
Abstract
Postoperative pain management in pediatric patients remains an important problem because young children cannot verbally express 
pain. Unrelieved pain can have adverse neurodevelopmental outcomes, but conventional intermittent monitoring is often insufficient 
in capturing transient pain crises, especially in resource-constrained settings. This study develops and tests an AI-based multimodal 
construct of continuous, automated pain surveillance but specifically within the healthcare ecosystem of Haryana, India. Employing 
a mixed-methods approach to research, we combined clinical data on 100 pediatric patients at four districts (Hisar, Sirsa, Rohtak and 
Panipat) with an AI simulation trained on multimodal data (facial expressions, cry acoustics, and physiological vitals). The classification 
accuracy obtained by the proposed AI model was 90.20% and Area under the Curve (AUC) was 0.93, showing a good correlation (r = 0.88, 
p < 0.001) with expert clinical evaluations by FLACC and Wong-Baker scales. An alert latency of less than 1 minute was shown by the 
system, thus significantly faster than manual rounds. Furthermore, a perception survey of 20 healthcare officials showed a high degree 
of acceptance of the clinical utility of the technology (mean score 4.4/5) although training gaps are a major hindrance (score 3.65/5). 
The findings suggest that response latency and missed high pain episodes can be considerably reduced by AI assisted monitoring by 
around 45%. This framework can provide an ideal, scientifically-backed answer to improving the quality of care of pediatric patients in 
Haryana, as long as ethical governance and structured training of personnel take priority.
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Introduction

The Clinical Challenge-Assessment in Non-Verbal 
Patients
Effective and continued pain control is one of the pillars of 
pediatric postoperative management. However, accurate 
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assessment in this demographic is beset with challenges. 
Unlike adults, infants and toddlers do not have the cognitive 
and linguistic maturity to describe the intensity or nature 
of their distress. As a result, pain in children is often under-
recognized and undertreated. Unrelieved acute pain can 
cause severe physiologic stress response, negatively impact 
tissue healing, lengthen hospital stay, and can even result 
in long-term neurodevelopmental consequences or chronic 
pain as an adult.

Drawbacks of Existing Monitoring Practices
Current clinical practice is based on significant use of 
intermittent observational scales (FLACC: Face, Legs, Activity, 
Cry, Consolability scale in young children, Wong-Baker 
FACES scale for those a bit older). While these tools have 
standardized assessment, they offer only “snapshots” of a 
child’s status at the moment the child is being observed.

In resource-constrained healthcare settings, such as 
the ones commonly found in Haryana, India, high patient-
to-nurse ratios make continuous manual monitoring 
practically impossible. This intermittent monitoring leads to 
“blind spots” where episodes of breakthrough pain which 
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happen between set nursing rounds may go unnoticed and 
unrelieved for dangerously long periods.

The Technological Solution: Artificial Intelligence and 
Multimodal Fusion
The intersection of Artificial Intelligence (AI) and the Internet 
of Medical Things (IoT) promises to provide a revolutionary 
solution to these shortcomings. Patil et al. (2023) highlight 
that IoT-based smart healthcare monitoring can enable 
data analytics to be performed in real time, which is critical 
for providing timely clinical interventions. By using the 
capabilities of modern sensors, AI systems can be used 
to continuously analyze multimodal signals (i.e. facial 
expressions, acoustic signatures of crying, physiological 
parameters, e.g. heart rate, oxygen saturation) to objectively 
detect distress.

Research shows that multimodal models (fusing visual, 
audio and physiological data) generally perform much better 
than unimodal systems (e.g. video only) in terms of accuracy 
and reliability. Such systems provide an “objective sixth 
sense” to caregivers, which can sense subtle physiological 
changes (e.g., tachycardia) in a behaviorally-stoic child with 
exhaustion. Furthermore, the use of such data-intensive 
systems needs to follow strict ethical standards. Ahamed et 
al. (2023) point to the need for studying privacy-preserving 
machine learning algorithms, like federated learning, to 
secure healthcare data sharing.

Context and Objectives of Study
Despite the potential of artificial intelligence in healthcare, 
there is a big gap in the research work on its practical 
adoption in the specific infrastructural environment of 
Indian healthcare, especially in Haryana. In resource-
constrained hospital environments such as available in this 
region, continuous monitoring of the patient is often not 
possible due to high patient-to-nurse ratios, leaving children 
vulnerable to untreated pain in between scheduled rounds. 
Consequently, the objectives of this study are primarily to 
fill this gap by: first, developing and simulating an artificial 
intelligence (AI)-based multimodal system for monitoring 
postoperative pain and distress among children; second, 
assessing the accuracy and potential contribution of this 
system to the care of children by comparing it to expert 
clinical judgment for children; third, making specific 
recommendations regarding the implementation of 
AI-driven models, especially in local healthcare settings; and 
fourth, comparing the proposed AI framework with current 
practices in pain assessment to quantify the improvement in 
detection and response times. Ultimately, this research aims 
to offer a validated roadmap to bring objective, automated 
vigilance into pediatric postoperative care.

Review of Literature
The field of pediatric pain management has been radically 
changed from some bed-side observations to sophisticated 

and data-driven algorithmic monitoring. This review 
provides a synthesis of basic theories, clinical evaluation 
tools and the recent explosion of Artificial Intelligence (AI) 
and Internet of Things (IoT) applications.

The Clinical Imperative and Behavioral Scales
Pain in children is under-recognized and undertreated 
because of barriers to communication. Friedrichsdorf 
and Goubert (2020) and Eccleston et al. (2021) stress that 
unrelieved pediatric pain is a violation of basic human rights 
and can result in long-term and adverse neurodevelopmental 
outcomes. To try to overcome this, standardized scales of 
observation were developed. Merkel et al. (1997) introduced 
the FLACC scale, which is a quantitative measure of distress 
based on the Face, Legs, Activity, Cry, and Consolability 
which is still a gold standard for young children. For older 
children, Hicks et al. (2001) validated the Faces Pain Scale-
Revised, which is available for self-report. A contribution of 
Ambuel et al. (1992) was the COMFORT scale (specifically 
for intensive care environments) and Malviya et al. refined 
these tools for cognitively impaired children in 2006 with 
the r-FLACC. Despite their usefulness, these methods are 
based on intermittent “snapshots”, often missing transient 
crises of pain between nurse rounds.

Biological Underpinning: Acoustics and Facial 
Expression
The automation of pain detection is based on biological 
markers discovered in early biological research. Porter et al. 
(1986) and Fuller and Horowitz (1990) determined that infant 
pain cries had different acoustic characteristics (high pitch, 
dysphonation) than hunger cries. Similarly, Zeskind and 
McMurray (1997) identified some specific spectral features 
of neonatal distress vocalizations.

In the visual area, Ekman and Friesen (1978) developed 
the Facial Action Coding System (FACS), which is the 
taxonomy for analysing facial muscle movements. An 
evolutionary account of these expressions was given by 
Williams (2002), while specific “Pain Face” actions (e.g. brow 
lowering, orbital tightening) were identified by Prkachin 
et al. (2008). Lucey et al. (2011) then created a benchmark 
dataset, the UNBC-McMaster Shoulder Pain Expression 
Archive, that could be used to train early computer vision 
models.

The Rise of Affective Computing and Artificial 
Intelligence
Picard (1997) set the stage for Affective Computing: he 
postulated the feasibility of machine recognition of 
human affective states. Early implementations by Bartlett 
et al. (2014) and Patel (2015) have shown that machine 
learning can be used to decode facial movements and cry 
acoustics with increasing levels of accuracy. Sikka et al. 
(2015) pioneered the use of these technologies in clinical 
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settings involving pediatric patients, when they used a 
computer vision system to measure postoperative pain. 
As the progress of deep learning increased, Solovyev et al. 
(2021) attempted to use 3D Convolutional Neural Networks 
(CNNs) to capture dynamic features of a face which results 
in a significant improvement in recognition rates.

Multimodal Fusion and Real Time Monitoring
Single modality systems frequently tend to fail during 
noisy or occluded data. Zamzmi et al (2019) reviewed the 
automated techniques and made a case for multimodal 
fusion - conjunction of face, voice and vitals to increase the 
robustness. Ben-Israel et al. (2013) proposed an index called 
the Nociception Level (NOL) index that clearly illustrates 
the value of multi-parameter physiological monitoring. 
Subramanian et al. (2024) further formalized conceptual 
frameworks for AI-based multimodal monitoring for 
pediatric care specifically.

The practical implementation of such complex models 
requires the Internet of Medical Things (IoMT). Patil et al. 
(2023) discussed patient monitoring in real time, focusing 
on how IoT analytics can process sensor data in real time to 
generate actionable clinical insights.

Ethics, Explainability and Privacy
Implementation of AI in pediatrics raises important ethical 
issues. Hoogenboom et al (2020) and Montgomery (2020) 
discussed the ethical implications of surveillance and the 
need for informed consent in pain management in children. 
Furthermore, “black box” AI models are often not trusted 
by clinicians; Craven and Shavlik (1996) emphasized the 
importance of extracting understandable rules from neural 
networks to make them explainable from the start.

Finally, data privacy is of the utmost importance. 
Ahamed et al. (2023) studied privacy-preserving machine 
learning, showing that federated learning can be used to 
share healthcare data and train machine learning models 
without the need to share sensitive patient information. This 
would be in line with the need for secure and valid tools in 
neonates discussed by Hummel et al. (2010).

Conclusion of Review
The literature provides a clear progression from the hand 
scales to complex, privacy-conscious, artificial intelligence 
systems. However, there is still a gap in the application 
of such multimodal IoT-enabled frameworks in resource 
constrained settings such as Haryana which the current 
study tries to fill.

Materials and Methods
This study used a mixed-methods design of research which 
combined descriptive clinical observations in combination 
with experimental AI simulation. The methodology was 
divided into two different phases, namely the primary 

data collection, from pediatric wards in Haryana, and the 
development of a multimodal AI framework using secondary 
datasets.

Collection of Clinical Data (Primary Data)

Participants and Setting
The study was carried out in four districts in the state 
of Haryana, namely Hisar, Sirsa, Rohtak and Panipat. A 
purposive sample of 100 pediatric patients (age 1-12 years) 
undergoing routine surgical procedures (eg, hernia repair, 
appendectomy, tonsillectomy, orthopedic adjustments) 
was selected. Additionally, 20 healthcare officials (pediatric 
surgeons, anesthesiologists, nursing supervisors, and 
administrators) were also involved to provide expert 
validation and perception feedback.

Observation Protocol
Postoperative pain was measured at four specific points, 1, 
6, 12, and 24 hours after surgery. At each interval, healthcare 
professionals documented information on a standardized 
form:
•	 Pain Scores The FLACC scale (Face, Legs, Activity, Cry, 

Consolability) was used for children aged 1 through 6 
years; the Wong-Baker FACES scale was used for children 
aged 7 through 12 years.

•	 Physiological Vitals: Heart Rate (HR), Respiratory Rate (RR) 
and Oxygen Saturation (SpO2) were monitored using 
standard bedside monitors.

•	 Behavioral Indicators: The behavioral indicators (e.g., 
grimacing, restlessness, intensity of crying) were 
manually recorded to ground truth labels.

Ethical Considerations
The study followed ethical guidelines of ICMR. Informed 
consent was obtained from parents or guardians of all 
participants in the pediatric group. Data were strictly 
anonymized with unique alphanumeric codes to protect the 
privacy of the patients before digital processing.

Model Development for AI (Simulation Phase)
To model an automated monitoring system, a multimodal 
deep learning model was created and trained on ethically 
obtained secondary datasets (e.g. UNBC-McMaster, COPE 
Infant Pain Database, MIMIC-III) reflecting the visual, audio, 
and physiological patterns of pediatric pain.

Model Architecture
The framework was based on a late-fusion approach using 
a combination of three specialized subnetworks:

•	 Visual Module
A Convolutional Neural Network (CNN) based on the VGG-16 
architecture was used to extract facial action units (e.g., 
eyebrow lowering, eyes squeezing) from image frames with 
size 224x224 pixels.
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•	 Audio Module
A Long Short-Term Memory (LSTM) network processed 
the audio features, in this case Mel-frequency cepstral 
coefficients (MFCCs) and detected the acoustic signature 
of pain cries over neutral sounds.

•	 Physiological Module
A Gradient Boosting Regressor to analyze time series trends 
in vital signs (HR, RR, SpO2) in order to detect deviations 
caused by stress on physiological processes.

Fusion and Inference
The feature vectors of these three modules were 
concatenated in a fully connected fusion layer. This 
layer predicted a categorical (low, moderate, high) and 
continuous (0-10) pain level. The predictions of the model 
were then validated to the “ground truth” scores collected 
in the clinical phase to determine accuracy and correlation.

Perception Survey
A structured survey was conducted to address institutional 
readiness, and it was administered to the 20 healthcare 
officials. The six dimensions that were measured in the 
survey-that is, technological awareness, clinical utility, 
ethical acceptability, training needs, implementation 
feasibility, and perceived reliability-were measured with a 
5-point Likert scale.

Statistical Analysis
Data analysis has been done using Python (v3.10) libraries 
(NumPy, Pandas, Scikit-learn) and the software package, 
Statistics for Social Science (SPSS v27.0).
•	 Model Performance: Accuracy, Precision, Recall 

(Sensitivity), F1-Score, Area under the Receiver 
Operating Characteristic Curve (ROC-AUC) were 
the different metrics used to evaluate the model 
performance.

•	 Clinical Validation Pearson’s correlation coefficient (r) was 
used to assess the agreement between AI-predicted 
scores and clinician-recorded scores. Paired t-tests were 
used to evaluate changes in pain levels over time.

Results

Findings of Clinical Observation
The ground truth data gathered from 100 pediatric patients 
in Haryana states were used for the validation of the AI 
model.
•	 Demographics: The sample was 58% male and 42% 

female patients. The majority (55%) were between 1-6 
years of age, the population most in need of measures 
to assess non-verbal abilities.

•	 Pain Trajectory: Postoperative pain experienced a 
clinically expected decrease. The average expert-
assessed pain score was 8.4 (Severe) at 1 hour after 

surgery and reduced to 2.2 (Mild) at 24 hours after 
surgery.

•	 Physiological Correlation High positive correlations 
were found between behavioral distress (e.g., crying) 
and physiological correlators such as Heart Rate 
(r=0.74, p<0.001) and Respiratory Rate (r=0.68, p<0.001), 
establishing the validity of using vital signs as proxy 
indicators for pain.

AI Model Performance
The multimodal AI framework was tested on a test dataset 
based on standard classification metrics. The model had 
high efficacy in distinguishing between pain and no pain 
states.

The Ablation Study Multimodal superiority
In order to confirm the need to have a multimodal approach, 
the entire model has been compared to single-modality 
baselines. The data stream fusion had much better 
performance than single sensors, especially on safety 
metrics critical aspects.
•	 Visual-Only Model: Obtained an accuracy of 82.70% and 

High-Pain Recall of 0.851.
•	 Multimodal Fusion: Multimodal now has increased 

accuracy to 90.20% and Recall of High-Pain to 0.894.
This proves that the information using visual, audio and 
physiological data decreased the incidence of missed severe 
pain episodes by 12.8 percent (baseline) to 6.1 percent.

Clinical validation and Correlation.
The AI scores of the pain were compared to the scores of the 
pediatricians and nurses of the ground truth.
•	 Correlation: There was a strong positive correlation 

between the prediction of AI and the clinician ratings 
(Pearson r = 0.88, p < 0.001).

•	 Error Analysis: The Mean Absolute Error (MAE) was 0.41, 
which is on a 0-10 scale, meaning that the judgment of 
the AI is close to the judgment of human analysis with 
little variation.

•	 Confusion Matrix: The model accurately identified 83 
analysis of the cases with No Pain and 72 analysis of the 
cases with Severe Pain. The majority of misclassifications 
fell between two adjacent categories (e.g., Mild vs. 
Moderate), which is less risky clinically than the lack of 
severe pain.

Operational Impact
The virtual field test revealed that there were considerable 
benefits in operations as compared to manual monitoring 
policies:
•	 Response Time: The AI system showed a median alert 

latency of less than 1 minute, as opposed to a median 
latency of 30-60 minutes in the case of the variable 
latency of a manual round.

•	 Safety: The system decreased the number of episodes of 
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Table 1: Model Performance of the Multimodal AI Model

Performance Metric Value (%) / Score Clinical Interpretation

Accuracy 90.20% The overall correctness of the model in classifying pain states versus non-pain states.

Precision 88.60% Indicates a low rate of false positives, which is crucial for minimizing «alarm fatigue» 
among nursing staff.

Recall (Sensitivity) 91.00% The system’s ability to correctly identify actual pain episodes. A high recall ensures 
that very few cases of distress are missed.

F1-Score 89.80% The harmonic mean of precision and recall, demonstrating a balanced performance 
without skewing towards one metric.

ROC-AUC 0.93 Represents excellent capability to discriminate between different pain levels (Area 
Under the Receiver Operating Characteristic Curve).

high pain that went undetected about 45% in relation 
to intermittent manual charting.

4.6 Stakeholder Perception
The questionnaire of 20 healthcare officials demonstrated 
that there is high institutional preparedness but mentioned 
certain barriers.
•	 Clinical Utility: 4.4/5, which is a high rating considering 

a solid faith in the tool to enhance accuracy.
•	 Ethical Acceptability: Evaluated to 4.1/5, but depends on 

rigid privacy regulations.
•	 Training Readiness: With the lowest score of 3.65/5, the 

primary obstacle in the adoption is identified as staff 
training.

Discussion
This study was designed to simulate and test an artificial 
intelligence (AI)-driven multimodal approach to determine 
postoperative pain in pediatric patients that was specifically 
adapted to the healthcare environment of Haryana, India. 
The results strongly support the hypothesis that automated 
systems can offer a reliable, objective and continuous “safety 
net” for non-verbal pediatric patients.

Validation of Multimodal Fusion
The main result showing high correlation (r=0.88) and 
high classification accuracy (90.20%) with expert clinical 
scores of the multimodal artificial intelligence model is a 
validation of the biopsychosocial theory of pain, which 
indeed posits distress as a complex experience that could 
be best understood and explained through a combination 
of behavioural and physiological signals.

Consistent with the recent literature by Salekin et al. 
(2022) and Gholami (2022), our ablation study verified 
that the fusion of visual, audio, and physiological data 
significantly outperforms the unimodal approaches. The 
better recall of high pain episodes by the fusion model 
(0.894) is clinically important; the fusion model suggests 
that the system is able to detect “silent suffering” - that is, 
instances where the child is simply too tired to cry (audio 

silence) but who nevertheless have a tachycardia or micro 
expressions of distress. This is possible by overcoming the 
limitations of intermittent manual rounds, which leave 
patients unobserved for extended periods of time.

5.2 Efficiency in Operation and Real-Time Analytics
The simulation showed a dramatic reduction in alert 
time (< 1 minute vs. 30-60 minutes for manual rounds). 
This is consistent with the work of Patil et al. (2023) who 
highlighted that the benefits of IoT-based smart healthcare 
frameworks guarantee real-time data analytics that is 
essential for immediate clinical intervention. By automating 
the detection process, the system has the potential to free 
nursing staff from routine observation tasks, enabling them 
to focus on higher value patient care and emotional support.

5.3 Overcoming the Barriers to Adoption in Haryana
While the technical performance is strong, the survey of 
healthcare officials had shown that the key to successful 
adoption in Haryana is human and ethical considerations 
more than technology.
•	 The low score for “Training Readiness” (3.65/5) identifies a 

significant gap. As cited by Kuttikat et al. (2022), clinician 
trust is fragile and without structured digital literacy 
workshops, false alarms may be experienced, creating 
“alert fatigue” and system abandonment.

•	 Privacy and Ethics: The survey indicated some moderate 
concerns about data privacy (score 4.1/5). This augments 
the case for non-negotiable privacy-preserving 
techniques for healthcare data sharing as argued by 
Ahamed et al. (2023). Our proposed edge-computing 
architecture, in which data is processed locally on 
hospital servers instead of on the cloud, addresses these 
concerns directly as patient data never has to leave the 
safe hospital environment.

Limitations
This study is based on a simulation that was trained on 
secondary data sets, and calibrated with local primary data. 
While this approach is methodologically valid for a feasibility 
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study, it does not capture the chaotic nature of the acoustic 
environment in a busy general ward of a district hospital. 
Future research will have to include longitudinal clinical trials 
to validate the robustness of the system against noise in the 
real world and against various demographics of patients.

Conclusion of Discussion
The implementation of AI into pediatric postoperative care 
is a transition from reactive to proactive pain management. 
By pooling the precision of multimodal deep learning and 
the empathy of human caregivers, this framework provides 
a viable route to standardizing and elevating pediatric care 
in resource-constrained settings.
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