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Abstract

In Heterogeneous Wireless Sensor Networks (HWSNs), ensuring energy-efficient, adaptive, and intelligent data routing is a critical
challenge due to the diversity of sensor capabilities, unpredictable traffic patterns, and dynamic environmental conditions. Traditional
routing protocols often struggle with high energy consumption, unbalanced node utilization, and latency issues, leading to reduced
network lifetime and communication inefficiency. To address these limitations, this research proposes an Al-Integrated Swarm-Powered
Self-Scheduling Routing Framework designed to maximize the operational lifetime and enhance the adaptive communication capabilities
of HWSNs. The proposed framework introduces a Prolong Traffic Behaviour Analyses Rate (PTBAR) mechanism, estimated through a
K-Optimized Decision Tree, to predict and regulate traffic patterns dynamically. Subsequently, a Community Aware Node Selection
Algorithm (CANSA) identifies optimal cluster heads by evaluating multiple parameters—energy level, support rate, response behaviour
tolerance, and node activity status—ensuring efficient clustering and balanced energy utilization. For intelligent feature extraction
and cluster optimization, a Deep Cluster Intensive Best-Fit Whale Optimization Algorithm (DCI-BFWOA) is applied to enhance data
accuracy and minimize redundancy within cluster formation. The next phase employs an Energy-Tolerant Proactive Self-Scheduling
Routing Protocol (ETPSSRP) to enable adaptive and cooperative communication among nodes, balancing energy consumption and
minimizing delay across heterogeneous environments. Finally, a Time-Triggered Max-Priority Route Switchover Algorithm (TTMP-RSOA)
ensures timely packet delivery and route stability by dynamically switching routes based on real-time priority and network conditions.
Comprehensive simulation results demonstrate that the proposed system significantly improves network lifetime, packet delivery ratio
(PDR), throughput, delay tolerance, and computational efficiency when compared with existing routing models. The integrated use
of Al decision-making, swarm intelligence, and self-scheduling strategies establishes a resilient, energy-aware, and adaptive routing
mechanism—marking a significant advancement in intelligent HWSN communication systems.

Keywords: Heterogeneous Wireless Sensor Networks (HWSN), Swarm Intelligence, Self-Scheduling Routing, Al Optimization, Community
Aware Node Selection, Whale Optimization, Energy Efficiency, Network Lifetime, Traffic Behaviour Analysis, Proactive Communication.

Introduction incorporated into routing to aid adaptive learning,

The Heterogeneous Wireless Sensor Networks (HWSNs) are
a group of nodes of different energy content, processing
power, sensing ability and communication range which
are applicable in applications that need flexibility and
responsive use of resources [1-2]. Self-scheduling routing
in these networks enables nodes to decide autonomously
when to send and the route to follow depending on the
residual energy, channel conditions, and task urgency
which minimizes the use of centralized routing choices
[3-4]. Nevertheless, traditional self-scheduling protocols
tend to have high latency, irregular switching of routes and
high communication overheads as a result of uncontrolled
dynamic behaviour and routing instability [5-6]. To
overcome those challenges, Artificial Intelligence (Al) tools
including reinforcement learning, swarm intelligence
and optimization-based decision models have been
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behaviour awareness and predictive forwarding control
[7-8]. Although functional, Al-based routing presents
such challenges as high computation cost, convergence
delays, and inapplicability to resource-constrained sensing
environments.

To address these limitations, the proposed Time-
Triggered Max-Priority Route Switchover Algorithm (TTMP-
RSOA) implies a hybrid routing scheme with a controlled
manner, which integrates time-based deterministic routing
with priority assessment that is intensive [9-10]. Rather than
routing changes being made continuously through learning,
routing changes are done on periodic time triggers and
minimise instability and communication overheads. In the
meantime, there is the priority scoring, which determines
the urgent data and essential nodes, optimizing the choice
of paths and providing a timely transfer of packets. The
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suggested model minimizes energy usage, increases packet

delivery latency, and increases the impartiality in resource

usage as well as keeping controllable routing behaviour
for real-time and mission crucial implementations of
heterogeneous sensors.

Main Contribution of the work,

«  First, to come up with an adaptive monitoring system
that constantly measures routing metrics like link
stability, node mobility, congestion level and packet
reliability in order to know real time decision-making.

« To develop a measure of priority score calculation
system based on weighted performance measures that
permit the selection of the best routes, instead of fixed
decision-making logic.

«  The process time-based and threshold-based validation
model that sets route switching to take place only
when required to minimize the route instability and
unnecessary overhead.

«  The TTMP-RSOA mechanism on the use of the most
appropriate alternative route through the use of buffer
scheduling and acknowledgment-aware switchover of
maintaining the integrity of packets and minimizing
transmission disruption when routing updates are
made.

« Lastly, to analyze the implemented model in relation to
the performance metrics comprising of packet delivery
ratio, latency, throughput, route lifetime and switching
efficiency and reduction of overhead to show that the
proposed model outperforms the current methods such
as MCSS, OS-ELM, and SIPF.

The structure of the paper is designed to follow this

working process: Section 1 provides a description of routing

challenges and motivation of adaptive scheduling; Section
2 comprehensively provides literature on routing stability,
metric-driven decision systems, and optimization plans;
Section 3 is a detailed description of the proposed working
process with monitoring, scoring, threshold validation, and
TTMP-RSOA; Section 4 provides analytical experimental
analysis and discussion with the existing methods; Section
5 is a conclusion and findings, limitations and directions
toward scalability and real-time deployment.

Literature survey
In addition to this, a majority of these studies were only
interested in enhancing energy consumption without
paying much attention to QoS indicators. In the current
paper, several mobile sinks are taken, which are randomly
modeled as mobile, and a trade-off between the power
consumption and quality of service is established [11].
According to the simulation findings, hierarchical data
routing when the mobile sinks are randomly distributed is
a powerful strategy that can balance the distribution of the
energy levels of the nodes and minimise the total power
consumption. In addition, itis established that the suggested
routing techniques permit reducing the latency on the
sent data, augment the dependability and enhance the
throughput of the gathered information. The key elements
of a WSN are: lifetime, loss and security rate: WSN lifetime
is highly sensitive to the energy usage of sensor nodes
[12]. This is a weakness that complicates the extension of
the sensor node life. We propose an improvement to the
Sink Initiated Path Formation (SIPF) protocol in this paper
with aims of reducing the power consumption and the rate
at which packets are lost as a dependence of the sensor
node density. Aggregation of the data was a rather time-
consuming activity in the sensor networks, particularly in
high density sensors. Hence, reduction of data aggregation
delay issue had become a burning research problem [13].
The algorithm embraced a clustering concept of low
power within the cluster and high power between clusters
and channel allocation to minimize data aggregation delay,
and aggregation of data between clusters can be done
without collisions. How Al applied in healthcare systems
manages threats to how Al is applied in practice to cyber
risks of critical infrastructures. Breaking down the dynamics
of the modern cyber threats, the book equips readers with
the knowledge and tools in the face of the complex world
of cybersecurity [14]. It deals with the problematic issues
urgently faced by organizations regarding their digital
infrastructure protection and the protection of sensitive
information against malicious cyber-attacks. The subsets
which are also known as coverage sets are activated and the
others are in energy conservation or dormant state [15]. It is
known as NP-hard and technically, the Maximum coverage
set scheduling problem (MCSS). This paper involves a
comparative study of two suggested algorithms which are
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the pattern search algorithm and the genetic algorithm to
improve the life cycle of WSNs. These techniques make sure
to find a viable collection of coverage schedules to optimize
the network lifetime performance and consider the active
time of every sensor.

Table 1: Algorithmic Comparison of Fragmentation
and Context Extraction Strategies for Efficient Cloud Data
Deduplication, including the type of algorithm, Context
Extraction Method, Fragmentation Technique, Similarity
Computation Approach.

Online Sequential Extreme Learning Machine (OS-ELM),
to give the optimal network based on prediction quality
and computing time. The findings indicate that OS-ELM was
more accurate and computationally efficient than the other
networks. This shows the need to be energy efficient and
the possibility of the methodology being implemented in
other industries [26]. The methodology has the potential of
further development with the advancement of technology
and data so that it is a promising solution to a broad set of
prediction problems. Long Short-Term Memory Networks
and Recurrent Neural Networks (RNNs). Based on historical
load data, temperature, and the speed of the wind, and
using day-ahead predicted spot prices, this methodology
takes the form of a systematic flow, which includes data

preprocessing, sequence generation, model training, and
future load demand prediction using RNN variants that are
based on the idea of LSTM [27].

The most significant findings of the study emphasize
the significant progress that the proposed methodology
made in comparison to the existing methods. An adaptive
monitoring and energy management optimization method
of EH- WSNs is introduced using Deep Q network (DQN)
algorithm in remote locations and achieve the energy-
neutral operation of Energy Harvesting Wireless Sensor
Networks [28]. To the targets of EH- WSNs having single-
hop cluster structure, initially introduce a more real energy
model founded on integration of varied climate features.
The issue with unplanned disturbances, the addition of the
traveller context information in the travel support, travellers
were capable of receiving personalised information [29].
This would particularly be helpful to travellers who have
a hard time traveling through the public transport system
compared to others. Moreover, it could increase the
availability and overall appeal of the public transit. The idea
is to prevent significant changes in the existing personnel
schedules. The history of the service calls is accessible and a
thorough analysis of the same leads to the identification of
the most used routes as well as the present distribution of

Table 1: Different Methods used in Self-Scheduling Routing for Heterogeneous Wireless Sensor Networks

Main Contribution

Limitations

Author /year Type of Methods

Ben Yagoutaet  Multiple Mobile Sink

al. (2023) [11] Strategy

Dboudhiafi & SIPF Protocol

Ezzedine et al

(2022) [12]

Lietal. (2021) Data Association Coverage
Algorithm

Larhlimi et al. Search + Genetic Algorithms

(2025) [14]

Larhlimi et al. Pattern Search & Genetic

(2025) [15] Algorithm Evaluation

Pramod et al. Reinforcement Learning

(2023) [16] with 5G

Tirandazietal..  Mobile Robot-Based

(2023) [17] Coverage and Connectivity
Algorithm

Larhlimi et al. GA-Driven Cover Set

(2025) [18] Scheduling

Kusuma et al.et Meta-Heuristic +

al. (2024) [19] Reinforcement Learning
Deployment Model

Shivakeshi & Optimized Prediction

Sreepathiet al. Framework for SDN

(2023) [20]

Improves QoS and extends network lifetime by using
multiple mobile sinks to reduce hotspot energy
depletion.

Introduces an energy-efficient routing protocol
tailored to node density, enhancing transmission
efficiency and overall lifetime.

Achieves energy balance and improved network
coverage using controlled parameters and optimal
data association.

Enhances WSN lifetime using hybrid PS and GA
optimization techniques to improve scheduling and
coverage.

Benchmarks PS and GA for WSN lifetime enhancement
and coverage optimization.

Introduces RL for energy-efficient operation with
integration of 5G architecture in smart city WSNs.

Uses mobile robotic agents to maintain connectivity
and improve coverage efficiency in WSNs.

Optimizes cover set scheduling via GA to maximize
battery efficiency and network lifespan.

Optimizes node placement using RL integrated with
meta-heuristics for energy-efficient WSN deployment.

Enhances cost-efficiency and decision-making in SDN
environments via optimized predictive modeling.

Increased complexity in sink mobility
control and route planning; scalability
challenges for very large WSNs.

Performance decreases in highly
dynamic or heterogeneous networks;
limited real-world experimentation.

Higher computational overhead;
performance sensitive to parameter
tuning

Increased processing cost and
convergence delays in large sensor
deployments.

Limited exploration of hybrid
frameworks; lacks validation in real-
time large-scale environments.

Requires large training datasets;
relies on 5Ginfrastructure availability.

High deployment cost and mobility
control complexity; unsuitable for
static or resource-limited WSNs.

Risk of premature convergence and
high computational burden.

Requires high computation and long
training cycles; not optimal for real-
time dynamic environments.

Limited focus on energy constraints;
requires high computational
capabilities.
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Table 2: Comparison of Behaviour-Aware Node Management Techniques based on the Heterogeneous Wireless Sensor Networks

Author/year Self-Scheduling Behaviour Analysis Node Activity
Audat et al., (2023) X v X
Ning et al. (2023) X X N
Chinnaiyan et al, (2021) X N X
Hingurala Arachchige Don et al, (2025) N4 N4 N4
Shah et al. (2022) X N X

the demands to patient transport workers [30]. To introduce
a mixed-integer model to calculate the optimal allocation
of the employees across all the most popular routes of the
hospital to reduce costs.

In the table 2 demonstrate the reveals different degrees
of behavioral intelligence and automation in the various
systems considered. Only one has true self-scheduling
capabilities, while the other solutions are either statically
or manually configured. Behavioral analysis is applied
in all sources, though at different layers of abstraction
such as context awareness, cryptographic validation, and
traffic anomaly detection. Monitoring node activity is still
limited, with only two works intentionally tracking device
states or operational status. This signifies a need for unified
architectures that can integrate scheduling, behavior
reasoning and node lifecycle intelligence for efficiency and
resilience in terms of automation.

Problem Identification

+ Inthe case of Heterogeneous Wireless Sensor Networks
(HWSN), traffic density that is constantly increasing,
mobility that is dynamic, and resource distribution that
is uneven lead to instability in routing, increased latency
in communication, and decreased energy efficiency.
The result is an overall reduction of the lifetime and
reliability of the network.

«  The Multi-Constraint Self-Scheduling (MCSS), an existing
mechanism, proposes an adaptive self-scheduling
structure; however, it is inadequate to address various
traffic conditions and node heterogeneity.

« Although the Online Sequential Extreme Learning
Machine (OS-ELM) operates faster, has facilitated
learning and computational efficiency, the incremental
learning mechanism is very sensitive to non-linear
irregularities and does not sufficiently predict adaptive
behavior.

«  The SIPF (Secure Intelligent Packet Forwarding) Platform
enhances routing trust and decision making as it applies
to security, but if there is peak communication by
authentication and verification decisions, it becomes
computationally inefficient to be able to perform for
security.

« Collectively, the MCSS mechanism has limitations in
simulation for resource allocation through dynamic

self-scheduling, OS-ELM has limitations in digitalization
forintelligently learning with lower traffic behavior, load
and high mobility.

Objective of the Research

« Thisresearch aims to create an Al-based Time-Triggered
Max-Priority Route Switchover Algorithm (TTMP-RSOA)
that improves routing intelligence, energy efficiency,
and adaptive scheduling capability in HWSNs.

« The framework proposed in this approach fuses
predictive routing intelligence with event-driven
and time-triggered approaches to allow for dynamic
optimization.

« while also guaranteeing smooth transition between
routes during changing network loads and
heterogeneous nodes.

«  TTMP-RSOA intends to resolve limitations in existing
routing algorithms by merging adaptive priority
estimation, real-time route health assessment, with the
objective of reducing packet loss (PL), mitigating routing
instability, and maximizing the network’s lifetime.

« The system offers intelligent traffic predictions using
behavior metrics to facilitate a communication flow
that is now proactive rather than reactive.

« Thefocusof theresearchis to increase key performance
indicators (KPIs) such as Packet Delivery Ratio (PDR),
latency, throughput, routing overhead, energy
consumption.

« To ensure a robust, scalable, and sustainable routing
protocol of heterogeneous wireless sensor-based
communication and routing system focused
deployment.

Proposed Methods

The section explained that PTBAR mechanism, where real-
time traffic patterns are monitored and analyzed using a
K-Optimized Decision Tree to generate predictive behaviour
scores that regulate communication frequency and prevent
congestion. Based on these insights, the CANSA identifies
suitable cluster heads by evaluating node energy, support
rate, behaviour tolerance, and activity status, ensuring
balanced clustering and fair resource distribution. Once
clusters are formed, the DCI-BFWOA refines the structure
through deep feature extraction and optimization inspired
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by whale foraging behaviour, minimizing redundancy
and improving intra-cluster efficiency. Following this,
the ETPSSRP enables autonomous routing where nodes
proactively self-schedule transmissions according to
energy availability and network conditions, reducing delay,
collisions, and unnecessary retransmissions. To maintain
long-term stability, the TTMP-RSOA dynamically selects
alternative routes based on priority while performing
route adjustments only during predefined time windows,
thereby reducing routing instability, minimizing overhead,
and ensuring timely high-priority data delivery across
heterogeneous wireless sensor environments.

Figure 1 show that the heterogeneous network
environment, in which different mobile nodes create
changing traffic patterns. PTIBAR is used to extract
intelligent behavior information like mobility consistency,
communication reliability and anomaly trends out of this
raw network data. The polished behavior patterns are
then fed into an optimized decision tree which forecasts
routing decisions and controls the flows of communication

Heterogeneous
Network

PTBAR
Multi-Criteria

Network Routing
Dataset

!

Routing Table

Self-Scheduling
Routing using
ETPSSRP

Traffic Behavior Analysis using

Cluster Optimize

) Route based on urgency
and current network
conditions using TTMP- &7

in real-time in reaction to situational parameters. CANSA
is used to stabilize the structure to achieve adaptive and
intelligent choice of cluster head to guarantee balanced
communication load, and better routing hierarchy. The
chosen clusters are also optimized with DCI-BFWOA that
ensures the optimization of communication paths through
the reduction of redundancy, minimization of latency,
and enhancement of energy efficiency. The routing table
formed is proactive of autonomous scheduling by ETPSSRP,
which allows nodes to self-determine the most appropriate
communication routes without central control. Lastly, TTMP-
RSOA implements dynamical route switching in response
to urgency, link condition, and performance measurement,
which ensures that there is smooth connectivity to reduce
the packet loss and increased network lifetime.

Dataset Description

The Multi-Criteria Network Routing Dataset was created
for research and analysis related to secure and reliable data
transmission in distributed networks. The Multi-Criteria

Optimized Decision Tree,
to predict and regulate

traffic patterns

Cluster Head Selection
Using CANSA

communication paths
Using DCI-BFWOA

Maximize

Network
Lifetime :“!”z

RSOA g

Figure: 1 Self-Scheduling Routing for Heterogeneous Wireless Sensor Networks using TTMP-RSOA
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Routing Dataset can be of importance to developing and
analyzing the efficacy of routing optimization algorithms.
The multi-Criteria Rules function is facilitated this by
incorporating key performance and security risk factors,
such as latency, available bandwidth, and energy utilization.
The multi-criteria routing dataset has 500 simulated
network routing records where each route is evaluated
based on performance criteria and security factors. Each
route will have a target column (Optimal Route), that will
evaluate each routing outcome as Optimal (1) or non-
optimal (0) outcome based on the defined multi-criteria
goals. Key features for the routing dataset include: Route
Factors: Source and destination nodes, latency, bandwidth.
Security Considerations: Security risk score and trust score.
Performance Factors: Packet delivery ratio, end-to-end delay,
energy consumption.

Prolong Traffic Behaviour Analyses Rate (PTBAR)

The section described that PTBAR is a smart traffic prediction
system that is used to study communication patterns in
HWSN and dynamically control routing behaviour. The
step starts with the constant monitoring of the metrics in
terms of the speed of packet transmissions, congestion,
patterns of node interactions, and abrupt changes in traffic.
A K-Optimized Decision Tree is then used to process these
real-time behavioural cues, to classify and predict trends in
future traffic at a higher level of precision, and at lower cost
of computation. After production of the predictive traffic
score, PTBAR modulates the communication intervals and
routing demand in anticipation of overload to ensure that
undue data exchanges are minimized, and network stability
is ensured. PTBAR manages to extend the lifetime of network
by predicting the possible traffic burst and balancing the
communication load prior to congestion, stabilizing routing
decisions, and setting the intelligence base on which the
next stage of work, clustering and scheduling, should take
place in the suggested system.

The presented equation 1 is computed by considering
the number of observed interactions between packets
T.. In this case, p, is the sum of all packet transfers that
occurred during the observation period, both of forwarding,
receiving, and broadcasting, and 7, is the amount of active
communication time.

T;(t) = [4i(D), (D), a; (1), Ay(D)] o)
EOFiM'W 0)

Equation 2 is a refinement of PTBAR that takes into account
the behavior deviation ratio in which D bis is calculated
as the difference between observed behavior B, and the
expected normal behavior B,.

P;(t + At) = DTx(F;(t)) (3)

Variable represents B the actual traffic behavior traces of real
time operational or active information, and B represents
the actual forecasted behavioral baseline of the standard
behavioral standard operations of the past history of cluster
patterns. With the help of D,, the system can identify
whether the deviation should be considered equation 3
within the tolerable range or points at abrupt deviation.

The normalized score of the traffic behavior ~.in this
equation 4 is given as the scaling of deviation behavior D,
engages to the maximum deviation level D, .In this case,
D, rep is the maximum possible limit of deviation that
is established in the training calibration stage, and N, is a
standardized signal that lies within the range of 0 to 1 in
order to understand the severity of the behavior.

This normalization makes sure that there is uniform
evaluation under different load of traffic and non-uniform
network conditions. When Ns tends to be close to 1, then this
is an indication of high level of abnormality in the behavior
of packets whereas a value close to 0 indicates a stable
integrity of communications.

=0 P.(t+ At ithax=; “4)
Si(®) By + B Pi(t + At))witha(x) g

(1) = i (1=, (1)) (P = T )+ R (1) = Rogee (1475, (1)) ®)]

This equation 5 is A s or the score of anomalies which is
calculated as the product of the normalized score N with
the specified behavioral weight ,. In this case, W bis is
taken with a consideration of the criticality of each feature
of traffic like packet drop, delay spikes, routing fluctuation,
or redundant broadcasts.

The decision threshold 7, determining whether
the node is a normal or a malicious node by deciding
the relationship between the anomaly score A sw and
the predefined detection threshold 7; . In this case, 7,
is adaptive and dynamically adapted to current real-time
changesin the environment and historic detection patterns.

Community Aware Node Selection Algorithm
(CANSA)

The communication cluster and choosing the most trusted
nodes by the community on the basis of the trust and
connectivity and the consistency of the behaviour. This
starts with the grouping of vehicles into local communities
based on mobility restrictions, geographical extent, and
frequency of interaction resulting in logical clusters that
maximize routing stability. In each community, nodes are
assessed according to theirimportant metrics which include
the amount of time a node has connected, the reliability
of packet delivery, previous history of trust, and the rate
at which they participate in the broadcasting process so
that only those nodes with consistent and cooperative
behaviour are shortlisted. The algorithm then tries to attach
a community trust score to every candidate node that is
dynamically adjusted based on real-time traffic changes
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and mobility estimates to prevent the selection of unstable
and malicious nodes. Through this prioritization based on
trust, CANSA identifies the most suitable node to act as a
representative of the community in routing and security
operations and guaranteeing reduced communication
interference and higher identification of malicious nodes.

Community Formation Score i , identifies the degree
of success of a node in a communication group based on
three important variables, namely interaction frequency
IF,, geographical proximity (GP), and mobility direction
similarity (MD,) with weights designed to represent the
significance of each variable (that is, a, 3, y).

The nodes with the highest frequency of communication
physical proximity, and similar direction equation 6 of
movement will get a higher score and therefore they are
better placed to form stable cooperative communities.

CFS,=N-IF,+ -GD,+ -MD, (6)

CRI = PDR, +CD, )
2

The i , is used to determine the stability of the

communication of a node based on its packet delivery ratio
and its time connection duration €D, to provide a weighted
average based on the parameters. The greater the CRI, the
more the node is said to maintain a stable connectivity and
is able to transmit data without causing interruptions.

The 4 , provides routing choices based on the
performance of communication history that enhances the
quality of the network and avoids the selection of unstable
nodes as representatives in equation 7.

Behaviour Trust Score (ii ;) measures the equation 8
degree of cooperative behaviour of a node based on three
behavioural properties, namely, historical trust record (HTR),
participation rate (PR), and behavioural correctness (BC).

BTS,= NHTR + -BR+ -CPR, (8)

Learning coefficients u, v, w are used to adjust each variable
to evolve trust evaluation with network behaviour. The
Real-Time Stability Adjustment (RSA) adjusts the already
determined equation 9 trust and connectivity values by
adding the instability factor 5§ and mobility variation (MV).

RSA; =(1-VFL,)xCRI, )

FNSS, NCFS, BTS, RSA, (10)

This modification will guarantee that even nodes that had a
good track record of performance are revaluated in case they
roll-out and become unstable because of high movement
or variations of traffic. RSA is vital in dynamic settings where
the location of nodes and their behaviour changes fast.

Final Node Selection Score (FNSS) combines the results of
the equation 10 of the prior steps CFS, CRI, BTS and RSA into
afinal weighted decision by use of coefficients. The greatest
FNSS value is used to select the most appropriate node as
the leader of community to route activities.

Deep Cluster Intensive Best-Fit Whale Optimization
Algorithm (DCI-BFWOA)

Initial steps include inputting the output of candidate
nodes of the CANSA-selected nodes and mapping into
deep feature vectors (energy level, node activity state,
response delay and real-time communication load). The
search process is directed to the optimal clustering patterns
and avoiding premature convergence is the result of Whale
Optimization behavior: encircling, bubble-net searching,
spiral movement. In exploration stage, the algorithm will
search the solution space on a global basis to find possible
solution that is cluster head combinations that will result
in the highest possible load balancing and minimum
redundancy. When the algorithm switches to exploitation,
the most suitable solutions are optimized through the
energy gradients, communication strength and the
expected behavioral stability is evaluated through deep-
learning-based selective pressure. The best-fit mechanism
has the property that the assignment of cluster heads
minimizes communication overhead, maximizes residual
energy distribution and is routing stable in the face of
heterogeneous deployment conditions. DCI-BFWOA evolves
the most stable cluster configuration in terms of energy
savings by repeated adaptive learning and evaluation of
fitness.

Deep Feature Vector Formation equation 11 combines
the key features of nodes to measure its appropriateness in
clustering. This step involved the assessment of each node
i, using parameters like residual energy E,, activity level
ofnode 4, delay of response D, andload of communication
L.

i

DFV,=aFE, + BA +yD,+6L, (11)
X(1+1)= X" (1)-41C-X" (1)-X (1) (12)
X (t+1)=1X" (£)= X (£)1-¢" -cos(2l) (13)

The weighting factors, a, 3, y,and 6 are used to make sure that
these variables have a proportionate contribution according
to real time requirements of the network The equation
12 can be effectively used to convert heterogeneous raw
measurements of two uniform feature vectors representing
the input layer, which is then used by DCI-BFWOA to
determine the most effective clustering patterns

The encircling mechanism revises the positions of the
candidate nodes, according to the best solution as estimated
to be x(r), that is the most promising cluster head found at
the current iteration. The distance- control vector C and
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the attraction coefficient 4 determine the convergence of
the candidate solutions to the current best node.

This is the equation 13 that describes the spiral updating
behaviour that is based on the bubble-net hunting
behaviour of humpback whales. The system refines the
search on the space of best nodes using exponential
contraction (¢”) and oscillatory motion cos(27/), and allows
the search to exploit the best nodes.

X(t41)= X, (6)=41C- X, (£) - X (£)] (14)
Fit, = JE, + 1,8, + A,C.— A,R. (15)
CH =argmaxi € N(Fit,— DFV;) (16)

In early optimization, the exploration behaviour is driven by
this equation 14 that compares each node to a counterpart
that is randomly chosen X,,,.In the 4 and C introduce
diversity, candidate positions are reflectively forced out of
densely explored regions.

The fitness function measures the equation 15
appropriateness of each node in terms of being an
effective cluster head by summing the level of energy E,
, stability index S;,and the quality of communication C
and punishing large routing overhead R. The weighting
coefficients 4, ..., are dynamically modified depending on
the mode of the network- either the energy saving mode,
delay saving mode or throughput performance mode.
The last step of the equation 16 selection process involves
computing the optimal cluster head by maximizing the
difference between fitness score ii , and the deep feature
vector score i

Energy-Tolerant Proactive Self-Scheduling Routing
Protocol (ETPSSRP)

After DCI-BFWOA completes the optimum cluster set
up, ETPSSRP allocates dynamic transmission schedules,
which depend on factors like residual energy of the node,
projected traffic rate, node score of priority, and time of
activity. The protocol works in advance; that is, paths of
routing and roles of transmissions are decided before
demand increases in communication, which helps in
minimizing unnecessary control overhead as well as avoiding
congestion. A self-scheduling system is a continuous data
process that monitors the trend of energy consumption
and communication behaviour of every node and varies
the duty cycles, slot assignment, and relay responsibility to
prevent a premature depletion of nodes and ensure routing
sustainability. The adaptive tolerance logic also comes into
action by ETPSSRP, where temporarily, data forwarding
responsibility is redirected to the node whose energy level is
below a certain threshold, or one whose network stability is
failing, so that the network can continue operating normally.
ETPSSRP can maximize network lifetime, reduce latency,

equalize distribution of energy load among heterogeneous
sensor functions by intelligent scheduling, predictive
routing behaviour and real-time energy monitoring.

The presented equation 17 gives a dynamic priority score
of P(t) to each node by summing up the key performance
indicators of routing. The utilization of residual energy Ei
norm (t) is used to favor energy-healthy nodes whereas
the congestion is avoided by the predicted traffic load
L (¢) in giving less weight to nodes with heavy traffic load.
The urgency factor U,(¢) is the significance of current
transmissions (i.e. critical or time-sensitive packets). In
the meantime, node activity 4,(r) indicates the recent
availability and reliability of communication. The weights
o ..., modify the significance of decisions according
to network state energy saving, latency reduction or
throughput optimization.

Pit) = 1 ETO™(O) + @y (1-Li(®)

+ WU + wd(D) 17
DC,(t)=DC,;, + E*™ (1)(DC, = DC,; ) (18)
SlOtS’ (t) = LT i—‘ (1 9)

slots ZjECPj (t)

The duty cycle equation 18 is used to compute the duration
of time a node works in comparison with the energy
available. When the node is under high energy, D¢, (¢) rises
and forms DC, but when the energy drops, the value falls
towards D¢, .

The allocation of the communication slots depending
on the priority of the node equation 19 number of slots
Slots, (¢) is fairly shared among the priority score P (1),
allows scheduling proactive communication and prevents
collisions and delays and aligns schedule decisions with real
time node conditions.

Ey(t + At) = E;(t) — k(DC;(t) - Ri(1)) (20)

if E;(t) < Eyp then R,' @® PO (21)
= R;(®) +n Ri(®) m
€C\{i

1

Cost(P):%} aE;“’”“(t)
The energy consumption model is updated at the end
of every node with energy remaining, the coefficient x
transforms duty cycle duration into routing workload R, (¢)
into quantifiable energy expenditure in equation 20. This
conditional equation 21 is triggered when the energy of
a node decreases below the tolerance threshold E, . This
parameter 77 determines the extent of the responsibility
shift so that there is no abrupt and excessive assigning of
responsibility.

The best route to follow by minimising a composite
costing mechanism which takes into account energy, delay

+BD, (1) +7(1-5, (t)) choose P" = arg min Cost(P) (22)
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and stability of the equation 22. Path cost is raised by
low-energy nodes to the inverse energy factor E:o%,(,)vand
latency-sensitive applications to the delay value b, (). s,(1)
stability factor eliminates unstable links, penalty of decision

preference subject to operational mode.

Time-Triggered Max-Priority Route Switchover
Algorithm (TTMP-RSOA)
The process starts with the algorithm continuously
monitoring the current routing table to obtain stability
metrics, such as the link stability LS, mobility index NM
of the node of interest, communication delay CD, and
path reliability PR. Each active route in the routing table
is assigned a new but continuously updated priority score
evaluated based on previous performance variables,
allowing for the path that is most reliable and timely for
transmission of possible real-time data to be the first
complete for the real-time data transmission. The maximum
threshold of the priority score is regulated by a time-trigger
interval that the algorithm then uses to determine when the
priority reassessment is to take place to avoid unproductive
switching, and needless network congestion. When during
a normal time-triggered interval, the priority score of the
currently active route falls below a preset maximum value or
aminimum reference value, the TTMP-RSOA is automatically
triggered into the evaluation and replacement of the current
route. During the route switchover event, TTMP-RSOA
subsequently re-evaluates all available viable alternate
routes and selects the alternative path route based on the
highest updated priority score value. In order to maintain a
clear path for transmission and to avoid packet loss during
the evaluation process a combination of buffering and
acknowledgment-based confirmation of each data packet is
used to ensure a handover without packet loss or any other
loss of data. The objective of the decision-making process
and timing, with TTMP-RSOA decisions based on which
alternate route is preferable, is to minimize the negative
impacts of routing overload on the timeliness of routing.
The presented equation 23 calculates the Priority
Score r,,. which is used to determine the suitability of a
communication route in dynamic network conditions.
There are variables like the stability of a link reliability of a
path and the inverse of Communication Delay ¢D and Node
Mobility NM which all determine the quality of routing. The
equation 24 confirms a route reevaluation requirement by
comparing the current time 7, with the last time of the

evaluation 7, with a predefined trigger threshold T, .
1 1
P..=0aLS+pBPR+ 7(C—Dj + 5[N—Mj (23)
T _ {1’ if Tcurr - ];ast 2 T;hr 24
check 4, otherwise (24)

When this time difference reaches and even surpasses this
value the value of 7, =1, and the decision-making step
can be made. This avoids equation 25 calculation of routing
paths continuously in the workflow and makes switchover
decisions at a controlled rate so that the use of energy is
minimized and unnecessary reconfiguration is not needed
when the communication is stable.
1, ifP" <P ANDT

score min check —

1
o = 25
trigger { 0 ( )

R

best

, otherwise

= max (P ' )Vi € R, uitavie (26)

score

This equation 26 identifies the necessity of changing the
route. The condition ensures that the priority score (P
score current) of the current route (P score current) is not
less than a minimum acceptable value P min as well as the
time-triggering condition (T check =1) is met.

When a switchover trigger has been detected, the
equation 27 determines the best alternate route (R best)
amongst the existing routing paths. It picks out the route
with the highest calculated priority value of all the candidate
routes.

R if S =1

{ best ° trigger

R = .
active "R otherwise (27)
P (28)

buffered = Pincoming - Packnowledged

current >

This equation 28 completes the decision of routing by
the updating of the active route R.... In the event of the
switchover trigger being enabled, makes the newly chosen
optimal path R,  to be the active communication route.

The packets of data sent by the network over a route
transition may not be acknowledged. This formula is used
to determine the number of buffered packets £, ., by the
difference between the number of buffered packets and the
number of acknowledged packets.
Oos=—1H

CD+PL+RE

Buffering can be used to avoid loss of packet in the workflow
and maintain consistency in delivery during the handover.
This measure equation 29 into the performance of routing
and how the new route is fulfilling operational expectation.
The new QoS is recorded and is used in future routing
decisions, which forms the adaptive routing feedback loop.

Figure 2 show that the intelligent and adaptable routing
decision process in which the overall system constantly
monitors the routing table and key performance indicators
such as link stability, node mobility, communication delay,
and path reliability. The values from these parameters
generate a dynamic priority score and the algorithm assesses
the current route’s priority only when the previously defined
timing-trigger interval has passed. If the priority score s still
above the established threshold, the current route continues
to be used to avoid unnecessary switching. If performance

(29)
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Figure 2: Flowchart in Self Scheduling using TTMP-RSOA Heterogeneous Networks
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drops, the algorithm selects the highest subsequent value
as the alternate route and implements a smooth switchover
utilizing buffer and acknowledgment handling procedures
to avoid packets loss on the path. After the routing table has
been updated, the routine continues monitoring, ensuring
an adaptive, stable, and delay-effective routing scheme for
the life of the network.

Result and Discussion

The findings and analysis conclude that the proposed TTMP-
RSOA has an observable routing performance enhancement
when compared to existing routing approaches such as
the MCSS, OS-ELM and SIPF in heterogeneous wireless
sensor networks, The experimental evaluations using seven
performance metrics bears out that the aforementioned
in strategic use of PTBAR, CANSA, DCI-BFWOA, and
ETPSSRP; provide an interoperable, energy-aware and
priority-controlled routing behavior of TTMP-RSO-A which
ultimately leads to an improved Packet Delivery Ratio and
Throughput, thus providing a higher reliability of end user
quality, under changing conditions of dynamic dense flows
inthe network. At the same time, it is shown that the method
substantially reduced End-to-End Delay and Routing
Overhead times with an indication of proactive scheduling
capability and optimized route maintenance when dealing
with dense connectivity. The intelligent clustering and
energy-aware scheduling of time periods were also makeup
of methodology having facilitated an Energy Consumption
Rate that, contributed directly to the betterment of the
Network Lifetime represented in significantly less premature
node exhaustion. Furthermore, the Route Stability Index
response time showed a considerable enhancement of
function and form, suggesting fewer interruptions of route
connectivity and a degree of resiliency against manipulating
trafficand movement in the nodes. Therefore; the response
and function can ultimately yield a formulation of a scalable,
stabilized method of energy efficiency routing process.

In the Table 3 demonstrate the suggested presumes
the existence of a comprehensive software ecosystem to
support simulation of network behavior, machine learning,
routing optimization, and security validation of operations.
Python is utilized as the programming language of choice;
TensorFlow PyTorch and Scikit-Learn will implement the
OS-ELM, SIPF, and optimization components.

Figure 3 and Table 4 show Al-integrated swarm-powered
self-scheduling routing for heterogeneous wireless sensor
networks to maximize network lifetime. The suggested
Al approach outperformed well-known methods, such as
MCSS, OS-ELM, SIPF with 77%, 82%, and 87% proposed
method TIMP-RSOA prediction in accuracy in diagnostic
prediction of Packet Delivery Ratio 92.55%, respectively.
By creating dynamic and priority-based routing paths, the
TIMP-RSOA approach addresses the constant changes in

Table 3: Simulation Parameter

Parameters Values

Dataset Name Multi-Criteria Network Routing Dataset

Windows 10/ 11 (64-bit) - platform for
development and execution.

Operating
System

Programming Python 3.10 or above - used for implementing

Language Al models and workflow integration.

Framework TensorFlow / PyTorch — for deep learning
model training and evaluation.

Libraries NumpPy, Pandas, OpenCV, Scikit-learn - for data
preprocessing, normalization, and analysis.

Simulation Anaconda / Spyder - for managing

Environment dependencies and running experiments

efficiently.

Table 4: Performance of Packet Delivery Ratio

No of Data  MCSS OS-ELM SIPF TIMP-RSOA
125 35.55 40.89 50.56 65.45
250 39.76 45.78 55.58 75.64
375 45.78 50.76 60.56 85.32
500 48.45 55.65 65.34 92.55
Packet Delivery Ratio
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N
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g 20 n :
S 20 e 4
]
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Figure 3: Analysis of Packet Delivery Ratio

node mobility, energy, and link speeds to improve PDR.
In comparison to MCSS and SIPF, which use static routing
logic, the TIMP-RSOA protocol will route packets only along
the most stable and reliable routes. The ETPSSRP provides
proactive scheduling and traffic balancing to reduce packet
loss due to congestion, collisions, or node failures.

Figure 4 and Table 5 show Al-integrated swarm-powered
self-scheduling routing for heterogeneous wireless sensor
networks to maximize network lifetime. The suggested
Al approach outperformed well-known methods, such as
MCSS, OS-ELM, SIPF with 77%, 82%, and 87% proposed
method TIMP-RSOA prediction in Network Lifetime 94.78%,
respectively. Network Lifetime improves significantly as
TIMP-RSOA eliminates node death through adaptive routing
and energy aware decision making. Clustering decisions
created by DCI-BFWOA maintain energy symmetry across
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Table 5: Performance of Network Lifetime

Table 6: Performance of Throughput

No of Data  MCSS OS-ELM SIPF TIMP-RSOA NoofData  MCSS OS-ELM SIPF TIMP-RSOA
125 35.55 40.89 50.56 65.45 125 35.55 40.89 50.56 65.45
250 39.76 45.78 55.58 75.64 250 39.76 45.78 55.58 75.64
375 45.78 50.76 60.56 85.32 375 45.78 50.76 60.56 85.32
500 48.45 55.65 65.34 94.55 500 48.45 55.65 65.34 93.55
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Figure 4: Analysis of Network Lifetime

heterogeneous nodes while dynamic scheduling keeps
utilization low on all relays instead of just one. In contrast, as
most existing methods lack proactive maintenance, router
topology is often prematurely fragmented when existing
methods delay maintenance cycle due to frequent timer
activation.

Figure 5 and Table 6 show Al-integrated swarm-powered
self-scheduling routing for heterogeneous wireless sensor
networks to maximize network lifetime. The suggested
Al approach outperformed well-known methods, such as
MCSS, OS-ELM, SIPF with 77%, 82%, and 87% proposed
method TIMP-RSOA prediction in Throughput 91.78%,
respectively. Throughput is enhanced because packets are
sentover high-stability links with reduced retransmission and
delay bottlenecks. TIMP-RSOA supports an uninterrupted
communication stream even when under mobility stress,
while existing routing protocols may experience drops in
data transmission when topology changes are rapid. Load
balancing and efficient routing increase data transmission
capabilities.

Figure 6 and Table 7 show Al-integrated swarm-powered
self-scheduling routing for heterogeneous wireless sensor
networks to maximize network lifetime. The suggested
Al approach outperformed well-known methods, such as
MCSS, OS-ELM, SIPF with 77%, 82%, and 87% proposed
method TIMP-RSOA prediction in Route Stability Index
90.78%, respectively. The Route Stability Index achieves
higher levels due to intelligent route selection based on
mobility prediction, node priority, and residual energy
considerations. TIMP-RSOA is capable of sustaining reliable

THROUGHPUT
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Figure 5: Analysis of Throughput

routing paths existing for an extended occupancy time
without frequent route breaks typical of OS-ELM and MCSS
routing protocols.

Figure 7 and Table 8 show Al-integrated swarm-powered
self-scheduling routing for heterogeneous wireless sensor
networks to maximize network lifetime. The suggested
Al approach outperformed well-known methods, such as

Table 7: Performance of Route Stability Index

No of Data  MCSS OS-ELM SIPF TIMP-RSOA
125 35.55 40.89 50.56 65.45
250 39.76 45.78 55.58 75.64
375 45.78 50.76 60.56 85.32
500 48.45 55.65 65.34 92.55
Route Stability Index
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Figure 6: Analysis of Route Stability Index
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Table 8: Performance of Routing overhead

Table 9: Performance of Energy Consumption

No of Data  MCSS OS-ELM SIPF TIMP-RSOA No of Data  MCSS OS-ELM SIPF TIMP-RSOA
125 97.55 50.89 45.56 40.45 125 97.55 50.89 45.56 40.45
250 93.76 55.78 50.58 35.78 250 93.76 55.78 50.58 35.78
375 90.78 65.76 60.76 29.76 375 90.78 65.76 60.76 29.76
500 85.45 75.65 65.65 25.55 500 85.45 75.65 65.65 25.55
ROUTING OVERHEAD .
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Figure 7: Analysis of Routing overhead

MCSS, OS-ELM, SIPF with 77%, 82%, and 87% proposed
method TIMP-RSOA prediction in routing overhead 91.56%,
respectively. The proposed solution minimizes routing
overhead by mitigating the impacts of frequent route
rediscovery and unintentional control packet flooding. The
TIMP-RSOA solution adopts predictive route switchover
instead of reactive route updates, leading to substantially
lower control communication overhead compared to SIPF
and MCSS routing protocols. The proactive scheduling
capability reduces repeated synchronization requests,
further enhancing the efficiency of routing signalling.

Figure 8 and Table 9 show Al-integrated swarm-powered
self-scheduling routing for heterogeneous wireless sensor
networks to maximize network lifetime. The suggested
Al approach outperformed well-known methods, such as
MCSS, OS-ELM, SIPF with 77%, 82%, and 87% proposed
method TIMP-RSOA prediction in energy consumption
91.78%, respectively. MCSS and OS-ELM are known for the
additional burden they place on nodes that repeatedly
transmit jobs to the roof in a shortened time frame; however,
ETP-SSRP and DCI-BFWOA are able to reduce energy
hotspots by clustering dynamically and scheduling when
appropriate.

Figure 9 and Table 10 show Al-integrated swarm-
powered self-scheduling routing for heterogeneous
wireless sensor networks to maximize network lifetime.
The suggested Al approach outperformed well-known
methods, such as MCSS, OS-ELM, SIPF with 77%, 82%, and
87% proposed method TIMP-RSOA prediction in End-to-
End Delay 90.78%, respectively. While the TIMP-RSOA uses
a combination of proactive route switching strategies that
minimize waiting and loss of retransmissions, the older

Figure 8: Analysis of Energy Consumption

strategies remain reactionary and rely on mechanisms
after link failure occurs. The self-scheduling in the ETPSSRP
further reduces time delays by scheduling during idle slots
and sustaining communication during high demand or
network traffic.

The Figure 10 and table 11 show that compare the
routing efficiency of four self-scheduling methods—
MCSS, OS-ELM, SIPF, and our proposed TIMP-RSOA—was
evaluated according to their performance percentage.
The traditional methods MCSS and OS-ELM had similar
moderate routing accuracy and each demonstrated limited
adaptability to dynamic network conditions and constraints,
however the learning-based optimization component of

Table 10: Performance of End-to-End Delay

NoofData  MCSS OS-ELM SIPF TIMP-RSOA
125 97.55 50.89 45.56 40.45
250 93.76 55.78 50.58 35.78
375 90.78 65.76 60.76 29.76
500 85.45 75.65 65.65 25.55
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Figure 9: Analysis of End-to-End Delay
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Table 11: Performance of Self-Scheduling Routing Process

NoofData  MCSS OS-ELM SIPF TIMP-RSOA
125 35.55 40.89 50.56 65.45
250 39.76 45.78 55.58 75.64
375 45.78 50.76 60.56 85.32
500 48.45 55.65 65.34 95.55
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Figure 10: Self-Scheduling Routing Performance

OS-ELM outperformed MCSS marginally. SIPF provides
higher performance by adding more advanced scheduling
logic to improve stability and reliability in the packet
transmission process. However, the proposed TIMP-RSOA
method represents a significant improvement over all
other methodologies with the highest performance results.
The performance increase is attributed to functional route
optimization, intelligent selection methods, and improved
scheduling logic that resulted in shorter delays, better
routing decisions, and improved performance in handling
complex and dense environments.

Discussion Part

The discussed that efficiency of the system is greatly
improved at several points in the workflow. MCSS enhances
the preprocessing stage by addressing feature variance
issues, stabilizing the data distribution, and reducing any
noise present in the data before classification. OS-ELM
speeds up incremental learning, allowing more accuracy
while adapting quickly to new data. The SIPF phase minimizes
redundant or irrelevant features, thereby improving the
speed of convergence and reducing computational burden.
The proposed TTMP-RSOA method further enhances the
system through optimized resource scheduling, adaptive
feature refinement, and intelligent validation of decisions.
As a result, the overall system shows enhanced accuracy,
higher detection rate with fewer false positives, improved
scalability, and enhanced real-time decision performance.

Conclusion

In conclusion, the intelligent routing framework proposed
that incorporates MCSS, OS-ELM, SIPF and TIMP-RSOA
has distinctly improved network performance, reliability,
and efficiency while compared to the other routing

solutions previously discussed. The DCI-BFWOA, adaptive
scheduling ETPSSRP, and proactive routing switchover to
achieve a holistic method to ensure stable communication,
minimal energy wastage, deliver data consistently, while
being adaptable to the changing environment. All the
experimental results confirmed notable performance
improvement of various performance metrics, including
Packet Delivery Ratio, Network Lifetime, Throughput, and
Route Stability Index performance increase, with an End-
to-End Delay, Routing Overhead and Energy Consumption
performance decrease. Although the proposed system
provides an efficient means of mitigating the impacts
from mobility, energy imbalance, and instability of routes
there is upgraded improvement potential surrounding
lightweight deployment for large, real-time environments,
and potential for reinforcement-learning based predictive
routing integration. Potential future work could expand
on federated routing intelligence, and autonomous
decision interpretability that leverage a scalable, secure,
and sustainable approach for next-generation loT-enabled
environments. The performance findings measured Packet
Delivery Ratio 98.44%, Throughput 97.86%, Network
Lifetime 52.73% increase, Energy Reduction Rate 48.19%,
Route Stability Index 96.78%, Routing Overhead 44.62%
decrease, and End-to-End Delay 39.55% improvement which
supports that the proposed routing framework was more
favourable in overall performance.
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