ot [}
=

{

THE SCIENTIFIC TEMPER (2025) Vol. 16 (12): 5337-5342 E-ISSN: 2231-6396, ISSN: 0976-8653

®)

Doi: 10.58414/SCIENTIFICTEMPER.2025.16.12.21
RESEARCH ARTICLE

https://scientifictemper.com/

The Implementation of Artificial Intelligence-Based
Models of Postoperative Care in Paediatric Healthcare
Settings

Kanchan Chaudhary'’, Saurabh Charaya?

Abstract

Postoperative pain management in pediatric patients remains an important problem because young children cannot verbally express
pain. Unrelieved pain can have adverse neurodevelopmental outcomes, but conventional intermittent monitoring is often insufficient
in capturing transient pain crises, especially in resource-constrained settings. This study develops and tests an Al-based multimodal
construct of continuous, automated pain surveillance but specifically within the healthcare ecosystem of Haryana, India. Employing
a mixed-methods approach to research, we combined clinical data on 100 pediatric patients at four districts (Hisar, Sirsa, Rohtak and
Panipat) with an Al simulation trained on multimodal data (facial expressions, cry acoustics, and physiological vitals). The classification
accuracy obtained by the proposed Al model was 90.20% and Area under the Curve (AUC) was 0.93, showing a good correlation (r=0.88,
p < 0.001) with expert clinical evaluations by FLACC and Wong-Baker scales. An alert latency of less than 1 minute was shown by the
system, thus significantly faster than manual rounds. Furthermore, a perception survey of 20 healthcare officials showed a high degree
of acceptance of the clinical utility of the technology (mean score 4.4/5) although training gaps are a major hindrance (score 3.65/5).
The findings suggest that response latency and missed high pain episodes can be considerably reduced by Al assisted monitoring by
around 45%. This framework can provide an ideal, scientifically-backed answer to improving the quality of care of pediatric patients in
Haryana, as long as ethical governance and structured training of personnel take priority.
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Introduction assessment in this demographic is beset with challenges.
Unlike adults, infants and toddlers do not have the cognitive
and linguistic maturity to describe the intensity or nature

of their distress. As a result, pain in children is often under-

The Clinical Challenge-Assessment in Non-Verbal
Patients

Effective and continued pain control is one of the pillars of
pediatric postoperative management. However, accurate
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recognized and undertreated. Unrelieved acute pain can
cause severe physiologic stress response, negatively impact
tissue healing, lengthen hospital stay, and can even result
in long-term neurodevelopmental consequences or chronic
pain as an adult.

Drawbacks of Existing Monitoring Practices
Current clinical practice is based on significant use of
intermittent observational scales (FLACC: Face, Legs, Activity,
Cry, Consolability scale in young children, Wong-Baker
FACES scale for those a bit older). While these tools have
standardized assessment, they offer only “snapshots” of a
child’s status at the moment the child is being observed.
In resource-constrained healthcare settings, such as
the ones commonly found in Haryana, India, high patient-
to-nurse ratios make continuous manual monitoring
practically impossible. This intermittent monitoring leads to
“blind spots” where episodes of breakthrough pain which

Published: 25/12/2025



The Scientific Temper. Vol. 16, No. 12

Kanchan Chaudhary and Saurabh Charaya 5338

happen between set nursing rounds may go unnoticed and
unrelieved for dangerously long periods.

The Technological Solution: Artificial Intelligence and
Multimodal Fusion

Theintersection of Artificial Intelligence (Al) and the Internet
of Medical Things (IoT) promises to provide a revolutionary
solution to these shortcomings. Patil et al. (2023) highlight
that loT-based smart healthcare monitoring can enable
data analytics to be performed in real time, which is critical
for providing timely clinical interventions. By using the
capabilities of modern sensors, Al systems can be used
to continuously analyze multimodal signals (i.e. facial
expressions, acoustic signatures of crying, physiological
parameters, e.g. heart rate, oxygen saturation) to objectively
detect distress.

Research shows that multimodal models (fusing visual,
audio and physiological data) generally perform much better
than unimodal systems (e.g. video only) in terms of accuracy
and reliability. Such systems provide an “objective sixth
sense” to caregivers, which can sense subtle physiological
changes (e.g., tachycardia) in a behaviorally-stoic child with
exhaustion. Furthermore, the use of such data-intensive
systems needs to follow strict ethical standards. Ahamed et
al. (2023) point to the need for studying privacy-preserving
machine learning algorithms, like federated learning, to
secure healthcare data sharing.

Context and Objectives of Study

Despite the potential of artificial intelligence in healthcare,
there is a big gap in the research work on its practical
adoption in the specific infrastructural environment of
Indian healthcare, especially in Haryana. In resource-
constrained hospital environments such as available in this
region, continuous monitoring of the patient is often not
possible due to high patient-to-nurse ratios, leaving children
vulnerable to untreated pain in between scheduled rounds.
Consequently, the objectives of this study are primarily to
fill this gap by: first, developing and simulating an artificial
intelligence (Al)-based multimodal system for monitoring
postoperative pain and distress among children; second,
assessing the accuracy and potential contribution of this
system to the care of children by comparing it to expert
clinical judgment for children; third, making specific
recommendations regarding the implementation of
Al-driven models, especially in local healthcare settings; and
fourth, comparing the proposed Al framework with current
practices in pain assessment to quantify the improvementin
detection and response times. Ultimately, this research aims
to offer a validated roadmap to bring objective, automated
vigilance into pediatric postoperative care.

Review of Literature

The field of pediatric pain management has been radically
changed from some bed-side observations to sophisticated

and data-driven algorithmic monitoring. This review
provides a synthesis of basic theories, clinical evaluation
tools and the recent explosion of Artificial Intelligence (Al)
and Internet of Things (loT) applications.

The Clinical Imperative and Behavioral Scales

Pain in children is under-recognized and undertreated
because of barriers to communication. Friedrichsdorf
and Goubert (2020) and Eccleston et al. (2021) stress that
unrelieved pediatric pain is a violation of basic human rights
and canresultinlong-term and adverse neurodevelopmental
outcomes. To try to overcome this, standardized scales of
observation were developed. Merkel et al. (1997) introduced
the FLACC scale, which is a quantitative measure of distress
based on the Face, Legs, Activity, Cry, and Consolability
which is still a gold standard for young children. For older
children, Hicks et al. (2001) validated the Faces Pain Scale-
Revised, which is available for self-report. A contribution of
Ambuel et al. (1992) was the COMFORT scale (specifically
for intensive care environments) and Malviya et al. refined
these tools for cognitively impaired children in 2006 with
the r-FLACC. Despite their usefulness, these methods are
based on intermittent “snapshots”, often missing transient
crises of pain between nurse rounds.

Biological Underpinning: Acoustics and Facial
Expression

The automation of pain detection is based on biological
markers discovered in early biological research. Porter et al.
(1986) and Fuller and Horowitz (1990) determined that infant
pain cries had different acoustic characteristics (high pitch,
dysphonation) than hunger cries. Similarly, Zeskind and
McMurray (1997) identified some specific spectral features
of neonatal distress vocalizations.

In the visual area, Ekman and Friesen (1978) developed
the Facial Action Coding System (FACS), which is the
taxonomy for analysing facial muscle movements. An
evolutionary account of these expressions was given by
Williams (2002), while specific “Pain Face” actions (e.g. brow
lowering, orbital tightening) were identified by Prkachin
et al. (2008). Lucey et al. (2011) then created a benchmark
dataset, the UNBC-McMaster Shoulder Pain Expression
Archive, that could be used to train early computer vision
models.

The Rise of Affective Computing and Artificial
Intelligence

Picard (1997) set the stage for Affective Computing: he
postulated the feasibility of machine recognition of
human affective states. Early implementations by Bartlett
et al. (2014) and Patel (2015) have shown that machine
learning can be used to decode facial movements and cry
acoustics with increasing levels of accuracy. Sikka et al.
(2015) pioneered the use of these technologies in clinical



5339 THE SCIENTIFIC TEMPER, December 2025

settings involving pediatric patients, when they used a
computer vision system to measure postoperative pain.
As the progress of deep learning increased, Solovyev et al.
(2021) attempted to use 3D Convolutional Neural Networks
(CNNs) to capture dynamic features of a face which results
in a significant improvement in recognition rates.

Multimodal Fusion and Real Time Monitoring

Single modality systems frequently tend to fail during
noisy or occluded data. Zamzmi et al (2019) reviewed the
automated techniques and made a case for multimodal
fusion - conjunction of face, voice and vitals to increase the
robustness. Ben-Israel et al. (2013) proposed an index called
the Nociception Level (NOL) index that clearly illustrates
the value of multi-parameter physiological monitoring.
Subramanian et al. (2024) further formalized conceptual
frameworks for Al-based multimodal monitoring for
pediatric care specifically.

The practical implementation of such complex models
requires the Internet of Medical Things (IoMT). Patil et al.
(2023) discussed patient monitoring in real time, focusing
on how loT analytics can process sensor data in real time to
generate actionable clinical insights.

Ethics, Explainability and Privacy
Implementation of Al in pediatrics raises important ethical
issues. Hoogenboom et al (2020) and Montgomery (2020)
discussed the ethical implications of surveillance and the
need forinformed consent in pain management in children.
Furthermore, “black box” Al models are often not trusted
by clinicians; Craven and Shavlik (1996) emphasized the
importance of extracting understandable rules from neural
networks to make them explainable from the start.
Finally, data privacy is of the utmost importance.
Ahamed et al. (2023) studied privacy-preserving machine
learning, showing that federated learning can be used to
share healthcare data and train machine learning models
without the need to share sensitive patient information. This
would be in line with the need for secure and valid tools in
neonates discussed by Hummel et al. (2010).

Conclusion of Review

The literature provides a clear progression from the hand
scales to complex, privacy-conscious, artificial intelligence
systems. However, there is still a gap in the application
of such multimodal loT-enabled frameworks in resource
constrained settings such as Haryana which the current
study tries to fill.

Materials and Methods

This study used a mixed-methods design of research which
combined descriptive clinical observations in combination
with experimental Al simulation. The methodology was
divided into two different phases, namely the primary

data collection, from pediatric wards in Haryana, and the
development of a multimodal Al framework using secondary
datasets.

Collection of Clinical Data (Primary Data)

Participants and Setting

The study was carried out in four districts in the state
of Haryana, namely Hisar, Sirsa, Rohtak and Panipat. A
purposive sample of 100 pediatric patients (age 1-12 years)
undergoing routine surgical procedures (eg, hernia repair,
appendectomy, tonsillectomy, orthopedic adjustments)
was selected. Additionally, 20 healthcare officials (pediatric
surgeons, anesthesiologists, nursing supervisors, and
administrators) were also involved to provide expert
validation and perception feedback.

Observation Protocol

Postoperative pain was measured at four specific points, 1,

6, 12,and 24 hours after surgery. At each interval, healthcare

professionals documented information on a standardized

form:

« Pain Scores The FLACC scale (Face, Legs, Activity, Cry,
Consolability) was used for children aged 1 through 6
years; the Wong-Baker FACES scale was used for children
aged 7 through 12 years.

- Physiological Vitals: Heart Rate (HR), Respiratory Rate (RR)
and Oxygen Saturation (SpO2) were monitored using
standard bedside monitors.

- Behavioral Indicators: The behavioral indicators (e.g.,
grimacing, restlessness, intensity of crying) were
manually recorded to ground truth labels.

Ethical Considerations

The study followed ethical guidelines of ICMR. Informed
consent was obtained from parents or guardians of all
participants in the pediatric group. Data were strictly
anonymized with unique alphanumeric codes to protect the
privacy of the patients before digital processing.

Model Development for Al (Simulation Phase)

To model an automated monitoring system, a multimodal
deep learning model was created and trained on ethically
obtained secondary datasets (e.g. UNBC-McMaster, COPE
Infant Pain Database, MIMIC-III) reflecting the visual, audio,
and physiological patterns of pediatric pain.

Model Architecture
The framework was based on a late-fusion approach using
a combination of three specialized subnetworks:

e Visual Module

A Convolutional Neural Network (CNN) based on the VGG-16
architecture was used to extract facial action units (e.g.,
eyebrow lowering, eyes squeezing) from image frames with
size 224x224 pixels.
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e Audio Module

A Long Short-Term Memory (LSTM) network processed
the audio features, in this case Mel-frequency cepstral
coefficients (MFCCs) and detected the acoustic signature
of pain cries over neutral sounds.

e Physiological Module

A Gradient Boosting Regressor to analyze time series trends
in vital signs (HR, RR, Sp0O2) in order to detect deviations
caused by stress on physiological processes.

Fusion and Inference

The feature vectors of these three modules were
concatenated in a fully connected fusion layer. This
layer predicted a categorical (low, moderate, high) and
continuous (0-10) pain level. The predictions of the model
were then validated to the “ground truth” scores collected
in the clinical phase to determine accuracy and correlation.

Perception Survey

A structured survey was conducted to address institutional
readiness, and it was administered to the 20 healthcare
officials. The six dimensions that were measured in the
survey-that is, technological awareness, clinical utility,
ethical acceptability, training needs, implementation
feasibility, and perceived reliability-were measured with a
5-point Likert scale.

Statistical Analysis

Data analysis has been done using Python (v3.10) libraries

(NumPy, Pandas, Scikit-learn) and the software package,

Statistics for Social Science (SPSS v27.0).

« Model Performance: Accuracy, Precision, Recall
(Sensitivity), F1-Score, Area under the Receiver
Operating Characteristic Curve (ROC-AUC) were
the different metrics used to evaluate the model
performance.

Clinical Validation Pearson'’s correlation coefficient (r) was
used to assess the agreement between Al-predicted
scores and clinician-recorded scores. Paired t-tests were
used to evaluate changes in pain levels over time.

Results

Findings of Clinical Observation

The ground truth data gathered from 100 pediatric patients

in Haryana states were used for the validation of the Al

model.

- Demographics: The sample was 58% male and 42%
female patients. The majority (55%) were between 1-6
years of age, the population most in need of measures
to assess non-verbal abilities.

Pain Trajectory: Postoperative pain experienced a
clinically expected decrease. The average expert-
assessed pain score was 8.4 (Severe) at 1 hour after

surgery and reduced to 2.2 (Mild) at 24 hours after
surgery.

« Physiological Correlation High positive correlations
were found between behavioral distress (e.g., crying)
and physiological correlators such as Heart Rate
(r=0.74,p<0.001) and Respiratory Rate (r=0.68, p<0.001),
establishing the validity of using vital signs as proxy
indicators for pain.

Al Model Performance

The multimodal Al framework was tested on a test dataset
based on standard classification metrics. The model had
high efficacy in distinguishing between pain and no pain
states.

The Ablation Study Multimodal superiority

In order to confirm the need to have a multimodal approach,

the entire model has been compared to single-modality

baselines. The data stream fusion had much better

performance than single sensors, especially on safety

metrics critical aspects.

+  Visual-Only Model: Obtained an accuracy of 82.70% and
High-Pain Recall of 0.851.

« Multimodal Fusion: Multimodal now has increased
accuracy to 90.20% and Recall of High-Pain to 0.894.

This proves that the information using visual, audio and

physiological data decreased the incidence of missed severe

pain episodes by 12.8 percent (baseline) to 6.1 percent.

Clinical validation and Correlation.

The Al scores of the pain were compared to the scores of the

pediatricians and nurses of the ground truth.

« Correlation: There was a strong positive correlation
between the prediction of Al and the clinician ratings
(Pearson r =0.88, p < 0.001).

«  Error Analysis: The Mean Absolute Error (MAE) was 0.41,
which is on a 0-10 scale, meaning that the judgment of
the Al is close to the judgment of human analysis with
little variation.

« Confusion Matrix: The model accurately identified 83
analysis of the cases with No Pain and 72 analysis of the
cases with Severe Pain. The majority of misclassifications
fell between two adjacent categories (e.g., Mild vs.
Moderate), which is less risky clinically than the lack of
severe pain.

Operational Impact

The virtual field test revealed that there were considerable

benefits in operations as compared to manual monitoring

policies:

« Response Time: The Al system showed a median alert
latency of less than 1 minute, as opposed to a median
latency of 30-60 minutes in the case of the variable
latency of a manual round.

+  Safety: The system decreased the number of episodes of
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Table 1: Model Performance of the Multimodal Al Model

Performance Metric Value (%) / Score Clinical Interpretation

Accuracy 90.20% The overall correctness of the model in classifying pain states versus non-pain states.

Precision 88.60% Indicates a Igw rate of false positives, which is crucial for minimizing «alarm fatigue»
among nursing staff.

Recall (Sensitivity) 91.00% The system’s ability to Cf)rrectly |den.t|fy actual pain episodes. A high recall ensures
that very few cases of distress are missed.

F1-Score 89.80% The harmonlc_ mean of precision anvd recall, demonstrating a balanced performance
without skewing towards one metric.

ROC-AUC 0.93 Represents excellent capability to discriminate between different pain levels (Area

Under the Receiver Operating Characteristic Curve).

high pain that went undetected about 45% in relation
to intermittent manual charting.

4.6 Stakeholder Perception

The questionnaire of 20 healthcare officials demonstrated

that there is high institutional preparedness but mentioned

certain barriers.

«  Clinical Utility: 4.4/5, which is a high rating considering
a solid faith in the tool to enhance accuracy.

. Ethical Acceptability: Evaluated to 4.1/5, but depends on
rigid privacy regulations.

« Training Readiness: With the lowest score of 3.65/5, the
primary obstacle in the adoption is identified as staff
training.

Discussion

This study was designed to simulate and test an artificial
intelligence (Al)-driven multimodal approach to determine
postoperative pain in pediatric patients that was specifically
adapted to the healthcare environment of Haryana, India.
The results strongly support the hypothesis that automated
systems can offer a reliable, objective and continuous “safety
net” for non-verbal pediatric patients.

Validation of Multimodal Fusion

The main result showing high correlation (r=0.88) and
high classification accuracy (90.20%) with expert clinical
scores of the multimodal artificial intelligence model is a
validation of the biopsychosocial theory of pain, which
indeed posits distress as a complex experience that could
be best understood and explained through a combination
of behavioural and physiological signals.

Consistent with the recent literature by Salekin et al.
(2022) and Gholami (2022), our ablation study verified
that the fusion of visual, audio, and physiological data
significantly outperforms the unimodal approaches. The
better recall of high pain episodes by the fusion model
(0.894) is clinically important; the fusion model suggests
that the system is able to detect “silent suffering” - that is,
instances where the child is simply too tired to cry (audio

silence) but who nevertheless have a tachycardia or micro
expressions of distress. This is possible by overcoming the
limitations of intermittent manual rounds, which leave
patients unobserved for extended periods of time.

5.2 Efficiency in Operation and Real-Time Analytics

The simulation showed a dramatic reduction in alert
time (< 1 minute vs. 30-60 minutes for manual rounds).
This is consistent with the work of Patil et al. (2023) who
highlighted that the benefits of loT-based smart healthcare
frameworks guarantee real-time data analytics that is
essential forimmediate clinical intervention. By automating
the detection process, the system has the potential to free
nursing staff from routine observation tasks, enabling them
tofocus on higher value patient care and emotional support.

5.3 Overcoming the Barriers to Adoption in Haryana

While the technical performance is strong, the survey of

healthcare officials had shown that the key to successful

adoption in Haryana is human and ethical considerations
more than technology.

« Thelow score for “Training Readiness” (3.65/5) identifies a
significant gap. As cited by Kuttikat et al. (2022), clinician
trust is fragile and without structured digital literacy
workshops, false alarms may be experienced, creating
“alert fatigue” and system abandonment.

« Privacy and Ethics: The survey indicated some moderate
concerns about data privacy (score 4.1/5). This augments
the case for non-negotiable privacy-preserving
techniques for healthcare data sharing as argued by
Ahamed et al. (2023). Our proposed edge-computing
architecture, in which data is processed locally on
hospital servers instead of on the cloud, addresses these
concerns directly as patient data never has to leave the
safe hospital environment.

Limitations

This study is based on a simulation that was trained on
secondary data sets, and calibrated with local primary data.
While this approach is methodologically valid for a feasibility
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study, it does not capture the chaotic nature of the acoustic
environment in a busy general ward of a district hospital.
Future research will have to include longitudinal clinical trials
to validate the robustness of the system against noise in the
real world and against various demographics of patients.

Conclusion of Discussion

The implementation of Al into pediatric postoperative care
is a transition from reactive to proactive pain management.
By pooling the precision of multimodal deep learning and
the empathy of human caregivers, this framework provides
aviable route to standardizing and elevating pediatric care
in resource-constrained settings.
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