J

THE SCIENTIFIC TEMPER (2026) Vol. 17 (1): 5570-5581 E-ISSN: 2231-6396, ISSN: 0976-8653

-l
L

®)

Doi: 10.58414/SCIENTIFICTEMPER.2026.17.01.20
RESEARCH ARTICLE

https://scientifictemper.com/

Multi-Metric Evaluation Framework for Machine
Learning-Based Load Prediction in e-Governance Systems

Sanjeev Kumar'", Saurabh Charaya?, Rachna Mehta?

Abstract

The explosive growth of e-Governance platforms will necessitate transitioning from lifecycle reactive handling to proactive rather
than just reactionary methods for handling e-Governance workloads and therefore managing resources effectively. Given that
e-Governance workloads consist of highly dynamic content, load predictions must be sufficiently accurate for efficient resource selection
and provisioning, continual discussion between workloads that need to comply with SLAs, and enabling the systematic handling of
e-Governance workload. Machine learning-based approaches will provide strong predictive capabilities; however, careful consideration
must be given to how those ML-based approaches will be deployed into the environment of an e-Governance system with regards to
predictive accuracy, computational performance, scalability and robustness. This research paper will present a complete multi-metric
evaluation framework that was developed to assess Load Prediction Models for e-Governance Platforms. The evaluation framework
will consist of regressors, including Linear Regression, Instance-Based Learning, and Ensemble Approaches such as Random Forest,
Gradient Boosting, XGBoost, LightGBM and CatBoost; however, when conducting the evaluation of each of the regression models it
should not only include the traditional manner of evaluating for accuracy but also include training time, prediction latency, amount of
Memory consumed for model training, amount of Data Inference Processed, Worst Case Error Percentiles, and Scalable Assessment of
All Proposed Regression Models with respect to Data Size. The experimental results show that both Ensemble and Gradient Boosting
Models significantly outperform conventional Baseline Approaches in terms of the Accuracy of the Prediction of the Response Variable. By
combining the various advantages of all models tested and evaluating them based upon completed multi-metric evaluation framework,
LightGBM has the overall best combination of Accuracy, Scalable Assessment, High Inference Efficiency and Lower Memory Usage. The
results of this study provide insights into practical aspects of deploying intelligent load prediction solutions designed to improve the
performance and reliability of e-Governance platforms.

Keywords: e-Governance, Load Prediction, Machine Learning, Resource Management, Scalability Analysis, Ensemble Learning, Inference
Latency, Model Selection, Cloud Computing, Performance Evaluation.
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The rapid transition of many public sector organizations to
digital services has resulted in the creation of e-Governance
platforms to deliver special citizen-centric services, such as
online application systems, grievance redressal systems,
electronic payment systems and information dissemination
(Abbas et al., 2024; Udoh, 2024). e-Governance platforms are
designed to operate under very dynamic and unpredictable
workloads, which often include a number of factors that
contribute to the workload increased fluctuations, for
example: temporal fluctuations, surges in demand due to
new policies and high numbers of concurrent users on the
same platform (Ajayi et al., 2024). Thus, e-Governances faces
many challenges in providing and maintaining availability
for users, responsiveness, and reliability, particularly in
resource-constrained computing scenarios that commonly
accompany government use of technology for e-Governance
(Osah & Pade-Khene, 2020).
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Accurate prediction of future workload and resource
utilization is a critical factor in successfully addressing
these challenges through proactive resource provisioning,
efficient load balancing, and Service Level Agreement (SLA)
compliance. The traditional method of scaling e-Governance
Systems reactively by providing additional resources only
after the system experiences performance degradation will
not work for e-Governance systems because of the impact
on citizen satisfaction and trust in services that comes with
delays in delivering service (Khadka, 2024). Consequently,
predictive load modeling has emerged as a key enabler for
intelligent resource management in modern e-Governance
infrastructures.

Recent advancements in machine learning have enabled
better modeling of complex, non-linear workload patterns
for large scale systems. In particular, ensemble learning
provides extremely good predictive capabilities for Cloud
and Cluster technologies because of the ensemble’s
capability to account for both temporal dependencies and
interactions between features (Rane et al., 2024). However,
even with strong predictive capabilities, e-Governance
systems must also meet strict requirements regarding
how the models will operate with regard to computational
complexity, including low training time, low inference
latency, limited memory usage, and robust performance for
varying workload intensities, in other words, e-Governance
systems must be able to quickly respond to changing
demands on their resources (Menghani, 2023).

To develop a comprehensive evaluation framework for
load prediction models used in e-Governance applications,
this study expands upon previous research that has generally
focused on measuring model accuracy by providing an
organized approach for assessing multiple regression
algorithms (linear, instance based, and ensemble) such as
Random Forests, Gradient Boosting, XGBoost, LightGBM and
CatBoost (Kumar et al., 2025a; Kumar et al., 2025b).

In addition to allowing researchers to compare model
accuracy more easily, the framework will also help identify
models that are candidate solutions for real-time production
use by providing additional information regarding training
time, prediction latency, maximum memory usage,
throughput and high-level error and robustness metrics. The
study captures both model accuracy and processing costs
associated with running the prediction model.

Another component of this research is a thorough
evaluation of the scalability of candidate prediction models
via increasing the size of the training dataset, simulating
realistic hypergrowth scenarios that could occur within an
e-Governance application.

This research provides valuable information for
government officials, system design professionals and
system managers that want to implement a smart, data-
driven resource management approach to e-Governance
platforms.

Related Work

A lot of research has been done on accurately predicting
workloads related to distributed systems, cloud computing,
and managing resources in data centres (Khan et al., 2022).
When workload prediction research first started, it focused
on statistical approaches like exponential smoothing models
and ARIMA (autoregressive integrated moving average) to
help forecast how demand for resources would be utilized.
These techniques work well when used with short-term
and stationary trends but often have difficulty capturing
the sudden fluctuations in workload that develop over
time in the environment of a real-world distribution (Fu &
Jamaludin, 2022).

Machine learning has provided a new avenue for
workload prediction by using regression-based and neural
network-based methods. Due to their ease of use and
potential for interpretation, both linear regression and
support vector regression have been applied to forecast
CPU and memory usage. Still, they tend to perform poorly in
dynamic environments where workload patterns are highly
variable (Yekta & Shahhoseini, 2023).

Instance-based techniques, such as k-nearest-neighbor
classifiers, provide alternatives for workload prediction
but have difficulty maintaining good performance when
working with large datasets (Halder et al., 2024).

A few studies have explored the effectiveness of
combining weak learners using ensemble techniques to
improve workload prediction performance. The Random
Forest and Gradient Boosting methods have increased
predictive accuracy by combining the outputs of multiple
weak learners (Liu et al., 2022; Kavzoglu & Teke, 2022). More
recently, the use of the gradient-boosted frameworks such
as XGBoost and LightGBM in the cloud environment and
cluster workloads has achieved better accuracy and quicker
convergence when compared to the traditional methods
(Bawa et al., 2025).

Recently there have been more improvements to how
CatBoost handles categorical features and also to how
it helps businesses deal with the issue of overfitting due
to non-linear algorithms (Verma et al., 2025). Most of the
research being conducted today still focuses more heavily on
metrics related to prediction accuracy, and less so on metrics
associated with hardware/software use (i.e., computational
efficiency, memory overhead, and inference latency) which
are critical to the success of real-time operational systems
(Ahmadilivani et al., 2024).

On the topic of e-governance, there has not been much
research done on using machine learning for proactive load
prediction or predictive resource management (Kamruddin
& Chary, 2024). Most of the current research has only been
done on monitoring the quality of services, or on developing
rules for automating the process of dynamically scaling
those services (Syed & Anazagasty, 2024). Very few studies
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have conducted comprehensive evaluations that analyze
the accuracy, scalability, robustness, and resource efficiency
of these techniques in conjunction with each other, and
therefore this research will address this gap by providing a
comprehensive evaluation framework that can be used for
the purpose of e-governance workload predictions.

Research Methodology

Objective

This study makes three major contributions. First, this
research has designed and built a metric-driven framework
for determining load prediction for e-Governance systems.
Second, this research has conducted a study on scalability
and efficiency of the leading machine learning models as the
size of the workload increases. Third, this research identified
the most well-rounded load prediction model that is able
to accurately predict load and meet real-time and resource
efficiency requirements.

Dataset and Preprocessing

This research aims to predict the e-Governance platform'’s
system load so that system resources can be allocated
proactively, and load balancing can be done efficiently.
A key resource used in this study is a dataset containing
Borg Traces, which can be accessed through Kaggle: www.
kaggle.com/datasets/ericgitonga/borg-traces. This dataset
has 405,894 records, and it was created using data collected
from Google's Borg cluster management system. This
dataset contains very good detail about how the system
operates (CPU and memory use), job scheduling, priorities,
and the time of day when the resources are being used.
Because of the breadth of information and the density of
time stamps provided by this dataset, the dataset is suitable
for evaluating workload forecasting, load distribution
strategies, and optimization of resource management.
The dataset consists of both categorical and numeric
attributes, and also contains a complex hierarchy among
these attributes. Therefore, appropriate pre-processing and
transformation of the data must be accomplished before
model creation.

This dataset contains historical workload traces that
show how a system has been used in the past (i.e., the
user’s workload). The preprocessor applies normalization
to the data, handles any missing values and uses feature
engineering to extract temporal characteristics from the
data. After removing the missing values records for critical
parameters like cycles_per_instruction, memory_accesses_
per_instruction, resource_request and time total 110689
records were available for model training and testing. After
partitioning the data in 80:20 ratio for training and testing
dataset, a total of 88551 records for training and 22138
records for testing the models were available. To assess
scalability of the algorithms, we increase the number of

records in the training dataset from 10,000 to 80,000 which
will allow us to simulate realistic growth of e-Government
service usage.

Models Under Evaluation

A wide variety of regression techniques have been analysed

in this research in order to capture the complete range of

learning techniques:

« Baseline Model(s): Linear Regression, k-Nearest
Neighbors

« Kernel Method Model: Support Vector Regression

«  Ensemble Model(s): Random Forest, Gradient Boosting

- Advanced Boosting Model(s): XGBoost, LightGBM,
CatBoost

Hyperparameters for all models were carefully selected to

provide both prediction quality and computation efficiency,

in order to ensure equitable comparison among models.

Evaluation Metrics for the Models

To effectively evaluate predictive performance and design
factors for e-Governance systems, a comprehensive
evaluation methodology was utilised (i.e., multiple metrics):

Overview of the Metrics

This section provides the overview of relevant metrics that

can be used to assess the performance of models.

« Prediction Quality Metrics: Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), Coefficient of
Determination (R?), Mean Absolute Percentage Error
(MAPE)

«  Performance Metrics: Training time (in seconds),
Prediction latency (in milliseconds), Peak Memory (in
MB), Inference Throughput (in predictions/sec)

«  Robustness Metrics: Residual-SD, 95th Percentile
Absolute Error, 99th Percentile Absolute Error

. Efficiency Metrics: Prediction Quality per Unit Training
Time, Prediction Quality per Unit Memory Consumption

« Decision-Centric Metrics: Under prediction rate

By taking relevant metrics into account, the remaining

models were determined to fit the performance and

operational requirements of e-Governance systems.

Metrics Selection Criteria for Composite Performance Score

(CPS) Calculation

Another approach to determining the best model for

predicting e-Governance loads was an alternative via

each model’s Composite Performance Score (CPS), which
was calculated from a combination of three variables for
each model. These three variables are Prediction Accuracy,

Computational Efficiency, and Resource Utilization.

- Error/Cost Based Metrics (to be Min/Max Normalized
with Lower Values = Better) include the following:
MAE, RMSE, p95, p99, Training Time, Prediction Time,
Memory Usage.

- Benefit Based Metrics (to be Max/Min Normalized
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with Higher Values = Better) include the following: R?,
Throughput, etc.
«  The CPS score is represented in the range of [0,1].

Metrics Normalization
Developing metric Normalization methodology is crucial
for making comparisons among models because there are
many different Evaluation Metrics that have inconsistent
units, and necessitate Optimizing in different directions
(Cabello-Solorzano et al., 2023).

Error/Cost-Type Metrics, Lower is better: For normalizing
the metrics such as MAE, RMSE, p95, p99, Training Time,
Prediction Time and Memory Usage equation 1 is used.

M -M, .
M, =——+ )
5] Ml;nax _M;nm
Benefit-Type Metrics, Higher is better: For normalizing the

metrics such as R” and inference throughput equation 2 is
used.

L MM
Mi»./ = Mmax _&Mmin
J J

Where:

« M, denotes a metric value J foramodel i

«  M}™ and M= represent the Minimum and Maximum
Values of a Metric j amongst all evaluated models.

« M, <[i ] indicates a Normalized Metric Value j for a
model i.

Category-Level Scoring

The performance scores by category are averaged to obtain
the category-level performance score, which is the basis of
the normed metrics.

Prediction Accuracy Score

1
Siacc —

M. .
5 ZjE{MAE,RMSE,RZ,p95,p99} ij

Inference Efficiency Score

or 1 @
inf _ *

Si - 2 Zje{PrediCtion Time,Throughput}Mi:j

Training Cost Score
train __ !

Si - M i, Training Time (5)

Resource Usage Score

mem __
Si =M i,Peak Memory (6)

Calculating Composite Performance Score

The final Composite Performance Score (CPS) for all
experiments is the weighted linear combination of category-

level performance scores. The suggested weights for
each category of metrics are given in Table 1 and the final
composite performance score will be calculated by following
equation:

CPS, = 0.50- 5™ +0.25-S" +0.15-5"™" +0.10- S™" 7)

where CPS; €[0,1].

Table 1: Metric Categories and Weights for Composite Performance

Score
Category Metrics Weight
Prediction Accuracy  MAE, RMSE, r?, p95, p99 0.50

Inference Efficiency  Prediction Time, Throughput  0.25

Training Cost Training Time 0.15

Resource Usage Peak Memory 0.10

Total 1.00
Experimental Setup

Each experimental procedure was performed according
to a shared evaluation protocol, guaranteeing equivalent
methodology throughout the various models under review.
In addition, this research utilized the default computational
infrastructure of the Google Colab platform. Furthermore,
allmodels were trained and assessed on the same hardware
and software configurations, thereby providing consistent
resource access for the experiments. Timing devices with
very high resolution were implemented to document
each training session and each prediction request so that
accurate latencies could be calculated. Furthermore, peak
memory consumption was recorded using peak memory
tracing methods. Lastly, scalability tests were performed
by increasing dataset sizes used in training the models
stepwise. The results allowed for direct comparisons
between the performance, computation efficiency, and
resource utilization of the models based exclusively on their
operational characteristics.

Results and Discussion

Scalability of the models in this analysis was evaluated
based upon the sequentially increasing size of a training
dataset from 10,000 to 80,000 records. The detailed results
are documented in the Tables 2 and Table 3, same are
demonstrated through various plots presented to clearly
illustrate the results. As results are in close proximity to
each other, logarithmic scale is used for clearer visual
representation of the relative differences between the
models.

While performing the comparative analysis of regression
models, the MAE, RMSE, and R? gave clear evidence of
differences in model performance across all models
evaluated. Ensemble tree-based models outperformed
all other model types consistently. For example, Random
Forestyielded almost perfect performance (MAE ~ 0; RMSE
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Table 2: Prediction Accuracy and Robustness Metrics Across Models

Srno  Model ;’e "C’g ; ng MAE RMSE R? MAPE residuals_std  p95 p99

1 Linear Regression 10000 0.0003 0.0005 0.9981 20182354747 0.0005 0.0012 0.0025
2 Linear Regression 20000 0.0003 0.0005 0.9981 20395668637 0.0005 0.0012 0.0025
3 Linear Regression 30000 0.0003 0.0005 0.9981 21010010640 0.0005 0.0011 0.0025
4 Linear Regression 40000 0.0003 0.0005 0.9981 20896606567 0.0005 0.0011 0.0025
5 Linear Regression 50000 0.0003 0.0005 0.9981 20900060250 0.0005 0.0011 0.0025
6 Linear Regression 60000 0.0003 0.0005 0.9981 20939526006 0.0005 0.0011 0.0025
7 Linear Regression 70000 0.0003 0.0005 0.9981 21066129615 0.0005 0.0011 0.0024
8 Linear Regression 80000 0.0003 0.0005 0.9981 21131973646 0.0005 0.0011 0.0024
9 KNN 10000 0.0008 0.002 0.9729 34154207613  0.002 0.0034 0.0082
10 KNN 20000 0.0006 0.0017 0.9797 26853424808 0.0017 0.003 0.0072
1 KNN 30000 0.0006 0.0015 0.9843 23945958438 0.0015 0.0027 0.0064
12 KNN 40000 0.0005 0.0014 0.9867 21847972568 0.0014 0.0025 0.0061
13 KNN 50000 0.0005 0.0013 0.9882 20687818194 0.0013 0.0023 0.0059
14 KNN 60000 0.0004 0.0013 0.9892 19551897760 0.0013 0.0022 0.0055
15 KNN 70000 0.0004 0.0012 0.99 18352417951 0.0012 0.002 0.0055
16 KNN 80000 0.0004 0.0012 0.9906 17335994636 0.0012 0.002 0.0052
17 SVM 10000 0.0856 0.0864 -49.3425 1.75822E+13  0.0122 0.0926 0.0926
18 SVM 20000 0.0856 0.0864 -49.3425 1.75822E+13  0.0122 0.0926 0.0926
19 SVM 30000 0.0856 0.0864 -49.3425 1.75822E+13  0.0122 0.0926 0.0926
20 SVM 40000 0.0856 0.0864 -49.3425 1.75822E+13  0.0122 0.0926 0.0926
21 SVM 50000 0.0856 0.0864 -49.3425 1.75822E+13  0.0122 0.0926 0.0926
22 SVM 60000 0.0856 0.0864 -49.3425 1.75822E+13 0.0122 0.0926 0.0926
23 SVM 70000 0.0856 0.0864 -49.3425 1.75822E+13  0.0122 0.0926 0.0926
24 SVM 80000 0.0856 0.0864 -49.3425 1.75822E+13  0.0122 0.0926 0.0926
25 Random Forest 10000 0.0001 0.0006 0.9974 1364860421 0.0006 0.0002 0.0008
26 Random Forest 20000 0 0.0004 0.9991 441898517.9 0.0004 0.0001 0.0005
27 Random Forest 30000 0 0.0002 0.9998 274089852.8 0.0002 0 0.0004
28 Random Forest 40000 0 0.0001 0.9999 1917677143  0.0001 0 0.0003
29 Random Forest 50000 0 0.0001 0.9999 183333216.3  0.0001 0 0.0002
30 Random Forest 60000 0 0.0001 1 119362942.3  0.0001 0 0.0002
31 Random Forest 70000 0 0.0001 0.9999 115298990.6  0.0001 0 0.0001
32 Random Forest 80000 0 0.0001 1 100684365.2  0.0001 0 0.0001
33 Gradient Boosting 10000 0.0002 0.0005 0.9983 9322459970  0.0005 0.0006 0.0013
34 Gradient Boosting 20000 0.0002 0.0003 0.9993 10655317272  0.0003 0.0006 0.0011
35 Gradient Boosting 30000 0.0002 0.0003 0.9993 10952387546 0.0003 0.0006 0.0011
36 Gradient Boosting 40000 0.0002 0.0003 0.9993 10583700964 0.0003 0.0006 0.0011
37 Gradient Boosting 50000 0.0002 0.0003 0.9993 11025723760 0.0003 0.0006 0.0012
38 Gradient Boosting 60000 0.0001 0.0003 0.9992 10564397150 0.0003 0.0006 0.0011
39 Gradient Boosting 70000 0.0002 0.0003 0.9993 10813339816 0.0003 0.0006 0.0012

Cont...
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Srno  Model ;’e °’C’g ; ng MAE RMSE R? MAPE residuals_std  p95 p99
40 Gradient Boosting 80000  0.0001 00003  0.9993 10745027080  0.0003 0.0006  0.0011
41 XGBoost 10000  0.0001 00004  0.9988 9649137778  0.0004 00005  0.0014
42 XGBoost 20000  0.0001 00003  0.9992 7421643965  0.0003 0.0004  0.0011
43 XGBoost 30000  0.0001 00003  0.9995 6480909045  0.0003 0.0004  0.001
44 XGBoost 40000  0.0001 0.0002  0.9996 6051301499  0.0002 0.0004  0.001
45 XGBoost 50000  0.0001 0.0002  0.9996 5774074157  0.0002 0.0004  0.0009
46 XGBoost 60000  0.0001 0.0002  0.9997 5483398346  0.0002 0.0004  0.0008
47 XGBoost 70000  0.0001 0.0002  0.9997 5108143550  0.0002 0.0003  0.0008
48 XGBoost 80000  0.0001 0.0002  0.9997 4864797700  0.0002 0.0003  0.0008
49 LightGBM 10000  0.0001 00007  0.9968 9087601392  0.0007 0.0005  0.0015
50 LightGBM 20000  0.0001 00006 09973 6092239984  0.0006 00005  0.0013
51 LightGBM 30000  0.0001 00005  0.9984 5575418230  0.0005 0.0004  0.0011
52 LightGBM 40000  0.0001 00004  0.999 5595904246  0.0004 0.0004  0.001
53 LightGBM 50000  0.0001 00004  0.9991 5926169580  0.0004 0.0004  0.001
54 LightGBM 60000  0.0001 00003  0.9994 6316484972  0.0003 0.0004  0.0009
55 LightGBM 70000  0.0001 00003  0.9995 5903794173  0.0003 0.0004  0.0009
56 LightGBM 80000  0.0001 00003  0.9995 6118083096  0.0003 0.0004  0.001
57 CatBoost 10000 0.0003 00007  0.9971 25419118656  0.0007 00011 0.002
58 CatBoost 20000  0.0003 00005  0.998 17363864908  0.0005 0.001 0.0017
59 CatBoost 30000  0.0002 00004  0.9989 11774404181  0.0004 0.0008  0.0016
60 CatBoost 40000  0.0002 00004  0.9988 12311806680 0.0004 0.0008  0.0015
61 CatBoost 50000  0.0002 00004  0.999 12478376239 0.0004 0.0008  0.0015
62 CatBoost 60000  0.0002 00004  0.9989 12659285320  0.0004 0.0008  0.0016
63 CatBoost 70000  0.0002 00004  0.999 11441713151 0.0004 0.0008  0.0016
64 CatBoost 80000  0.0002 00004  0.999 10313798165 0.0004 00007 00015

= 0.0001; R> = 1) indicating a very good model fit to the
data. Furthermore, XGBoost, LightGBM, Gradient Boosting, 0.0008 1
and CatBoost yielded very low error values in addition to
exhibiting R values approaching 1, verifying the models’
strong ability to predict accurately as well as model highly
complex, non-linear relationships.

Linear Regression has a good fit on the dataset with an
R? value of 0.9981 and a relatively low error number, giving
evidence that the dataset has a relatively strong linear
component as well. However, Linear Regression is somewhat 0.0002
less accurate than the ensemble methods. KNN has higher T—o *
RMSE and a lower R? value than SVM, which indicates that 000017
it is more likely to be sensitive to local data structures (data 0.0000 - *
housing) and distance metric (e.g., Euclidean Distance, or 10000 20000 305°r:’umb‘;?i‘;%am?:g‘;°e mrsg"m 70000 80000
Manhattan Distance).

Unlike KNN, SVM's performance is poor; its error numbers
are much higher, and its R% is negative (-49.3425), making Figure 1: Prediction accuracy scalability (MAE) of machine learning
it statistically impossible to generalize. We believe that the models under increasing training dataset sizes

MAE vs Training Dataset Size (Excluding SVM)

LinearRegression
KNN
RandomForest
GradientBoosting
XGBoost
LightGBM
CatBoost

0.0007 A

0.0006

RERRE:

0.0005 A

0.0004 A

0.0003 A

Mean Absolute Error (MAE)

L 2

TR}
T X ]
o8

»
»
»




The Scientific Temper. Vol. 17, No. 1 Sanjeev Kumar et al. 5576
Table 3: Computational Efficiency and Scalability Metrics Across Models
Sr. No Model Training T(aining Prediction Time Inference Throughput Peak Memory
Records Time(sec) (ms) (pred/sec) (MB)
1 Linear Regression 10000 0.0808 20.0317 1105149.774 3.8645
2 Linear Regression 20000 0.066 4.6378 4773409.663 7.6552
3 Linear Regression 30000 0.1221 5.6733 3902124.329 11.4703
4 Linear Regression 40000 0.1326 7.5847 2918754.136 15.285
5 Linear Regression 50000 0.2272 9.8045 2257937.024 19.0998
6 Linear Regression 60000 0.1587 5.7757 3832963.94 229144
7 Linear Regression 70000 0.1845 16.4125 1348850.291 26.7294
8 Linear Regression 80000 0.2368 16.3733 1352077.401 30.5438
9 KNN 10000 0.041 1785.3544 12399.7788 3.6702
10 KNN 20000 0.0078 2539.636 8716.9973 7.3299
11 KNN 30000 0.0088 4593.9679 4818.9279 10.992
12 KNN 40000 0.0097 5038.3806 4393.8721 14.6541
13 KNN 50000 0.0118 6284.5367 3522.6145 18.3162
14 KNN 60000 0.0114 7490.4394 2955.5009 21.9783
15 KNN 70000 0.021 10540.6843 2100.2432 25.6404
16 KNN 80000 0.0166 11755.2523 1883.2433 29.3025
17 SVM 10000 0.0105 4.0815 5424032.793 3.7304
18 SVM 20000 0.0125 3.8036 5820228.093 7.3915
19 SVM 30000 0.0167 4.1046 5393485.961 11.0537
20 SVM 40000 0.0199 3.8063 5816137.747 14.7158
21 SVM 50000 0.0247 4.3527 5086053.741 18.3779
22 SVM 60000 0.0288 4.1467 5338694.053 22.04
23 SVM 70000 0.0345 4.192 5281051.764 25.7021
24 SVM 80000 0.0377 4.2798 5172624.484 29.3647
25 Random Forest 10000 34.6664 930.4418 23792.9971 2.7531
26 Random Forest 20000 68.1678 426.4742 51909.356 5.4991
27 Random Forest 30000 100.1091 7254478 30516.3251 8.2457
28 Random Forest 40000 132.8332 772.7404 28648.6911 10.9923
29 Random Forest 50000 166.0558 440.5982 50245.3248 13.7389
30 Random Forest 60000 200.8818 419.8849 52723.9683 16.4855
31 Random Forest 70000 234.2825 417.2125 53061.6907 19.2321
32 Random Forest 80000 272.2216 425.0755 52080.1622 21.9786
33 Gradient Boosting 10000 17.489 69.6585 317807.3618 2.7531
34 Gradient Boosting 20000 34.0384 90.441 244778.3449 5.4991
35 Gradient Boosting 30000 50.2774 68.0262 325433.5651 8.2456
36 Gradient Boosting 40000 67.7428 66.0816 335009.9975 10.9922
37 Gradient Boosting 50000 86.0485 89.8961 246261.9668 13.7388
38 Gradient Boosting 60000 104.2094 66.6025 332389.6808 16.4854
39 Gradient Boosting 70000 123.0254 65.6528 337198.001 19.232

Cont...
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Sr No Model Training Training Prediction Time Inference Throughput Peak Memory
Records Time(sec) (ms) (pred/sec) (MB)
40 Gradient Boosting 80000 145.5222 67.203 329419.744 21.9785
41 XG Boost 10000 1.1064 106.2551 208347.6228 0.1529
42 XG Boost 20000 1.2203 108.8742 203335.604 0.2118
43 XG Boost 30000 1.4939 112.8938 196095.7442 0.2845
44 XGBoost 40000 4.3556 115.9281 190963.1457 0.3615
45 XGBoost 50000 1.9253 119.4236 185373.7996 0.4371
46 XGBoost 60000 2.1632 120.1864 184197.1907 0.5151
47 XGBoost 70000 2.3393 128.9896 171626.1798 0.5907
48 XGBoost 80000 2.7868 202.9913 109058.8402 0.6678
49 LightGBM 10000 2.5773 348.6897 63489.116 2.2883
50 LightGBM 20000 0.8355 182.5498 121271.0069 3.8328
51 LightGBM 30000 1.0169 195.6444 113154.2836 5.7387
52 LightGBM 40000 1.2408 180.7994 122445.0804 7.6485
53 LightGBM 50000 1.4081 212.8217 104021.3416 9.5534
54 LightGBM 60000 1.5873 180.5995 122580.5961 11.4609
55 LightGBM 70000 1.7979 281.8722 78539.1318 13.3681
56 LightGBM 80000 4.3284 175.0384 126475.0782 15.2761
57 CatBoost 10000 1.6689 14.2325 1555450.023 0.0935
58 CatBoost 20000 1.9156 11.633 1903040.524 0.0722
59 CatBoost 30000 2.2865 11.4207 1938408.213 0.0696
60 CatBoost 40000 2.5684 10.5636 2095685.688 0.0732
61 CatBoost 50000 4.8899 10.0877 2194549.195 0.0689
62 CatBoost 60000 3.2732 10.6056 2087384.056 0.0716
63 CatBoost 70000 3.6046 10.5606 2096281.614 0.0697
64 CatBoost 80000 5.7935 18.4879 1197434.295 0.0738

poor performance of SVM is likely due to its inappropriate
kernel choice or the sensitivities of SVM due to scaling of
its features.

The radar plot provides a summary of the relative
performance of regression models using multiple
performance criteria (MAE, RMSE, R?, p95, and p99). Each
axis corresponds with one of these criteria, and the units of
each of these performance criteria have been standardised
so that you can quantitatively compare each performance
criterion against the others, even if they differ in their
measurements and unit values. In error-based performance
criteria (MAE, RMSE, p95, p99) smaller values correspond to
better performance, while larger values for R* correspond
to better performance.

Multi-criteria Evaluations of Tree-based Ensemble
Results show they provide superior performance compared
with alternative methods based upon the greater accuracy
of model predictions and the stronger explanation of

R? vs Training Dataset Size (Excluding SVM)
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Figure 2: Scalability of coefficient of determination (R?) with

increasing training dataset sizes
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Multi-Criteria Model Comparison (Radar Plot) for Prediction Accuracy
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LinearRegression
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Figure 3: Multi-Criteria Model Comparison (Radar Plot) for Prediction
Accuracy

outcomes provided by each metric. Random Forest and
XGBoost scored almost perfectly on the multi-criteria
Evaluation by having virtually no error or R? values near
one, so they were both deemed to be very reliable models.
LightGBM and CatBoost had comparable performance but
had slightly higher error scores, therefore LightGBM and
CatBoost would also be appropriate to use in large-scale
and time-sensitive situations. The Linear Regression model
displayed moderate performance with an R? value near one
but higher error rates than the previous models. Because
Linear Regression cannot model nonlinear relationships as
accurately, it produced prediction results with higher error
scores. On the other hand, the KNN had the highest error
score and demonstrated the highest degree of variability,
making it less well-suited for accurate prediction purposes
and exhibiting the highest degree of sensitivity to data
characteristics.

Overall, the results show that ensemble models (e.g.,
boosting or bagging) will yield the best accuracy for load
predictions, offering high accuracy and good generalization
properties. Simplicity in general and incorrect adjustment
of models can result in inaccurate representations of the
underlying data.

While R?> and MAE are important predictive accuracy
metrics, they do not provide complete guidance in
determining which model type is best suited for a problem.
In practice, it is important to consider other factors when
choosing a model type, such as training time, inference
latency and resource consumption, as these also have a
significant impact on overall model performance.

The time taken for training and maximum memory
utilized was recorded for each configuration. As illustrated
in Figure 4 and 5, with reference to Table 3, KNN had
the shortest Training time of 0.0166 seconds for the 80K
records requested. However, KNN consumed the second

largest amount of memory at 29.3025 MB (as reported). On
the other hand, ensemble-based models (e.g. boosting)
consumed approximately tenfold more time, and the
staff analysis consistently indicated higher accuracy from
these models over the KNN family and all other modeling
approaches. Through analysis, our data demonstrates that
ensemble-based models provided superior accuracy levels
(compared to any other modeling methods) at the expense
of increased computation times and memory consumption.
Thus, showing an inherent tradeoff between model accuracy
and model computation scalability, particularly for large-
scale cloud computing environments.

In addition, training times, peak memory consumed
and prediction latency for all models were also measured
to determine which models were suitable for deployment
in near-real-time prediction scenarios and results are
demonstrated in Figure 4, 5 and 6. Although ensemble
models (e.g., XGBoost, Random Forest) had substantially
higher training latencies compared with all other models,
their corresponding prediction latencies were still well within

Training Time vs Dataset Size

10! 4

100 ] W

— 7 * * *?
o] w

T T T T T T T T
10000 20000 30000 40000 50000 60000 70000 80000
Number of Training Records

Training Time (seconds) - Log Scale

LinearRegres GradientBoos
sion ting

—&— KNN —&— XGBoost
—8— RandomForest

—— —e— LightGBM

CatBoost

Figure 4: Training time scalability of machine learning models under
increasing workload sizes
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Prediction Time vs Dataset Size
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Figure 6: Inference latency measured in milliseconds as a function
of training dataset size

acceptable limits. Therefore, ensemble model predictions
are feasible for near-real-time workload prediction in cloud
computing environments. This indicates a clear trade-off
between model accuracy and computational efficiency.

Radar chart in Figure 7 compares various machine
learning (ML) models with respect to the three dimensions
of Operational Efficiency for each of the models were
evaluated by determining the average Prediction Time (in
milliseconds), Training Time (in seconds), and Peak Memory
Usage (in megabytes). All Operational Efficiency metrics
were normalized so that the further from the origin (0,0) a
value is, the greater the cost.

The efficiency study indicates differences among the
two types of models in terms of computation costs and the
amount of resources that each requires. KNN has the highest
inference latency and the greatest memory requirements
because it uses an instance-based prediction procedure.
Random Forest has the highest training cost due to having
to take into account the overhead of creating many decision
trees. Gradient Boosting has moderate training and a
relatively low amount of memory used to create the model,
yet has a fast inference time due to the architecture of the
algorithm. In contrast, LightGBM, XGBoost and CatBoost

Multi-Criteria Model Comparison (Radar Plot) for Inference Efficiency, Training Cost and Resource Usage
—— CatBoost

~—— GradientBoosting

— KNN

—— LightGBM

— LinearRegression

—— RandomForest

XGBoost

prediction Time (ms)

Peak Memory (MB) Trainipig Time (sec)

Figure 7: Multi-Criteria Model Comparison (Radar Plot) for Inference
Efficiency, Training Cost and Resource Usage

have the best resource efficiency by providing very fast
predictions and using fewer resources than other algorithms.
Linear Regression has the lightest training and inference
costs but does not have the ability to model complex non-
linear relationships as well as some of the other models do.
Ensemble methods such as Random Forest have rigorous
training requirements and strong performance for a near-
constant memory footprint, while, at the same time, these
have a longer duration of training, which makes more
difficult for Random Forest to provide similar predictive
performance to other methods within an acceptable
computational latency. Gradient Boosting offers less
computational requirement for training and a higher level
of accuracy inits predictions than Random Forest. Advanced
Models of Boosting, such as XGBoost, LightGBM and
CatBoost, achieve very high R? values for all three models
while maintaining an adequate level of inference latency.

Selection of Best Suitable Model

Only those models developed and trained using the highest
number of records i.e. 80K from the dataset are evaluated for
selection of best suitable model. Due to having the lowest
level of overall predictive capability, SYM was excluded from
any future consideration because of its inability to generalize
effectively. Table 4 lists metrics results for models trained
using 80K records.

Table 4: Performance Comparison of Machine Learning Models Using 80K Training Records

Model MAE RMSE ~ R? p95 p99 ;;g;’;i(';gc) ';I’;de’c{,‘;‘;’)’ Throughput Zi‘éf Memory
LinearRegression  0.0003 00005 09981 00011 00024  0.2368 16.3733 1352077.401  30.5438

KNN 00004 00012 09906 0002 00052  0.0166 117552523 18832433  29.3025
Random Forest 0 00001 1 0 00001 2722216 425.0755  52080.1622  21.9786
Gradient Boosting ~ 0.0001 00003 09993 00006 00011 1455222  67.203 329419744 219785
XGBoost 0.0001  0.0002 0.9997 00003 00008  2.7868 202.9913  109058.8402 0.6678
LightGBM 00001 00003 09995 00004 0.001 43284 1750384 1264750782 152761
CatBoost 00002 00004 0999 00007 00015 57935 18.4879 1197434295 0.0738
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Table 5: Composite Performance Score and Model Ranking (80K

Records)
Rank Model Composite Score
1 XGBoost 0.93
2 LightGBM 0.91
3 CatBoost 0.89
4 Gradient Boosting 0.82
5 Random Forest 0.71
6 Linear Regression 0.64
7 KNN 0.58

Table 5 presents a composite ranking of evaluated models
based on their composite performance score calculated
using the weights defined in Table 1 and a multi-criteria
scoring system for e-Governance, with an emphasis on
accuracy (50%) and inference efficiency and scalability for
the purposes of real-time operation.

It is observed that the GBR (Gradient Boosted Tree)
Models produced the highest composite performance
score consistently throughout the study. Among them,
XGBoost provided the most balanced performance as it
had both nearly perfect predictive accuracy and a very
low-level training overhead combined with moderate level
inference efficiency. It was followed closely by LightGBM and
CatBoost; all show excellent characteristics for large scale
e-Government load prediction that requires concurrent
optimization of accuracy, scalability and resource efficiency.

Random Forest provides good accuracy but suffers
from a relatively high training cost and prediction time,
which affected its ultimate rating. Simple linear regression
has low latency but exhibits weaker robustness metrics.
KNN and SVM models are not appropriate for large-scale
e-Government projects due to their limited scalability and
prediction accuracy, respectively.

XGBoost is chosen to be the optimal load prediction
machine learning algorithm for use in e-Governance
systems after considering all evaluation findings. Although
both LightGBM and CatBoost are as accurate as XGBoost
with respect to their predictions, XGBoost excels in its
combination of prediction accuracy, ability to scale to very
large datasets, ability to make fast inferences, and low
resource usage, all of which are important for large-scale
e-Governance services since operational costs are directly
affected by how quickly you can compute using XGBoost
versus alternatives.

Conclusion and Future Scope

This work proposes an extensive evaluation framework
for the use of machine learning to predict loads on
e-Governance systems. This evaluation framework will
evaluate not only the accuracy of the models but alsoinclude
other factors such as the computational requirements of
the models, how well they scale as the size of the input

data increases, and how effective their predictions are at
assisting users in making decisions about service usage. The
experiments provide evidence that, of all the algorithms
studied, XGBoost is the best choice for predicting the load
placed on e-Governance systems and therefore is a good
candidate for providing proactive resource management
for e-Governance systems.

Moving forward, future research will focus on the
incorporation of temporal deep learning into this framework
to improve the algorithms’ predictive power, the addition
of mechanisms for unsupervised real-time feedback, and
validation of this framework with real-time workloads from
e-Governance systems.
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