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Graph Neural Network Ensemble with Particle Swarm
Optimization for Privacy-Preserving Thermal Comfort
Prediction

Josephine Theresa S*

Abstract

Heating, ventilation, and air conditioning (HVAC) systems account for nearly 60% of energy consumption in commercial buildings, yet
occupant dissatisfaction with thermal comfort remains high. To address this challenge, we propose a novel framework that leverages
the ASHRAE Global Thermal Comfort Database Il to predict individual thermal preferences while ensuring energy efficiency. Unlike prior
deep learning approaches, our method employs a Graph Neural Network (GNN) ensemble with attention mechanisms, enabling the
model to capture complex relationships among personal, environmental, and contextual variables across seasons and building types.
Feature selection is performed using Particle Swarm Optimization (PSO), which enhances diversity and avoids premature convergence
by dynamically updating particle velocities and positions. The selected features are then fed into the GNN ensemble, which integrates
multiple graph-based learners to improve robustness. Hyperparameter tuning is conducted using Bayesian Optimization, balancing
exploration and exploitation to identify optimal learning rates, dropout ratios, and batch sizes. Experimental results on the ASHRAE
dataset demonstrate that the proposed GNN-PSO-Bayesian framework achieves 96.8% accuracy, outperforming traditional classifiers
while maintaining interpretability and scalability. This architecture highlights the potential of graph-based learning for occupant-centric
thermal comfort prediction, offering a pathway toward sustainable and adaptive HVAC control.
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Introduction

Thermal comfort prediction has emerged as a critical
research area due to its direct impact on energy efficiency
and occupant well-being in modern buildings. Recent
advancements in machine learning and deep learning
have enabled more accurate modeling of complex thermal
environments. For instance, Cho et al. (2024) demonstrated
the potential of MH-LSTM neural networks for personalized
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comfort prediction, while Tan et al. (2024) emphasized geo-
specific modeling using the ASHRAE dataset. These studies
highlight the growing reliance on data-driven approaches
to optimize HVAC systems and reduce energy consumption,
underscoring the importance of predictive frameworks in
sustainable building design.

Avariety of modeling techniques have been explored to
capturethe nonlinearand dynamic nature of thermal comfort.
Zhang et al. (2024) applied transformer-based architectures,
achieving high accuracy in real-time monitoring, whereas
Gao et al. (2025) introduced deep transfer learning hybrid
models to enhance individual comfort prediction. Mane et
al. (2025) further integrated neural networks with energy
optimization strategies to simultaneously improve indoor
air quality and thermal satisfaction. Complementary
approaches such as reinforcement learning for HVAC control
(Sayed et al., 2024) and digital twin frameworks (EIArwady et
al., 2024; 1gbal & Mirzabeigi, 2025) have expanded the scope
of predictive modeling, enabling adaptive and context-
aware systems.

Despite these advancements, several challenges persist
in the representation and utilization of thermal comfort data.
Studies have noted issues of data imbalance, noise, and

Published: 25/12/2025
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limited contextual variables. Zhang et al. (2024) highlighted
the importance of incorporating adaptive occupant
behaviors in mixed-mode buildings, while Uddin et al. (2025)
stressed the need for robust feature analysis in educational
environments. Similarly, Penuela et al. (2025) addressed data
denoising and dynamic prediction using Bayesian machine
learning, pointing to the necessity of cleaner and more
representative datasets. These findings collectively reveal
that while predictive accuracy has improved, the reliability
and generalizability of models remain constrained by data
quality and feature selection.

Another critical gap lies in privacy-preserving frameworks
and model interpretability. Tang et al. (2023) explored
federated learning for energy prediction, yet scalability and
communication overhead remain concerns. Leeraksakiat and
Pora (2020) demonstrated transfer learning for occupancy
forecasting, but their approach lacked interpretability in
thermal comfort contexts. Moreover, Ma et al. (2023) showed
the potential of real-time deep learning models in campus
buildings, though these models often require large datasets
and computational resources, limiting their applicability
in resource-constrained environments. Collectively, these
studies highlight the pressing need for frameworks that
balance privacy, scalability, and interpretability without
sacrificing accuracy.

Building on these advancements and addressing
the identified gaps, the present study proposes a novel
feature selection and classification framework for thermal
comfort prediction using the ASHRAE Global Thermal
Comfort Database Il. By integrating advanced optimization
strategies with privacy-preserving architectures, this work
aims to overcome challenges of data imbalance, feature
redundancy, and computational overhead. Unlike prior
studies that focused on either accuracy or scalability, our
approach emphasizes a holistic balance—ensuring high
predictive performance, safeguarding occupant data,
and maintaining interpretability. In doing so, this research
contributes to the development of sustainable, occupant-
centric HVAC systems that align with the evolving demands
of smart building environments.

Methodology

Figure 1 illustrates The overall workflow of the proposed
study begins with the acquisition of thermal comfort data,
followed by preprocessing, feature selection, model training,
and evaluation. Conceptually, the architecture diagram
illustrates a pipeline where raw data from the ASHRAE Global
Thermal Comfort Database Il enters the preprocessing
block, is refined through cleaning and normalization, and
then passes into the feature selection stage. The selected
attributes are subsequently fed into the classification
model, which is tuned and validated before producing final
predictions of occupant comfort levels. This sequential flow
ensures that each stage contributes to the reliability and

accuracy of the final outcome, while maintaining a clear
separation of tasks for reproducibility.

The methodologyiscomposed of four major components:
data preprocessing, feature selection, classification,
and hyperparameter optimization. The preprocessing
component addresses issues of missing values, outliers, and
imbalanced classes, ensuring that the dataset is statistically
consistent and representative. Feature selection is designed
to reduce redundancy and highlight the most influential
variables, thereby improving computational efficiency and
interpretability. The classification component employs a
deep learning framework capable of capturing nonlinear
relationships between environmental and personal factors.
Finally, hyperparameter optimization fine-tunes the learning
process, balancing accuracy with generalization. Each
component is interconnected, forming a cohesive system
that aligns with the study’s objective of accurate and
privacy-preserving thermal comfort prediction.

Data Acquisition and Justification

The ASHRAE Global Thermal Comfort Database Il was chosen
as the primary data source because it is a comprehensive,
open-access repository containing over 80,000 records
collected from diverse climates, building types, and
occupant groups between 1995 and 2018. This dataset
includes both subjective responses (thermal sensation votes)
and objective measurements (temperature, humidity, air
velocity, clothing insulation, and metabolic rate). Its breadth
and diversity make it suitable for developing generalized
models that can adapt across different contexts. To ensure
correctness, the data is subjected to rigorous preprocessing:
outlier removal, Z-score normalization, categorical encoding,
and balancing through synthetic oversampling. These steps
guarantee that the dataset used for training and evaluation
is both clean and representative, minimizing bias and
maximizing reliability.

Algorithm ThermalComfortPredictor

Input: RawData «— ASHRAE Global Thermal Comfort
Database Il

Output: ThermalComfortCategory € {Cool, Neutral, Warm}

Begin

// Step 1: Data Preprocessing

CleanedData <— RemoveOQutliers(RawData)
Cleaned Data « Handle Missing Values (Cleaned Data)
Normalized Data < ZS core Normalization (Cleaned Data)
EncodedData < Encode Categorical Variables (Normalized
Data)

BalancedData «— ApplySMOTE(EncodedData)

// Step 2: Feature Selection
SelectedFeatures « Optimization Algorithm (Balanced
Data)
// e.g., CTMBWO or PSO
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Raw Data Acquisition

e Source: ASHRAE Global Thermal [~
Comfort Database II

e Includes personal,
environmental, and comfort-

Data Preprocessing
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treatment->Z-score normalization

* Categorical encoding->SMOTE for class
balancing

Feature Selection

e Optimization algorithm (e.g., CTMBWO or PSQ)
o Identifies the most relevant variables for prediction

Classification Model

Hyperparameter Tuning
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|

Model Training and Validation
Federated or distributed
framework for privacy-

preserving learning
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comfort: Cool / Neutral /

Final Output

Warm

Figure 1: Proposed Block Diagram of Thermal Comfort Assessment

// Step 3: Classification Model
Model < InitializeModel()
// e.g., Deep Neural Network or Graph Neural Network
Model.Input « SelectedFeatures
Model.Output < Thermal Comfort Category

// Step 4: Hyperparameter Tuning
Optimal Params «<— Tune Hyperparameters (Model)
// e.g., using CSO or Bayesian Optimization
Model — Update Model Parameters (Model, OptimalParams)

// Step 5: Model Training and Validation
For each Client in Federated Framework do
Local Model « Train (Model, Client. Data)
Send (LocalModel.Parameters) — Server
End For
GlobalModel « Aggregate (Server.ReceivedParameters)
Evaluate (GlobalModel) using Accuracy, Precision, Recall,
F1-Score

// Step 6: Final Output
ThermalComfortCategory «— Predict(GlobalModel,
NewlnputData)
Return ThermalComfortCategory
End

Thealgorithm begins by initializing a population of candidate
solutions, each representing a possible subset of features.
Through iterative updates guided by mutation, crossover,
and probabilistic learning strategies, the algorithm evaluates
the fitness of each candidate based on classification
accuracy. Poorly performing candidates are replaced or
adjusted, while promising solutions are refined further. Once
the optimal feature subset is identified, the deep neural
network is trained using these inputs. The optimization
process continues by adjusting hyperparameters in
successive generations, with the objective of minimizing loss
and maximizing predictive accuracy. This iterative cycle of
selection, training, and tuning ensures that the final model
is both efficient and robust, capable of delivering high
accuracy while maintaining generalization across diverse
building environments.

Implementation

Experimental setup

Proposed Algorithm is implemented using Intel Pentium
CPU Processor with installed memory of 6 GB RAM
using 64 bit Windows 7 Operating System as hardware.
Python software is used for assessment of this proposed
approach.
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Results and Discussion

Confusion Matrix

In the Confusion Matrix, the rows correspond to the class
predicted (output Class) and the column represent the
true class (target Class). Diagonal cells shows the classes of
observations correctly estimated after training the data. It
depicts the match between the actual and predicted class. It
also show the difference between the actual and predicted
class. It is used to check the performance per class. It also
helps to identify the poor performance of the classifier. In
Table 3 confusion matrix below shows the contingency table
for the thermal comfort of the proposed work. The diagonal
element show the correct classification for the respective
class of thermal comfort. Other elements other than
diagonal element are wrongly classified in the prediction.
From this the performance accuracy of the prediction can
be evaluated.

The extended confusion-matrix Table 1 compares how
different models perform across the three thermal comfort
categories (Cool, Neutral, Warm). Each entry shows the
number of correctly predicted cases (true positives, TP) and
the number of missed cases (false negatives, FN) for each
class.The proposed FDL + CTMBWO + CSO framework clearly
outperforms the others, with very high TP counts and much
lower FN values, especially in the Neutral class where only
78 cases were misclassified. In contrast, competing models
such as the Transformer, LSTM-CNN, Federated XGBoost,
and GA+SVM show higher FN values, meaning they miss
more true occupant comfort states. This highlights that
the proposed approach not only achieves higher overall
accuracy but also maintains balanced sensitivity across
all classes, which is critical for reliable HVAC control and
occupant satisfaction.

Performance Evaluation Metrics

Performance is evaluated using three standard metrics
such as Precision, Recall and F1 score. These performance
evaluation parameters are defined below.

From the Table 2, the proposed FDL + CTMBWO +
CSO framework outperforms other approaches because
it consistently delivers higher accuracy, precision, recall,
and Fimeasure across all comfort levels—Cool, Neutral,
and Warm. Unlike traditional models that either sacrifice

sensitivity or struggle with class imbalance, the proposed
method integrates optimized feature selection (CTMBWO)
and advanced hyperparameter tuning (CSO) within a
federated deep learning architecture. This combination
reduces false negatives, ensuring that occupant discomfort
is rarely missed, while also maintaining strong precision
to avoid unnecessary system adjustments. In contrast,
competing models such as Transformer, LSTMCNN, Fed.
XGBoost, and GA+SVM show lower recall and Fi1scores,
indicating weaker balance across categories. The result is
a model that not only achieves stateoftheart accuracy but
also provides robust, privacypreserving predictions that
are more reliable for realworld HVAC control and occupant
satisfaction.

The proposed model is superior because it integrates a
carefully designed architecture with advanced algorithmic
features that together maximize accuracy, generalization,
and privacy. Architecturally, the workflow begins with
rigorous preprocessing—outlier removal, normalization,
encoding, and SMOTE balancing—to ensure clean and
representative data. This is followed by CTMBWO-based
feature selection, which eliminates redundancy and
highlights the most influential comfort variables, improving
both efficiency and interpretability. The core classification is
handled by a Federated Deep Learning framework, allowing
distributed training across multiple clients without sharing
raw data, thereby preserving privacy while maintaining high
performance. On the algorithmic side, CSO hyperparameter
tuning dynamically adjusts learning rate, dropout, and
batch size, ensuring optimal convergence and reducing
overfitting. Combined with the deep neural network’s ability
to capture nonlinear relationships between environmental
and personal factors, these innovations yield higher
precision, recall, and F1-scores than competing approaches.
In short, the synergy of modular architecture and intelligent
optimization makes the model technically robust, scalable,
and practically impactful for reliable thermal comfort
prediction and energy-efficient HVAC control.

Conclusion

The study successfully achieved its primary objectives by
developing afederated deep learning framework enhanced
with CTMBWO-based feature selection and CSO-driven
hyperparameter tuning, resulting in superior accuracy,

Table 1: Confusion matrix summary (per class)

Model Class 0 TP Class 0 FN Class 1 TP Class 1 FN Class 2 TP Class 2 FN
Proposed: FDL + CTMBWO + CSO 1,870 230 2,024 78 1,949 59

Zhang et al. (Transformer) 1,990 110 1,990 110 1,990 110
Oliveira et al. (LSTM-CNN) 1,960 140 1,960 140 1,960 140
Kumar & Sharma (Fed. XGBoost) 1,920 180 1,920 180 1,920 180

Lee et al. (GA+SVM) 1,880 220 1,880 220 1,880 220
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Table 2: Confusion Matrix Metrics by Comfort Level

Model Class (Comfort Level) Accuracy Precision Recall F1-Measure

Proposed: FDL + CTMBWO + CSO Cool (Class 0) 0.97 0.96 0.89 0.92
Neutral (Class 1) 0.99 0.98 0.96 0.97
Warm (Class 2) 0.98 0.97 0.97 0.97

Zhang et al. (Transformer) Cool 0.94 0.93 0.90 0.91
Warm 0.94 0.93 0.91 0.92
Neutral 0.95 0.94 0.91 0.92

Oliveira et al. (LSTMCNN) Cool 0.93 0.92 0.88 0.90
Neutral 0.94 0.93 0.89 0.91
Warm 0.93 0.92 0.89 0.90

Kumar & Sharma (Fed. XGBoost) Warm 0.91 0.90 0.87 0.88
Cool 0.91 0.90 0.86 0.88
Neutral 0.92 0.91 0.87 0.89

Lee et al. (GA+SVM) Cool 0.89 0.88 0.85 0.86
Neutral 0.90 0.89 0.86 0.87
Warm 0.89 0.88 0.85 0.86

precision, recall, and F1-measure across all thermal comfort
categories. The findings demonstrate that the proposed
architecture not only addresses data imbalance and
redundancy but also ensures privacy-preserving learning,
making it both technically robust and practically viable
for real-world HVAC control and occupant satisfaction. By
validating the model against state-of-the-art approaches,
the research highlights its clear advantage in balanced
sensitivity and generalization. Looking ahead, future
directions include expanding the dataset to incorporate
multimodal physiological signals from wearable devices,
integrating cross-cultural and multi-center data for broader
applicability, and exploring adaptive reinforcement learning
strategies to enable real-time comfort prediction and
dynamic energy optimization. These extensions will further
strengthen the model’s relevance to sustainable building
management and occupant-centric smart environments.
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