Periphyton Community Structure of the Spring-fed Foot-hill Stream Tamsa Nadi from Doon Valley, Uttarakhand, India

Pratibha Baluni¹, Pankaj Bahuguna², Rajani³, Rajesh Rayal³* and Nikhil Singh Kahera³

¹Department of Botany, S.D.M. Govt. P.G. College Dehradun-248001, Uttarakhand, India.
²Aquatic Biodiversity Lab, Department of Zoology, B.D. Govt. P.G. College Jaiharikhal-246193, Uttarakhand, India.
³Department of Zoology, School of Basic and Applied Sciences, SGRR University, Patel Nagar, Dehradun-248001, Uttarakhand, India.

*Corresponding author: drrajeshrayal@gmail.com; mundephtiranji@gmail.com

ABSTRACT

The periphyton diversity of the spring-fed foothill stream Tamsa River from Doon Valley, Uttarakhand, India was studied during March 2020 to February 2021. The outcome of the present study was that 29 different genera of periphyton, of which 49% belonged to Bacillariophyceae, 37% to Chlorophyceae, 9% to Myxophyceae and 5% to Copepoda class. It was found that the periphyton diversity in Tamsa River, 29 genera were observed in Upper stretch, 23 in middle stretch and 16 in lower stretch. Bacillariophyceae was the most dominant group of periphyton observed in all the seasons and from all upper, middle and lower stretch from Tamsa stream.

Keywords: Periphyton, Tamsa Nadi, Spring-fed stream, Doon Valley, Uttarakhand.

INTRODUCTION

Periphyton in the foothill spring-fed stream form an important component of the aquatic environment, providing food and shelter for micro-macrozoobenthos (Dobriyal, et al., 1991, 2002, 2009, 2011; Bahuguna and Negi, 2018; Bahuguna et al., 2019) and fish (Bahuguna and Baluni, 2019). Fragmentary studies involving Periphyton density and diversity development on the basis of riparian vegetation have been conducted (Sager et al., 2018; Baluni and Chandola, 2019). Periphyton growth can be light and nutrient restricted and it is directly affected by temperature (Dobriyal et al., 1999). Periphyton community is characterized by a very speedy recovery from the hostile physical condition such as High stream velocities or high turbidity levels to which it is recurrently subjected. According to Biggs and Kilroy (2004), the periphyton community can be spatially complex and temporally variable depending on a wide range of environmental and biological factors. In streams, several factors influence periphyton diversity (a) nutrients (Biggs and close 1989), (b) light (DeNicola et al., 1992), (c) temperature (DeNicola 1996, Baluni et al., 2017, 2018; Baluni, 2020), (d) current velocity (Dobriyal et al., 1999; Baluni, 2020) (e) physical disturbance (Dobriyal and Kotnala, 1993), (f) substrate type (Murdock and Dodds 2007), (g) competition (Stevenson et al., 1991) and (h) invertebrate grazing (Peterson et al., 2001).

Periphyton are the primary producers in the hill-streams; they play an integral role in the aquatic food chain particularly for hill streams where the number of plankton is comparatively lesser due to fast-flowing water current, slopes as well as low nutrient content. Periphyton communities commonly prefer littoral areas of aquatic ecosystems owing to the easy availability of hard surfaces and sunlight (Baluni et al., 2021).

Periphyton diversity and distribution in relation to stream physicochemical parameters have a huge impact on the occurrence of several mites (Bahuguna et al., 2020; Vladimir et al., 2019a,b; 2020a,b; Negi et al., 2021), macrozoobenthos (Kumar and Dobriyal, 1999; Rautela et al., 2006; Bahuguna and Dobriyal, 2018; Mamgain et al., 2021;) and drifting behavior of invertebrates (Bahuguna et al., 2019; Bahuguna and Dobriyal, 2020; Negi et al., 2021) and on fish diversity (Bahuguna et al., 2010; Bahuguna and
Information regarding periphyton distribution in Indian rivers is meagre in contrast to lakes and reservoirs (Singh et al., 1982; Dobriyal et al., 1985; Dobriyal 1985; Dobriyal and Singh et al., 1989; Dobriyal et al., 1993; Dobriyal et al., 2005; Sagir and Dobriyal 2020 and Baluni et al., 2021). The present communication is an effort to scrutinize the diversity of periphyton communities of Tamsa Nadi, a perennial foot-hill stream of Dehradun-district of Uttarakhand, India.

MATERIALS AND METHODS

Sampling Area
The current study was carried out from March 2020 to February 2021. Tamsa Nadi which is a spring-fed foot-hill stream is located in the North-Eastern part of the Doon Valley between 30°21’25.84”N Latitude and 78°01’00.45”E Longitude. It is also a tributary of the Tons River.

Stones of different sizes were picked up from the bottom of the stream and a known area (1cm²) was marked on the stone. The periphyton from the marked area (1cm²) was scrapped with the help of a scalpel and brushes and mixed with a small amount of distilled water and then labeled into the glass vial. Periphyton samples were preserved in 5% formalin solution. In the laboratory, periphyton were further concentrated in 100ml. The counting was done with the help of Sedgwick- Rafter counting slide using following formula:

\[n = (a \times 1000) \times b \]

Where:
- \(n \) = number of units of Periphyton / cm².
- \(a \) = average number of periphyton in a cubic millimeter capacity.
- \(b \) = Concentration prepared in ml.

Photo micrographic images of periphyton were analyzed with the help of a Stereo Zoom Trinocular Microscope with Tuscan camera attachment. The identification of the periphyton sample was carried with the help of stranded keys Prescott 1939a,b; (Desikachary, 1959; Ward and Whipple, 1999).

RESULT

Periphyton composition
During the present study, 29 different genera of periphyton were observed belonging to 4 classes: Bacillariophyceae, Chlorophyceae, Myxophyceae and Copepoda. In the present study, we observed that, Bacillariophyceae dominated the periphyton biomass of Tamsa Nadi spring-fed foot-hill stream (49%) followed by Chlorophyceae (37%), Myxophyceae (9%) and Animal community (5%). Periphyton composition of Tamsa Nadi stream is displayed in Fig. 1.

Periphyton diversity
Periphyton diversity at Tamsa Nadi spring-fed foot-hill stream from Doon Valley are presented in Table 1. In the present work, the stream was divided into three sections (a) Upper stretch (b) Middle stretch and (c) Lower stretch.

Table 1: Periphyton diversity at Tamsa Nadi spring-fed foot-hill stream from Doon Valley.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Periphyton Diversity</th>
<th>Upper Stretch</th>
<th>Middle Stretch</th>
<th>Lower Stretch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cladophora sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Oedogonium sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Spirogyra sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Cosmorium sp.</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Clasterium sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Geminela sp.</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Microspora sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>Volvax sp.</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Zygenema sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>Ulothrix sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>Chaetophora sp.</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Characium sp.</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12</td>
<td>09</td>
<td>07</td>
</tr>
</tbody>
</table>

Bacillariophyceae				
1	Bacillaria sp.	+	+	+
2	Diatoma sp.	+	+	+
3	Fragilaria sp.	+	+	+
4	Navicula sp.	+	+	+
5	Nitzschia sp.	+	+	+
6	Synedra sp.	+	+	+
7	Tabellaria sp.	+	+	+
8	Gomphonema sp.	+	+	+
9	Melosira sp.	+	-	-
10	Pinnularia sp.	+	+	-
Periphyton Community Structure of the Spring-fed Foot-hill Stream Tamsa Nadi from Doon Valley, Uttarakhand, India

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Periphyton Diversity</th>
<th>Upper Stretch</th>
<th>Middle Stretch</th>
<th>Lower Stretch</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Amphora sp.</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Cyclotella sp.</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Rhopalodia sp.</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>13</td>
<td>11</td>
<td>08</td>
</tr>
</tbody>
</table>

Myxophyceae

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Upper Stretch</th>
<th>Middle Stretch</th>
<th>Lower Stretch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rivularia sp.</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Oscillatoria sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Nostoc sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>03</td>
<td>02</td>
<td>01</td>
</tr>
</tbody>
</table>

Copepoda

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Upper Stretch</th>
<th>Middle Stretch</th>
<th>Lower Stretch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cyclops sp.</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Total no. of periphyton species: 28 Upper, 23 Middle, 16 Lower

a) Chlorophyceae

Chlorophyceae were represented by 12 genera in upper stretch (*Cladophora* sp., *Oedogonium* sp., *Spirogyra* sp., *Cosmorium* sp., *Clasteruim* sp., *Geminela* sp., *Microspora* sp., *Volvox* sp., *Zygenema* sp., *Ulothrix* sp., *Chaetophora* sp., *Characium* sp.). In the middle stretch, 9 genera belonging to Chlorophyceae (*Cladophora* sp., *Oedogonium* sp., *Spirogyra* sp., *Cosmorium* sp., *Clasteruim* sp., *Geminela* sp., *Microspora* sp., *Zygenema* sp., *Ulothrix* sp., *Chaetophora* sp.) were noticed. In lower stretch, 07 genera were collected (*Cladophora* sp., *Oedogonium* sp., *Spirogyra* sp., *Clasteruim* sp., *Microspora* sp., *Zygenema* sp., *Ulothrix* sp.).

b) Bacillariophyceae

Bacillariophyceae were represented by 13 genera in the upper stretch of Tamsa stream (*Bacillaria* sp., *Diatoma* sp., *Fragilaria* sp., *Navicula* sp., *Nitzschia* sp., *Synedra* sp., *Tabellaria* sp., *Gomphonema* sp., *Melosira* sp., *Pinnularia* sp., *Amphora* sp., *Cyclotella* sp., *Rhopalodia* sp.). 11 genera (*Bacillaria* sp., *Diatoma* sp., *Fragilaria* sp., *Navicula* sp., *Nitzschia* sp., *Synedra* sp., *Tabellaria* sp., *Gomphonema* sp., *Pinnularia* sp., *Amphora* sp., *Cyclotella* sp.) were obtained from middle stretch whereas 08 genera (*Bacillaria* sp., *Diatoma* sp., *Fragilaria* sp., *Navicula* sp., *Nitzschia* sp., *Synedra* sp., *Tabellaria* sp., *Gomphonema* sp.) were noted from the lower stretch of Tamsa stream.

c) Myxophyceae

Myxophyceae were represented by 03 genera in upper stretch of Tamsa stream (*Rivularia* sp., *Oscillatoria* sp., *Nostoc* sp.). 02 genera (*Rivularia* sp., *Nostoc* sp.) were available in middle stretch however only 01 genera (*Nostoc* sp.) was noted from the lower stretch of Tamsa stream.

d) Copepoda

In the present work, Copepoda were represented by 01 genera (*Cyclops* sp.) in middle stretch only.

DISCUSSION

Periphyton diversity is less in the lotic ecosystem of hill streams due to high water velocity and the absence of old leaves or logs for its attachment. In the present investigation, it was found that periphyton diversity in Tamsa stream, 29 genera were observed in Upper stretch, 23 in the middle and 16 genera noted from the lower stretch.

Bacillariophyceae evolved as the most dominant group of periphyton in all the seasons and from upper, middle and lower stretch from Tamsa stream. Gurumayum et al., (2000), Daimari (2003), Liang and Li (2008), Singh and Das (2009), Baluni et al., 2017, 2018 and Baluni (2020) also reported dominance of Bacillariophyceae in periphyton count. According to Hynes (1970), factors that influence the growth of periphyton population are light, temperature, water current, substrate, scoring effect of floods, water chemistry and grazing. The influence of light on periphyton distribution is considerable.

In the present study, it was observed that by the end of monsoon, when river water is very clear and light intensity reached up to stream bed due to swallow depth. Bacillariophyceae, genera showed greatest diversity in all the three stretches (Upper, Middle and lower). At all three sites, the average percentage of Bacillariophyceae was calculated to be 49%, Chlorophyceae 37%, Myxophyceae 9% and Copepoda 5%.

It was observed that during monsoon the periphyton population was lowest which may be due to fact that the surface destruction by monsoon rain or flood leads to deposition of silt particles on the foot-hill stream bed. Lesser diversity of Chlorophyceae and Myxophyceae in periphyton population is a common phenomenon observed by several workers (Daimari, 2003, Baluni et al., 2017, 2018).

Stream substrate influences periphyton population and diversity in addition to stability against the high flow (Baluni, 2020). In the present observation, only *Cyclops* sp. animal community was associated with the periphyton attached to the surface of the rocks. Animal community under periphyton was noticed by Gurumayum et al. (2000) from the Subansiri river of Arunachal Pradesh.

CONCLUSION

The overall study of periphyton diversity in the spring fed-hill stream Tamsa Nadi with moderate water current velocity revealed the dominance of Bacillariophyceae in all the three stretches. A total of 29 genera were observed...
in the Upper stretch, 23 in middle stretch and 16 in lower stretch.

REFERENCES:
Peterson, C. G., Horton, M., Marshall, M.C., Valett, H.M., and

streams and their importance to the village life in Garhwal Himalaya. *Uttar Pradesh J. Zool.* 5:139-144.

