
Abstract
Background: Monitoring respiratory dynamics during physical exertion is crucial for assessing cardiopulmonary performance, particularly 
in fields like exercise physiology, sports science, and clinical rehabilitation. Traditional methods of monitoring respiration typically depend 
on specialized sensors, which can be inconvenient during active movement. ECG-Derived Respiration (EDR) provides a non-invasive 
option by obtaining respiratory data from electrocardiogram signals.
Purpose/Objective: This study intends to evaluate respiratory dynamics at the onset of physical activity through the use of EDR. 
Important respiratory metrics, including respiration rate, variations in signal amplitude, and rhythm, are evaluated from ECG recordings.
Methods: ECG signals were collected from healthy subjects during the first grade of treadmill exercise. A hybrid signal processing 
approach was applied, combining wavelet transform for decomposing the ECG into relevant frequency bands and central moment 
analysis for capturing respiratory-induced morphological variations. The derived respiratory signals were used to estimate key parameters 
and were validated against reference data from a thermistor based respiratory sensor.
Results: The derived respiratory signals exhibit a steady increase in respiratory rate and noticeable ECG waveform modulation while 
active. The central moment method is superior to the wavelet approach at capturing fine-grained respiratory signal changes, especially 
during low-intensity stress. We have shown that the proposed method works well, based on the strong correlation of predicted 
parameters with reference measurements.
Conclusion: This study presents evidence for the application of ECG-derived respiration for non-invasive monitoring of respiration during 
strenuous activity. The central moment method performed the best in the evaluation process and is likely the best method for real-time 
processing situations where accuracy and clarity of the signal will benefit from the additional frequency of the signal. This technique 
will be applicable to wearable health monitoring devices, sports and exercise physiology settings, early detection of cardiopulmonary 
stress, and all requiring minimal sensor hardware.
Keywords: ECG Derived Respiration (EDR), Respiratory Dynamics, Physical Exertion, Central Moment Analysis, Wavelet Transform, 
Cardiorespiratory Assessment.
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Introduction
Respiration rate is an essential physiological parameter 
that reflects the metabolic demand of the body, and the 
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ventilatory response. It can be sensitive to early detection 
of changes in cardiorespiratory function, particularly 
while performing activity. It represents metabolic activity, 
metabolic oxygen demand and homeostasis. Monitored less 
than other vital signs such as heart rate or blood pressure, 
respiratory rate is often underutilized as an important 
indicator (Subbe et al., 2003).

The normal respiratory rate of a healthy adult at rest is 
between 12 and 20 breaths per minute. However, in times 
of exertion the respiratory rate rises through the body’s 
demands for increased oxygen and more efficient removal 
of carbon dioxide. Respiration rate is thus an important 
measure of cardiorespiratory fitness and the body’s ability 
to respond to stress.

There are many situations, such as exercise physiology, 
sports science, rehabilitation, and clinical diagnostics where 
continuous monitoring of Respiration rate is required. While 
traditional respirational activity capturing techniques (e.g., 
nasal thermistors, sensors that monitor chest expansion 
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or spirometry) can be very accurate, they are often 
accompanied by various limitations in practice (i.e., motion 
artifacts, discomfort during activity, having to make direct 
contact with the patient, or having to calibrate) (Nicolò et al., 
2023). When exercise intensity increases, these conventional 
methods might reduce performance or affect data quality 
(Hussain T. et al., 2023).

To overcome these limitations ECG-Derived Respiration 
(EDR) has emerged as a non-invasive and simple method of 
monitoring breathing. EDR uses crown moldable changes 
in the electrocardiogram (ECG) waveform associated with 
movement due to breathing (e.g. changes in electrode 
placement, thoracic resistance changes, and changes in 
cardiac autonomic tone) to quantify breath based variables 
(Folke et al., 2003). These small but meaningful changes 
enable researchers to derive respiration rate, rhythm, and 
amplitude dynamics from ECG reports without additional 
sensors (Moody et al., 1985).

Exercise is a vital contributor to the development 
of cardiovascular endurance, pulmonary function, and 
health, in general. Engagement in regular physical activity 
enhances oxygen uptake, increases cardiac output, 
and strengthens the respiratory muscles—enhancing 
cardiorespiratory eff iciency (Plowman et al., 2013). 
Assessing these physiological adaptations necessitates 
extensive observation during exercise, and assessment via 
Cardiopulmonary Exercise Testing is the most ideal method. 
It is considered the gold standard in assessing the integrative 
modulation of the respiratory, muscular, and cardiovascular 
systems to graded workloads (Balady et al., 2010).

The previous studies (Moody et al., 1985, Dela Cruz et 
al.. 2021, and Varon et al. 2020) examined EDR extraction 
methods focused on EDR extraction at resting, or normal 
conditions. These studies employed signal processing tools 
to obtain respiratory patterns from ECG in resting conditions. 
However, limited work has been done to validate these 
techniques under dynamic conditions such as exercise, 
where motion artifacts and rapid physiological changes 
complicate signal processing. 

In this context, selecting an appropriate exercise 
modality for data acquisition is critical. The treadmill emerges 
as a superior platform for evaluating respiratory dynamics 
during exertion. It allows for natural gait movement (walking 
or running), engages larger muscle groups, and results in a 
more representative cardiopulmonary response compared 
to other devices like cycle ergometers or step tests (Kenney 
et al., 2022). Treadmill protocols—especially graded ones 
like the Bruce protocol—enable controlled, progressive 
increases in workload, facilitating the detection of subtle 
respiratory changes at early exertion stages. Additionally, 
treadmill testing elicits higher peak oxygen consumption 
(VO₂ max) than other modalities and is widely accepted 
in clinical cardiopulmonary exercise testing (CPET) due 

to its reproducibility and integrability with physiological 
monitoring systems (Qi, W et al., 2019).

This study aims to assess respiratory dynamics during 
the onset of treadmill exercise using ECG-derived signals. A 
total dataset of 15 subjects—both male and female—was 
taken into consideration for this investigation. Simultaneous 
acquisition of the original ECG and respiration signals 
occurred during treadmill exercise. A hybrid signal processing 
framework is implemented, combining wavelet transform 
for signal decomposition and central moment analysis to 
extract respiration-induced morphological features from the 
ECG. The EDR-derived respiratory parameters are validated 
against thermistor-based respiration sensors, and the 
efficacy of the methods is evaluated based on correlation 
and signal clarity (Khambhati, V. et al., 2019).

Methodology
As explained below, the study was conducted using 
subject data collection, original signal pre-processing, EDR 
signal extraction, and statistical analysis of the estimated 
respiratory information.

In the present study, the Allengers Gemini A-DX treadmill 
was used for three minutes of exercise at a 10% inclination 
and 2.7 km/h. The experimental setup’s schematic diagram is 
displayed in Figure 1. Using varying levels of physical stress, 
exercise-based research aims to assess cardiopulmonary 
response. Treadmills and cycle ergometers are typically 
utilized as exercise equipment.

Equipment selection for Physical stress

Cycle Ergometer
A cycle ergometer applies variable resistance to pedaling, 
controlled manually or electrically. By reducing upper-body 
movement, it facilitates the collection of physiological 
measures like blood pressure, respiration, and heart rate. 

Figure 1: Experimental setup schematic illustration
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It induces lower overall physiological stress than treadmill 
exercise, resulting in a lower peak VO₂. It is cost-effective 
and suitable for patients with mobility limitations; arm 
ergometers can be used for lower-limb disabilities.

Treadmill
Treadmill exercise engages larger muscle groups, simulating 
natural walking or running. The workload is controlled 
by speed and incline, and intensity can be accurately 
controlled. It produces a higher peak VO₂, making it ideal 
for determining maximal cardiorespiratory fitness. There 
may still be some residual motion artifacts when acquiring 
the signal, but it is a better demonstration of endurance, 
cardiovascular performance, and functional capacity than 
cycling.

The treadmill was chosen for data collection for this 
study. It has the potential to use more muscle groups, 
provides greater physiological stress, and measures 
cardiorespiratory parameters with greater accuracy. The 
treadmill has other advantages, like better imitation of 
natural movement and the generation of a higher peak 
VO₂, which is preferable when considering the timing and 
recovery of respiration dynamics, including EDR signals for 
a more realistic training scenario.

Exercise Protocol and Subject Selection
The methods of workload application helps determine how 
exercise protocols for treadmill or cycle ergometer testing 
are typically classified:
•	 Continuous Ramp Protocol: It allows for a precise 

evaluation of VO₂ kinetics by increasing exercise 
intensity gradually. However, standardizing across 
subjects could be challenging.

•	 Multistage Exercise Protocol: Typically every 2-3 minutes 
the exercise intensity is increased. This allows evaluation 
of physiological responses under controlled conditions 
at each step and for rehearsed protocols it is often 
employed in research and therapeutic settings.

•	 Constant Work Rate Protocol: The participant maintains 
a constant workload for a constant period of time. 
Though simple, it does not allow for the assessment 
of peak physiological responses or maximal aerobic 
capacity as well.

Due to reliability and clinical relevance the Bruce protocol, 
a proven multistage treadmill exercise protocol, was 
employed for this study (Bruce, R.A. et al., 1971). The Bruce 
protocol increases the effort by accelerating the ramp incline 
and speed of the treadmill every three minutes. Some of the 
key advantages include:
•	 Higher peak VO₂, allowing for measurement of maximal 

cardiorespiratory capabilities.
•	 Large muscle groups are engaged, mimicking normal 

gait and running patterns, which is necessary for 
precise electrodermal responses (EDR) and respiratory 
dynamics measurements.

•	 Standardized phases that guarantee consistency and 
equivalency throughout all courses.

The Bruce protocol was selected because it does an 
excellent job of monitoring heart rate, blood pressure, ECG, 
respiration, and EDR, while providing a gradual, safe, and 
systematic increase in exercise intensity.

For the purposes of evaluating all physiological and 
haemodynamic parameters, a total of 15 participants (8 
male, 7 female, aged 20 to 40) participated in the current 
study. All subjects agreed to participate in a study after 
being fully informed of all research procedures and signing 
a consent form approved by the ethics committee of the 
Institute. A summary of the physical and haemodynamic 
characteristics for each subject is presented in Table 1.

ECG & respiration measurement system  
Physiological signals were recorded continuously during 
stage-I of the treadmill exercise protocol in order to 
represent baseline responses at an exercise condition.

ECG data were obtained from electrodes placed on 
the right arm, left arm, and right foot as ground in a 
Lead-I configuration (Rahman et al., 2024). Stage-I exercise 
provided a minimal workload so that early cardiac responses 
were visible (the first few changes in heart rate and rhythms) 
without major fatigue. The ECG signal was sampled at 1 kHz, 
filtered to eliminate power-line interference and motion 
artifacts, and recorded for later analysis.

Respiration was tracked using a thermistor sensor placed 
at the participant’s nostrils to measure airflow (Fei J. et al., 
2009). In Stage-I, the thermistor was able to detect slight 
temperature changes during inhalation and exhalation that 
were indicative of both respiratory rate and amplitude. The 
received analog respiration signal was amplified, digitized, 
and synchronized with the ECG to allow for integrated 
analysis of cardiopulmonary interactions.The ECG and 
respiratory signals which were obtained, were pre-processed 
to remove baseline drift and noise. The respiratory rate and 
amplitude were then calculated from the respiration signals 
while feature information was extracted from the ECG data. 
This allowed for an examination of the relationship between 

Table 1: Anthropometric profile of the Participants (n=15)
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cardiac and respiratory function at the beginning of exercise 
as the ECG and respiration signals were synchronized.

Extraction of EDR signal
The Exercised ECG signal was separated into several 
frequency sub-bands through wavelet decomposition to 
separate the respiratory components. The wavelet transform 
is ideal for the ECG analysis since the time and frequency 
localization are optimal in the algorithm. The ECG signal was 
decomposed at the various levels with wavelets known as 
Daubechies (db9), a wavelet often used in ECG processing 
due to its similarity to the QRS complex.

The detail coefficients preserved the higher frequency 
portions of the QRS, whereas the low frequency 
approximation coefficients took baseline changes associated 
with breathing into account. By reconstructing particular 
sub-bands we enhanced the respiratory modulation 
and extracted the EDR waveform. This method worked 
particularly well in limiting noise and movement artifacts’ 
interference with respiratory oscillations in the ECG (Singh 
et al., 2006). Figure 2 illustrates an example of the EDR signal 
reconstruction using wavelet transform (db9) method.

For a second method of EDR extraction, nth-order 
central moment algorithm was applied. Due to thoracic 
impedance and variations in electrode placement as the 
chest expands, the overall amount of RS- and QR-slopes 
change in amplitude with respiration. This method is built on 
the concept of analyzing the slopes (Schmidt et al., 2015). The 
nth central moment for a given QRS complex is defined as:

Where the ECG sample is denoted by x(i), the mean value by 
x, and the order of the instant by n. More precise respiratory 
estimations are obtained using the approach for higher-
order moments (n ≥ 4). The advantage of this slope-based 
method is that R-peaks stay constant, whereas QR- and 

RS-slopes exhibit regular breathing-related modulation, 
which makes them ideal for EDR extraction under exercise 
conditions in which motion artifacts are frequent.

The methodical process for obtaining the breathing 
signal from an ECG recording is depicted in the figure 3. 
The initial ECG signal, which includes the faint respiratory-
induced modulations as well as the cardiac electrical activity, 
is acquired. Concurrently, the real respiration signal—usually 
obtained from a direct respiratory sensor—is captured as 
a reference, demonstrating the regular rhythm of inhaling 
and exhalation. Using a bandpass filter of 0.1-0.3 Hz, which 
eliminates baseline drift and high-frequency noise while 
maintaining the frequency components linked to respiratory 
activity, the ECG’s respiration-related fluctuations are 
separated.

Filtering reduces other ECG patterns while enhancing 
sensitivity to respiration-related changes by calculating 
the fourth-order central moment of the ECG signal. Next, 
in order to make the derivation of respiratory events 
easier, this continuous signal is transformed into a discrete 
form (Khambhati, V. et al., 2025). These places associated 
to breathing are indicated by red markers in the discrete 
signal. The discrete points undergo a spline interpolation 
to recreate a continuous and smooth breathing waveform. 
Even without direct respiratory measurement, the resultant 
waveform serves as a reliable method of inferring breathing 
patterns from ECG data since it closely resembles the real 
respiration signal.

Results and Discussion
The present study evaluated respiration rate (RR) responses 
during Stage 1 exercise at a 10% grade in a cohort of 15 
participants, comprising 7 females and 8 males. The actual 
respiration rate (ARR) and estimated respiration rates using 
wavelet transform (ERR-WT) and central moment (ERR-CM) 
methods were recorded for three consecutive minutes of 
exercise (Table 2).

In the female participants (n = 7), the actual respiration 
rate (ARR) showed a progressive increase from 25.60 ± 1.24 
breaths per minute (bpm) during the first minute to 27.07 

Figure 2: Wavelet-Based EDR Signal Implementation: A db9 Approach
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Figure 3: Central Moment-Based Implementation and Analysis of EDR Signal

Table 2: Agreement analysis between measured and predicted respiration rates in Stage 1 exercise

± 1.22 bpm in the third minute. The increase is expected as 
typically physiological adaptation occurs when engaging 
in low intensity exercise. The estimated respiration rate 
based on the central moment method (ERR-CM) closely 
followed those of the ARR across the minutes (27.27 ± 1.28 
bpm to 28.20 ± 1.01 bpm) which suggested solid accuracy 
of estimation. The wavelet-based respiration rate estimation 
(ERR-WT) observed slight overestimations of RR (29.13 ± 1.46 
bpm to 28.87 ± 1.30 bpm). The lower standard deviations 
observed with ERR-CM suggest consistency and reliability. 

Similar trends were observed in the eight male participants, 
as ARR values increased from 25.29 ± 2.85 bpm in the first 
min to 27.20 ± 2.37 bpm in the third min. ERR-CM once again 
yielded the closest RR approximation to ARR (between 26.43 
± 1.46 bpm and 28.20 ± 1.01 bpm). ERR-WT overestimated 
RR values (29.13 ±1.46 bpm to 28.87 ± 1.30 bpm) more 
than ERR-CM. The larger SDs for males can be explained 
by the wider age (24-40 years) and BMI (16.3 - 30.1 kg/
m²) distributions yielding greater inter-subject variability 
compared to females.
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The values for ARR, ERR-WT, and ERR-CM given in Table 3, 
mean ± standard deviation showed that ARR increased five 
times from 25.60 ± 1.24 bpm to 27.07 ± 1.22 bpm, mainly with 
low variability for each measure. Values for ERR-WT were 
consistently the largest values (from 29.13 ± 1.46 to 28.87 ± 
1.30 bpm), meaning that RR was more often systematically 
overestimated. Values for ERR-CM showed predictable 
intermediary values (from 27.27 ± 1.28 bpm to 28.20 ± 1.01 
bpm), maintained closer alignment to ARR, but only slightly 
less variability than ERR-WT. ERR-CM provided less variability 
with more accuracy for overall estimates than ERR-WT.

Graphical Analysis
The comparative performance of the three estimation 
methods is illustrated in Fig. 4 using a grouped bar chart 
with error bars. The bar heights represent mean values, 
while the black lines denote the corresponding standard 
deviations. As shown in Fig. 4, ARR consistently remained 
lower than ERR-WT, whereas ERR-CM closely followed ARR 
values across all minutes. The shorter error bars associated 
with ERR-CM highlight its reduced variability and improved 
stability relative to ARR and ERR-WT.

Overall, both male and female participants demonstrated 
progressive increases in ARR across three minutes of stage 1 
exercise, consistent with physiological adaptation. ERR-CM 
consistently showed closer agreement with ARR compared 
to ERR-WT, which tended to overestimate RR. Gender-wise 
comparison indicated slightly higher variability in males 

due to a broader age and BMI distribution, whereas females 
exhibited more consistent respiratory responses. 

These results demonstrate that ERR-CM is a reliable 
technique for precise and consistent RR monitoring during 
low-intensity exercise and establish the credibility of ECG-
derived respiration estimation.

In the present study, we evaluated the performance of 
ECG-derived respiration (EDR) estimation methods during 
stage 1 treadmill exercise at 10% grade. Both male and 
female subjects showed substantial increases in actual 
respiration rate (ARR) over the three-minute exercise period, 
which would be expected cardiorespiratory adjustment to 
sustained submaximal exercise intensity. This trend followed 
the established physiological descriptions detailed in the 
exercise physiology literature that progressive increases 
in ventilation during exercise occur with the increase of 
workload to meet metabolic demand (Hellsten, Y. et al., 
2016).

The consistent overestimation of respiration rate 
with the wavelet-based, ERR-WT, was noteworthy; which 
corroborates with previous studies indicating that wavelet 
decomposition can overstate respiratory components and 
yield also greater skewed estimates while also making a 
modest contribution to the reduction of noise (Maghfiroh, 
A.M. et al., 2019). In contrast, the central moment based 
estimation, ERR-CM, demonstrated greater proximity to 
the overall ARR, based on both mean averages as well 
as standard deviation reductions. The lower variability 
inn ERR-CM indicates greater robustness to inter-subject 
differences, something that is beneficial for real-time 
monitoring.

The gender-wise analysis indicated that demographic 
factors played a role in the variability seen in the respiratory 
outcomes. In this study, the female subjects showed more 
consistent responses, possibly due to their relatively 
narrow ranges in BMI and age. Males showed slightly 
higher variability, likely due to the broader spread in the 
demographic groups - the BMI for males was (16.3-30.1 kg/
m²) and age had a range of (24-40 years). However, these 
findings are similar to previous findings in which estimates 
of respiratory dynamics and their stability were influenced 
by diversity in demographics (Bhatti, et al., 2019).

Conclusion
This investigation applied ECG-derived respiration (EDR) 
methods for analysis of respiratory dynamics during treadmill 
level 1 exercise. Consistent with anticipated physiological 
adaptation, the data indicated a progressive increase in 
actual respiration rate (ARR) across the entire three-minute 
protocol. All estimating methods were able to suggest 
relatively reliable responses, though the wavelet-based 
estimating technique (ERR-WT) tended to overestimate 
respiration rate, and the central moment technique 
(ERR-CM) demonstrated consistent lower variability and 

Table 3: Comparative values of ARR, ERR-WT, and ERR-CM in terms of 
mean ± standard deviation

Figure 4: Grouped bar chart illustrating the mean ± standard 
deviation (STD) of ARR, ERR-WT, and ERR-CM across minutes
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tighter association to ARR. Males demonstrated slightly 
more variability according to within-gender analysis likely 
contributed by the wider sampling of both age and BMI 
while the females demonstrated more stable and consistent 
respiratory responses.

In conclusion, the results highlight the reliability and 
accuracy of the central moment method for real-time 
tracking of breathing dynamics throughout low-intensity 
exercise. The central moment technique has great potential 
for sports physiology applications, wearable health 
systems, and earlier detection of cardiopulmonary stress, 
as this technique allows for accurate estimates of breathing 
patterns without actually having to wear additional sensors. 
Future studies are needed to test the scalability and 
generalizability of the proposed method, specific to testing 
a larger participant population, higher intensity exercise, and 
gold-standard measurements of respiration.
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