training, which makes more 
difficult for Random Forest to provide similar predictive 
performance to other methods within an acceptable 
computational latency. Gradient Boosting offers less 
computational requirement for training and a higher level 
of accuracy in its predictions than Random Forest. Advanced 
Models of Boosting, such as XGBoost, LightGBM and 
CatBoost, achieve very high R² values for all three models 
while maintaining an adequate level of inference latency.

Selection of Best Suitable Model
Only those models developed and trained using the highest 
number of records i.e. 80K from the dataset are evaluated for 
selection of best suitable model. Due to having the lowest 
level of overall predictive capability, SVM was excluded from 
any future consideration because of its inability to generalize 
effectively. Table 4 lists metrics results for models trained 
using 80K records.
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Table 5 presents a composite ranking of evaluated models 
based on their composite performance score calculated 
using the weights defined in Table 1 and a multi-criteria 
scoring system for e-Governance, with an emphasis on 
accuracy (50%) and inference efficiency and scalability for 
the purposes of real-time operation.

It is observed that the GBR (Gradient Boosted Tree) 
Models produced the highest composite performance 
score consistently throughout the study. Among them, 
XGBoost provided the most balanced performance as it 
had both nearly perfect predictive accuracy and a very 
low-level training overhead combined with moderate level 
inference efficiency. It was followed closely by LightGBM and 
CatBoost; all show excellent characteristics for large scale 
e-Government load prediction that requires concurrent 
optimization of accuracy, scalability and resource efficiency.

Random Forest provides good accuracy but suffers 
from a relatively high training cost and prediction time, 
which affected its ultimate rating. Simple linear regression 
has low latency but exhibits weaker robustness metrics. 
KNN and SVM models are not appropriate for large-scale 
e-Government projects due to their limited scalability and 
prediction accuracy, respectively.

XGBoost is chosen to be the optimal load prediction 
machine learning algorithm for use in e-Governance 
systems after considering all evaluation findings. Although 
both LightGBM and CatBoost are as accurate as XGBoost 
with respect to their predictions, XGBoost excels in its 
combination of prediction accuracy, ability to scale to very 
large datasets, ability to make fast inferences, and low 
resource usage, all of which are important for large-scale 
e-Governance services since operational costs are directly 
affected by how quickly you can compute using XGBoost 
versus alternatives.

Conclusion and Future Scope
This work proposes an extensive evaluation framework 
for the use of machine learning to predict loads on 
e-Governance systems. This evaluation framework will 
evaluate not only the accuracy of the models but also include 
other factors such as the computational requirements of 
the models, how well they scale as the size of the input 

data increases, and how effective their predictions are at 
assisting users in making decisions about service usage. The 
experiments provide evidence that, of all the algorithms 
studied, XGBoost is the best choice for predicting the load 
placed on e-Governance systems and therefore is a good 
candidate for providing proactive resource management 
for e-Governance systems.

Moving forward, future research will focus on the 
incorporation of temporal deep learning into this framework 
to improve the algorithms’ predictive power, the addition 
of mechanisms for unsupervised real-time feedback, and 
validation of this framework with real-time workloads from 
e-Governance systems.
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