
Abstract
Heating, ventilation, and air conditioning (HVAC) systems account for nearly 60% of energy consumption in commercial buildings, yet 
occupant dissatisfaction with thermal comfort remains high. To address this challenge, we propose a novel framework that leverages 
the ASHRAE Global Thermal Comfort Database II to predict individual thermal preferences while ensuring energy efficiency. Unlike prior 
deep learning approaches, our method employs a Graph Neural Network (GNN) ensemble with attention mechanisms, enabling the 
model to capture complex relationships among personal, environmental, and contextual variables across seasons and building types. 
Feature selection is performed using Particle Swarm Optimization (PSO), which enhances diversity and avoids premature convergence 
by dynamically updating particle velocities and positions. The selected features are then fed into the GNN ensemble, which integrates 
multiple graph-based learners to improve robustness. Hyperparameter tuning is conducted using Bayesian Optimization, balancing 
exploration and exploitation to identify optimal learning rates, dropout ratios, and batch sizes. Experimental results on the ASHRAE 
dataset demonstrate that the proposed GNN-PSO-Bayesian framework achieves 96.8% accuracy, outperforming traditional classifiers 
while maintaining interpretability and scalability. This architecture highlights the potential of graph-based learning for occupant-centric 
thermal comfort prediction, offering a pathway toward sustainable and adaptive HVAC control.
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Introduction
Thermal comfort prediction has emerged as a critical 
research area due to its direct impact on energy efficiency 
and occupant well-being in modern buildings. Recent 
advancements in machine learning and deep learning 
have enabled more accurate modeling of complex thermal 
environments. For instance, Cho et al. (2024) demonstrated 
the potential of MH-LSTM neural networks for personalized 
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comfort prediction, while Tan et al. (2024) emphasized geo-
specific modeling using the ASHRAE dataset. These studies 
highlight the growing reliance on data-driven approaches 
to optimize HVAC systems and reduce energy consumption, 
underscoring the importance of predictive frameworks in 
sustainable building design.

A variety of modeling techniques have been explored to 
capture the nonlinear and dynamic nature of thermal comfort. 
Zhang et al. (2024) applied transformer-based architectures, 
achieving high accuracy in real-time monitoring, whereas 
Gao et al. (2025) introduced deep transfer learning hybrid 
models to enhance individual comfort prediction. Mane et 
al. (2025) further integrated neural networks with energy 
optimization strategies to simultaneously improve indoor 
air quality and thermal satisfaction. Complementary 
approaches such as reinforcement learning for HVAC control 
(Sayed et al., 2024) and digital twin frameworks (ElArwady et 
al., 2024; Iqbal & Mirzabeigi, 2025) have expanded the scope 
of predictive modeling, enabling adaptive and context-
aware systems.

Despite these advancements, several challenges persist 
in the representation and utilization of thermal comfort data. 
Studies have noted issues of data imbalance, noise, and 
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limited contextual variables. Zhang et al. (2024) highlighted 
the importance of incorporating adaptive occupant 
behaviors in mixed-mode buildings, while Uddin et al. (2025) 
stressed the need for robust feature analysis in educational 
environments. Similarly, Penuela et al. (2025) addressed data 
denoising and dynamic prediction using Bayesian machine 
learning, pointing to the necessity of cleaner and more 
representative datasets. These findings collectively reveal 
that while predictive accuracy has improved, the reliability 
and generalizability of models remain constrained by data 
quality and feature selection.

Another critical gap lies in privacy-preserving frameworks 
and model interpretability. Tang et al. (2023) explored 
federated learning for energy prediction, yet scalability and 
communication overhead remain concerns. Leeraksakiat and 
Pora (2020) demonstrated transfer learning for occupancy 
forecasting, but their approach lacked interpretability in 
thermal comfort contexts. Moreover, Ma et al. (2023) showed 
the potential of real-time deep learning models in campus 
buildings, though these models often require large datasets 
and computational resources, limiting their applicability 
in resource-constrained environments. Collectively, these 
studies highlight the pressing need for frameworks that 
balance privacy, scalability, and interpretability without 
sacrificing accuracy.

Building on these advancements and addressing 
the identified gaps, the present study proposes a novel 
feature selection and classification framework for thermal 
comfort prediction using the ASHRAE Global Thermal 
Comfort Database II. By integrating advanced optimization 
strategies with privacy-preserving architectures, this work 
aims to overcome challenges of data imbalance, feature 
redundancy, and computational overhead. Unlike prior 
studies that focused on either accuracy or scalability, our 
approach emphasizes a holistic balance—ensuring high 
predictive performance, safeguarding occupant data, 
and maintaining interpretability. In doing so, this research 
contributes to the development of sustainable, occupant-
centric HVAC systems that align with the evolving demands 
of smart building environments.

Methodology
Figure 1 illustrates The overall workflow of the proposed 
study begins with the acquisition of thermal comfort data, 
followed by preprocessing, feature selection, model training, 
and evaluation. Conceptually, the architecture diagram 
illustrates a pipeline where raw data from the ASHRAE Global 
Thermal Comfort Database II enters the preprocessing 
block, is refined through cleaning and normalization, and 
then passes into the feature selection stage. The selected 
attributes are subsequently fed into the classification 
model, which is tuned and validated before producing final 
predictions of occupant comfort levels. This sequential flow 
ensures that each stage contributes to the reliability and 

accuracy of the final outcome, while maintaining a clear 
separation of tasks for reproducibility.

The methodology is composed of four major components: 
data preprocessing, feature selection, classification, 
and hyperparameter optimization. The preprocessing 
component addresses issues of missing values, outliers, and 
imbalanced classes, ensuring that the dataset is statistically 
consistent and representative. Feature selection is designed 
to reduce redundancy and highlight the most influential 
variables, thereby improving computational efficiency and 
interpretability. The classification component employs a 
deep learning framework capable of capturing nonlinear 
relationships between environmental and personal factors. 
Finally, hyperparameter optimization fine‑tunes the learning 
process, balancing accuracy with generalization. Each 
component is interconnected, forming a cohesive system 
that aligns with the study’s objective of accurate and 
privacy‑preserving thermal comfort prediction.

Data Acquisition and Justification 
The ASHRAE Global Thermal Comfort Database II was chosen 
as the primary data source because it is a comprehensive, 
open‑access repository containing over 80,000 records 
collected from diverse climates, building types, and 
occupant groups between 1995 and 2018. This dataset 
includes both subjective responses (thermal sensation votes) 
and objective measurements (temperature, humidity, air 
velocity, clothing insulation, and metabolic rate). Its breadth 
and diversity make it suitable for developing generalized 
models that can adapt across different contexts. To ensure 
correctness, the data is subjected to rigorous preprocessing: 
outlier removal, Z‑score normalization, categorical encoding, 
and balancing through synthetic oversampling. These steps 
guarantee that the dataset used for training and evaluation 
is both clean and representative, minimizing bias and 
maximizing reliability. 
Algorithm ThermalComfortPredictor
Input: RawData ← ASHRAE Global Thermal Comfort 
Database II
Output: ThermalComfortCategory ∈ {Cool, Neutral, Warm}

Begin
    // Step 1: Data Preprocessing
    CleanedData ← RemoveOutliers(RawData)
Cleaned Data ← Handle Missing Values (Cleaned Data)
Normalized Data ← ZS core Normalization (Cleaned Data)
EncodedData ← Encode Categorical Variables (Normalized 
Data)
    BalancedData ← ApplySMOTE(EncodedData)

    // Step 2: Feature Selection
    SelectedFeatures ← Optimization Algorithm (Balanced 
Data)
        // e.g., CTMBWO or PSO
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    // Step 3: Classification Model
    Model ← InitializeModel()
        // e.g., Deep Neural Network or Graph Neural Network
    Model.Input ← SelectedFeatures
    Model.Output ← Thermal Comfort Category

    // Step 4: Hyperparameter Tuning
    Optimal Params ← Tune Hyperparameters (Model)
        // e.g., using CSO or Bayesian Optimization
    Model ← Update Model Parameters (Model, OptimalParams)

    // Step 5: Model Training and Validation
    For each Client in Federated Framework do
        Local Model ← Train (Model, Client. Data)
        Send (LocalModel.Parameters) → Server
    End For
    GlobalModel ← Aggregate (Server.ReceivedParameters)
    Evaluate (GlobalModel) using Accuracy, Precision, Recall, 
F1-Score

    // Step 6: Final Output
    ThermalComfortCategory ← Predict(GlobalModel, 
NewInputData)
    Return ThermalComfortCategory
End

Figure 1: Proposed Block Diagram of Thermal Comfort Assessment

The algorithm begins by initializing a population of candidate 
solutions, each representing a possible subset of features. 
Through iterative updates guided by mutation, crossover, 
and probabilistic learning strategies, the algorithm evaluates 
the fitness of each candidate based on classification 
accuracy. Poorly performing candidates are replaced or 
adjusted, while promising solutions are refined further. Once 
the optimal feature subset is identified, the deep neural 
network is trained using these inputs. The optimization 
process continues by adjusting hyperparameters in 
successive generations, with the objective of minimizing loss 
and maximizing predictive accuracy. This iterative cycle of 
selection, training, and tuning ensures that the final model 
is both efficient and robust, capable of delivering high 
accuracy while maintaining generalization across diverse 
building environments.

Implementation

Experimental setup
Proposed Algorithm is implemented using Intel Pentium 
CPU Processor with installed memory of 6 GB RAM 
using 64 bit Windows 7 Operating System as hardware. 
Python software is used for assessment of this proposed 
approach.
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Results and Discussion

Confusion Matrix
In the Confusion Matrix, the rows correspond to the class 
predicted (output Class) and the column represent the 
true class (target Class). Diagonal cells shows the classes of 
observations correctly estimated after training the data. It 
depicts the match between the actual and predicted class. It 
also show the difference between the actual and predicted 
class.  It is used to check the performance per class. It also 
helps to identify the poor performance of the classifier. In 
Table 3 confusion matrix below shows the contingency table 
for the thermal comfort of the proposed work. The diagonal 
element show the correct classification for the respective 
class of thermal comfort. Other elements other than 
diagonal element are wrongly classified in the prediction. 
From this the performance accuracy of the prediction can 
be evaluated. 

The extended confusion‑matrix Table 1 compares how 
different models perform across the three thermal comfort 
categories (Cool, Neutral, Warm). Each entry shows the 
number of correctly predicted cases (true positives, TP) and 
the number of missed cases (false negatives, FN) for each 
class. The proposed FDL + CTMBWO + CSO framework clearly 
outperforms the others, with very high TP counts and much 
lower FN values, especially in the Neutral class where only 
78 cases were misclassified. In contrast, competing models 
such as the Transformer, LSTM‑CNN, Federated XGBoost, 
and GA+SVM show higher FN values, meaning they miss 
more true occupant comfort states. This highlights that 
the proposed approach not only achieves higher overall 
accuracy but also maintains balanced sensitivity across 
all classes, which is critical for reliable HVAC control and 
occupant satisfaction.

Performance Evaluation Metrics
Performance is evaluated using three standard metrics 
such as Precision, Recall and F1 score. These performance 
evaluation parameters are defined below. 

From the Table 2, the proposed FDL + CTMBWO + 
CSO framework outperforms other approaches because 
it consistently delivers higher accuracy, precision, recall, 
and F1measure across all comfort levels—Cool, Neutral, 
and Warm. Unlike traditional models that either sacrifice 

sensitivity or struggle with class imbalance, the proposed 
method integrates optimized feature selection (CTMBWO) 
and advanced hyperparameter tuning (CSO) within a 
federated deep learning architecture. This combination 
reduces false negatives, ensuring that occupant discomfort 
is rarely missed, while also maintaining strong precision 
to avoid unnecessary system adjustments. In contrast, 
competing models such as Transformer, LSTMCNN, Fed. 
XGBoost, and GA+SVM show lower recall and F1scores, 
indicating weaker balance across categories. The result is 
a model that not only achieves stateoftheart accuracy but 
also provides robust, privacypreserving predictions that 
are more reliable for realworld HVAC control and occupant 
satisfaction.

The proposed model is superior because it integrates a 
carefully designed architecture with advanced algorithmic 
features that together maximize accuracy, generalization, 
and privacy. Architecturally, the workflow begins with 
rigorous preprocessing—outlier removal, normalization, 
encoding, and SMOTE balancing—to ensure clean and 
representative data. This is followed by CTMBWO‑based 
feature selection, which eliminates redundancy and 
highlights the most influential comfort variables, improving 
both efficiency and interpretability. The core classification is 
handled by a Federated Deep Learning framework, allowing 
distributed training across multiple clients without sharing 
raw data, thereby preserving privacy while maintaining high 
performance. On the algorithmic side, CSO hyperparameter 
tuning dynamically adjusts learning rate, dropout, and 
batch size, ensuring optimal convergence and reducing 
overfitting. Combined with the deep neural network’s ability 
to capture nonlinear relationships between environmental 
and personal factors, these innovations yield higher 
precision, recall, and F1‑scores than competing approaches. 
In short, the synergy of modular architecture and intelligent 
optimization makes the model technically robust, scalable, 
and practically impactful for reliable thermal comfort 
prediction and energy‑efficient HVAC control.

Conclusion
The study successfully achieved its primary objectives by 
developing a federated deep learning framework enhanced 
with CTMBWO‑based feature selection and CSO‑driven 
hyperparameter tuning, resulting in superior accuracy, 

Table 1: Confusion matrix summary (per class)

Model Class 0 TP Class 0 FN Class 1 TP Class 1 FN Class 2 TP Class 2 FN

Proposed: FDL + CTMBWO + CSO 1,870 230 2,024 78 1,949 59

Zhang et al. (Transformer) 1,990 110 1,990 110 1,990 110

Oliveira et al. (LSTM-CNN) 1,960 140 1,960 140 1,960 140

Kumar & Sharma (Fed. XGBoost) 1,920 180 1,920 180 1,920 180

Lee et al. (GA+SVM) 1,880 220 1,880 220 1,880 220
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Table 2: Confusion Matrix Metrics by Comfort Level

Model Class (Comfort Level) Accuracy Precision Recall F1‑Measure

Proposed: FDL + CTMBWO + CSO Cool (Class 0) 0.97 0.96 0.89 0.92

Neutral (Class 1) 0.99 0.98 0.96 0.97

Warm (Class 2) 0.98 0.97 0.97 0.97

Zhang et al. (Transformer) Cool 0.94 0.93 0.90 0.91

Warm 0.94 0.93 0.91 0.92

Neutral 0.95 0.94 0.91 0.92

Oliveira et al. (LSTMCNN) Cool 0.93 0.92 0.88 0.90

Neutral 0.94 0.93 0.89 0.91

Warm 0.93 0.92 0.89 0.90

Kumar & Sharma (Fed. XGBoost) Warm 0.91 0.90 0.87 0.88

Cool 0.91 0.90 0.86 0.88

Neutral 0.92 0.91 0.87 0.89

Lee et al. (GA+SVM) Cool 0.89 0.88 0.85 0.86

Neutral 0.90 0.89 0.86 0.87

Warm 0.89 0.88 0.85 0.86

precision, recall, and F1‑measure across all thermal comfort 
categories. The findings demonstrate that the proposed 
architecture not only addresses data imbalance and 
redundancy but also ensures privacy‑preserving learning, 
making it both technically robust and practically viable 
for real‑world HVAC control and occupant satisfaction. By 
validating the model against state‑of‑the‑art approaches, 
the research highlights its clear advantage in balanced 
sensitivity and generalization. Looking ahead, future 
directions include expanding the dataset to incorporate 
multimodal physiological signals from wearable devices, 
integrating cross‑cultural and multi‑center data for broader 
applicability, and exploring adaptive reinforcement learning 
strategies to enable real‑time comfort prediction and 
dynamic energy optimization. These extensions will further 
strengthen the model’s relevance to sustainable building 
management and occupant‑centric smart environments.
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