
Abstract
The explosive growth of the Internet of Medical Things (IoMT) has created huge, diverse, and noisy health data streams that require 
processing in real time under stringent energy and latency budgets. Conventional fuzzy clustering and synchronous federated learning 
methodologies tend to be plagued by noise sensitivity, excessive communication overhead, and poor model convergence efficiency. 
To address above mentioned issues, this work introduces FDBSCAN–MBKSched, a federated learning and clustering hybrid framework 
combining DBSCAN-based real-time abnormal health state detection and data filtering at the edge, Mini-Batch K-Means using MapReduce 
in the cloud, and an adaptive update scheduling mechanism. DBSCAN removes noisy data and identifies abnormal health states in real 
time at the edge, while non-emergency summaries are sent to the cloud for scalable clustering. The Federated Learning (FL) module 
governs distributed model training without sharing raw data, with devices dynamically adapting update frequencies as a function of 
model freshness, battery level, and event urgency. Experimental validation on real- IoMT datasets shows that FDBSCAN–MBKSched attains 
12% improved anomaly detection accuracy, 21% reduced energy usage, and 17% lower emergency latency compared to traditional 
fuzzy clustering–based baselines. These findings demonstrate the efficiency of the framework for latency-sensitive, privacy-preserving, 
and resource-constrained healthcare applications.
Keywords: Internet of Medical Things (IoMT); Edge–Cloud Collaboration; DBSCAN Clustering; Mini-Batch K-Means; Federated Learning; 
Adaptive Scheduling; Energy-Efficient Healthcare Analytics.
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Introduction
The IoMT is a result of the rapid rise in health information 
produced by intelligent healthcare systems in the past 
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few years, mainly with IoT-based devices. Although IoMT 
is currently used in almost every medical field, there are 
significant security and privacy issues because of the 
large and diverse amount of data it generates (Zhou et 
al., 2025). IoMT is distributed and sensitive to information 
privacy, so centralized machine learning (ML) strategies are 
inappropriate for identifying abnormalities in IoMT data 
(Nguyen et al., 2023).

Wearable technologies and intelligent platforms make 
it possible to observe health continuously because of to the 
growing popularity of IoMT devices, but they also present 
significant distributed analytics issues. Since centralized 
storage raises the possibility of breaches involving private 
medical records subject to regulations such as HIPAA as 
well as GDPR, security of data continues to be crucial (Rani 
et al., 2023). When sending massive amounts of data to the 
cloud, scalability problems occur because edge devices 
have limited resources, which results in high latency and 
network congestion (Nayak et al., 2024). Furthermore, 
real-time anomaly detection is made more difficult by 
data heterogeneity from different sensors and sampling 
rates. lastly, because of synchronization issues and dataset-
size limitations, ineffective global aggregation using 
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conventional clustering techniques impairs efficiency on 
streaming IoMT information (Prasad et al., 2022).

To surmount these limitations, FL and Cloud–Edge 
cooperation have become prominent paradigms for 
distributed intelligence. FL facilitates decentralized training 
of ML models over medical devices and edge nodes in a way 
that maintains data privacy. Every device trains locally and 
exchanges model updates rather than raw data, keeping 
raw data on-device. FL thus becomes most suitable in IoT 
settings where privacy is critical (Pinto et al., 2025). Enhanced 
LSTM for heart disease prediction in IoT-enabled smart 
healthcare systems(Gold et al., 2024).

The cloud–edge end mixed computing design has 
become a crucial paradigm for processing and analyzing 
massive amounts of edge data due to the quick development 
of 5G and IoT technologies. (Li et al., 2024). In this research, 
edge computing improves response time by conducting 
initial processing as well as anomaly detection near data 
sources, while global model aggregation and large-scale 
analytics are offered by the cloud layer.

In this hybrid model, both efficient data clustering 
and scheduling are of crucial importance in achieving 
computation balance among the edge and cloud layers. 
Density-based clustering algorithms like DBSCAN enable 
local anomaly discovery by identifying outliers in medical 
streaming data, while cloud-side scalable aggregation 
is possible using Mini-Batch K-Means with MapReduce 
allowing high-throughput clustering of non-emergency 
summaries. Optimizing IoT application deployment with fog 
- cloud paradigm: A resource-aware approach(K Mohamed 
Arif Khan et al., 2024). In heterogeneous IoMT environment, 
all these hybrid methods improve overall reliability, lower 
transmission expense, and enable adaptive learning.
The following are the contributions of proposed work.
•	 To present the FDBSCAN-MBKSched framework, a novel 

hybrid edge–cloud architecture which includes energy-
efficient federated learning, scalable global clustering, 
as well as density-driven local anomaly detection. 

•	 A DBSCAN-based local clustering module is employed 
to remove noise during a device’s level and facilitate 
real-time identification of unusual physiological trends. 

•	 A Mini-Batch K-Means algorithm has been implemented 
under the MapReduce paradigm to carry out high-
throughput global clustering in non-emergency 
summaries coming from distributed edges. Scalability 
across sizable healthcare datasets is thus guaranteed.

•	 To reduce redundant communication and maximize 
resource utilization, a novel scheduling technique is 
employed that dynamically regulates the frequency of 
model updates based on device energy, event urgency, 
and model freshness.

Collectively, these components form an energy-adaptive, 
multi-objective optimization framework that improves 
anomaly detection accuracy, reduces latency, and lowers 

energy consumption compared to existing FL-based 
baselines.

Related works
FL enables multi-institutional medical AI research by 
transmitting model parameters instead of patient data, 
ensuring privacy compliance. Current studies focus on 
imaging-based disease prediction, particularly for cancer 
and COVID-19 and explore strategies to manage data 
heterogeneity and enhance communication security (Choi 
et al., 2024).

Li et al., (2023) proposed the DP-Prox as well as PDP-Prox 
methods under various privacy budget scenarios, integrated 
differential privacy and customized differential privacy using 
FedProx, and ran simulations on several datasets. Recent 
studies (Sarkar et al.,2024), such as those extending the 
FedProx framework (e.g., G-Federated Proximity), focus on 
improving training stability, convergence speed, and model 
accuracy through normalization and adaptive optimization 
to better support real-time IIoT environments.

Machine learning models often rely on remote training, 
which increases resource consumption and raises privacy 
concerns. DRMF: Optimizing machine learning accuracy 
in IoT crop recommendation with domain rules and Miss 
Forest imputation (Sindhu et al.,2024). FL resolved these 
challenges through facilitating local model training along 
with aggregation. Latest methodologies, including Energy 
Saving Client Selection (ESCS), enhanced device participation 
according to battery point, learning ability, as well as network 
quality for attaining energy efficiency without compromising 
effectiveness (Maciel et al., 2024).

 Liu et al., (2021) introduced an innovative method for 
focused poverty alleviation using the clustering technique 
known as DBSCAN along with a deep neural network model 
built on edge computing. The system allows for real-time data 
mining at the edge to find households living in poverty. This 
utilized DBSCAN to find important poverty features and help 
with smart household grouping. Enhancing IoT blockchain 
scalability through the eepos consensus algorithm (Ragul 
et al.,2025)

In 2024, Retiti Diop Emane and others came up with a new 
way to find anomalies through the combination of Graph 
Convolutional Networks (GCNs) along with DBSCAN. GCNs 
which is a deep learning algorithm specifically designed for 
graph data, uses graph topology and attribute information 
to get useful node and edge representations. Also, the 
researchers Bushra et al., (2024) suggested an unsupervised 
approach to ascertain the optimal DBSCAN parameters based 
on its density distribution.
Y Li et al., (2024) put forward a device scheduling strategy that 
uses adaptive batch sizes. This strategy chooses devices with 
data of high usefulness and changes their mini-batch sizes and 
gradient quantization rates based on the state of the network.

Recent research (Hicks et al., 2021) has emphasized 
the difficulty of effectively clustering millions of cells. 



The Scientific Temper. Vol. 16, No. 12 	 S. Ranganathan and V. Umadevi	 5314

Conventional approaches such as k-means need to load 
whole datasets into memory, which makes them less 
scalable. The mbk means package addresses this by using 
a mini-batch k-means approach with on-disk data handling, 
enabling faster and memory-efficient clustering for large-
scale single-cell datasets.

In related works, several studies have focused on 
improving anomaly detection in the distribution Internet 
of Things (IoT) to enhance reliability and automation in 
power networks. One method that works well for this is 
to use spatiotemporal correlation evaluation, an improved 
DBSCAN algorithm, and fuzzy logic to find and identify 
unusual measurement information from low-voltage 
tracking devices (Shao et al., 2022). The IoMT improved 
medical services via connecting devices, however it has big 
problems with confidentiality and safety. FL may assist with 
this by enabling distributed model training that preserves 
privacy while identifying abnormalities without disclosing 
raw data. (Pinto et al., 2025).

Most current research tackles the aforementioned 
challenges in distinct ways, resulting in notable gaps: 
federated learning analyses typically prioritize aggregation 
as well as convergence amidst heterogeneity, often 
neglecting edge-level anomaly detection; anomaly-
detection literature prioritizes accuracy along with 
parameter optimization while overlooking downstream 
communication or scheduling expenses; and extensive 
clustering research addressed computational scalability 
without integrating selective, urgency-driven summary 
ingestion coming from edge devices. Energy-aware Security 
Optimized Elliptic Curve Digital Signature Algorithm for 
Universal IoT Networks (Jenifer et al.,2025). These limitations 
showed the requirement of single approach which deals 
with privacy, rapidity, energy conservation, and scalability 
all at once. 

FDBSCAN–MBKSched bridges these gaps by performing 
adaptive, quartile-tuned DBSCAN at the edge for immediate 
emergency signalling, employing a multi-factor, energy-
aware scheduler to decide Immediate/Delay/Skip actions 
for model updates, and aggregating non-emergency 
summaries in the cloud using a MapReduce Mini-Batch 
K-Means pipeline, forming a unified and efficient distributed 
framework.

Proposed Methodology

Datasets used
For evaluating the FDBSCAN-MBKSched framework, 
we chose two complementary recent datasets: Digital 
Exposome (Johnson, 2025) and PIF (Dhaliwal et al., 2023).

Digital Exposome – This dataset contains 40 participants 
with physiological (HR, HRV, EDA, BVP) and environmental 
signals (pollution, noise, temperature, etc.). This dataset 
supports edge anomaly detection, cloud clustering, and 

federated learning across participants. Emergency events 
are modeled via physiological/environmental thresholds.

PIF (Physiological & Inertial Features) includes wearable 
physiological and inertial measurements with overt fall 
events, acting as authentic emergency instances. It is 
beneficial for benchmarking accurate emergency detection 
and adaptive scheduling. 
Digital Exposome serves as the main dataset (heterogeneity, 
scalability, FL validation) in this work and PIF as the secondary 
dataset (emergency validation). This pairing provides both 
realistic and holistic evaluation.

Overview of the Proposed Work
The proposed FDDBSCAN-MBKSched framework represents 
a hybrid edge-cloud architecture with three logical layers. 
At the Edge Layer, which includes devices and gateways, 
raw data goes through steps like denoising, normalization, 
as well as segmentation to get it ready for use. DBSCAN is 
employed on recent sliding windows to find anomalies in 
real time as well as flag emergency events right away. Each 
edge node also does local federated training on confidential 
time-series data to make predictions and sort data. An 
Adaptive Update Scheduler uses smart reasoning to decide 
if to send updates of the model quickly, wait, or not send 
them at all. It does this based on things like how urgent 
they are, how new the data is, and how much energy the 
device has. The Cloud Layer collects non-emergency data 
and uses Mini-Batch K-Means in a MapReduce framework 
to do global clustering and get insights at the population 
level. Additionally, it comprises a federated learning 
aggregator which transmits the global model back to the 
network after gathering model updates from edge devices 
and combining them using techniques like weighted 
averaging. In order to balance clustering accuracy, anomaly 
detection latency, and communication energy consumption 
throughout the system, the Optimization Module lastly 
uses a multi-objective optimizer to adjust the scheduler’s 
hyperparameters. Et alure 1 illustrates this.

The FDBSCAN-MBKSched model combines adaptive 
scheduling with edge anomaly detection, cloud clustering, 
and federated deep learning.

Pre-processing
To get the Digital Exposome and PIF datasets prepared 
to utilize the proposed framework, initially low-pass and 
median filters had been employed to eliminate high-
frequency noise from ECG, EDA, as well as inertial signals. 
This improved the quality of the signals so that they could 
be analyzed accurately. Then, physiological signals like heart 
rate and EDA were adjusted so that their mean was zero and 
their variance was one. This made sure that all participants 
and sensors had the same input ranges (Backhus et al., 
2025). The continuous signals were subsequently divided 
into overlapping time-series windows of length W seconds 
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and overlap O seconds by employing the sliding window 
method (Bai et al., 2025) to identify temporal patterns. From 
every segment, features have been extracted, comprising 
statistical (mean, variance), frequency-domain (power 
spectral density, dominant frequencies), as well as temporal 
features (slopes, peaks) to facilitate clustering as well as 
anomaly detection (Singh and Krishnan., 2023). Lastly, 
the data were tagged as emergency events. For example, 
Digital Exposome abnormalities were simulated by setting 
thresholds like HR > 150 bpm above safety limits, and falls 
in PIF were considered as emergency instances.

DBSCAN based Anomaly Detection at Edge
DBSCAN is used by every device to identify irregularities in its 
local segment. Because of its exceptional capacity to handle 
intricate data structures as well as noisy circumstances, 
DBSCAN is a clustering technique. Density-Based Spatial 
Clustering of Applications with Noise, or DBSCAN, is a great 
option for this anomaly detection objective because it has 
a number of important benefits. Depending on the data 
density, DBSCAN computes the right number of clusters. 
The result guarantees that we can identify all significant 
clusters in the dataset, irrespective of their size or number, 
and does away with the need for manual parameter setting.

The epsilon parameter (ε), which defines the radius of 
the neighborhood used for calculating the density of the 
points, is one of the most important factors that has to be 
precisely changed in DBSCAN (Retiti Diop Emane et al., 2024). 
Quartiles were modified when utilizing the epsilon value for 
clustering [31]. These statistical measures divide a dataset 
as four parts, every one of which displays a quarter of the 
total data. We were interested in the interquartile range (

QI ), as well as the first, second, and third quartiles (𝑄1, 𝑄2, 
and 𝑄3). The first quartile (𝑄1) is the value that 25% of the 
data fall below. The second quartile (𝑄2) is the median and 
divides the dataset into two equal parts. The third quartile 

(𝑄3) is the value that 75% of the data fall below; and the 
interquartile range (𝐼𝑄𝑅) is the dataset’s distribution. It is 
calculated by deducting the third quartile (𝑄3) from the first 
quartile (𝑄1). Interquartile range ( QI ), the upper limit ( bU ) and 
the lower limit ( bL ), which are significant in determining the 
value of Epsilon.

ε ℵ üü     	 (1)

Using quartiles, QI , bU  and bL  can be calculated. Lastly, 
using the epsilon value and 2-Dimensional data, Clustering 
is performed for separating normal data from anamoly data.

( )
( )

  ;  1
  ;  1

 = −=  ≠ −

Anamoly abnormal DBSCAN cluster
Clusters

Not anamoly normal DBSCAN cluster
 	  (2)

Detected anomalies (emergencies) are immediately sent to 
healthcare providers. Non-emergency summaries (statistical 
features) are forwarded to the cloud.

Federated Learning with Adaptive Scheduling
The local model ( )DW  is maintained by every device D. During 
round R , the standard FL comprises devices for calculating 
the local updates which will be passed to server. Adaptive 
scheduling, however, allows device D to determine a sending 
action { }  ,   ∈R

Da Immediate delay and skip . This is dependent 
on three parameters as following. 
•	 Urgency score ( )DU : This is calculated using DBSCAN 

anomaly flags along with clinical thresholds.
•	 Model staleness or also called freshness ( )DS : where final 

updates acknowledged time.
•	 Energy state ( )DE : This is based on battery level and 

calculated residual energy.
The local utility can be defined as,

( ) ( ) ( ). . 1 .α β γ= + − +D D D DP norm U norm S norm E 	 (3)

Et alure 1: Flow diagram of proposed FDBSCAN-MBKSched framework
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In above equation, weighting hyperparameters are denoted 
using variables α, β and γ and variables are mapped to [0,1] 
by norms.

Rule of decision can be considering for thresholding 
(example) can be taken as following: When DP  is greater 
than τ immediate , instantly send. Otherwise, if DP  ∈ ( ,τ τ−delay low immediate ), 
Delay the updates from the buffer until the next available 
time slot or Skip Else.

Following this, using federated averaging model 
aggregation is carried out. A suitable FL aggregation 
technique, such as Federated Averaging, is used on the 
central server to aggregate the parameters that have been 
updated from every node. Despite explicitly exposing 
personal information, this approach creates an enhanced 
global model based on the knowledge of all nodes.

The model is updated by FedAvg through averaging the 
parameters of the model that are obtained from multiple 
local nodes following their training cycles. consider kW  
be the model parameters of the model coming from 
node named k, in which k ranges from 1 to K, and kn  be 
the number of samples that node k utilized for training. 
The central server (CS) updates the global model (GM) W 
(Alasmari et al., 2025) using the equation that follows.

1

1

=

=

= ∑
∑

K
k kk

K
kk

n W
W

n
   	  (4)

This weighted average allows us to modify the involvement 
of participants based on the amount of data they have, 
ensuring that nodes with larger datasets have a greater 
effect on the construction of the global model.

Cloud Clustering: Mini-Batch K-Means under 
MapReduce
Once edge devices identify and locally filter out anomalies 
with DBSCAN, only non-emergency summary information 
like physiological signal statistical aggregates is sent to 
the cloud. Bandwidth consumption and device energy are 
conserved. The cloud server collects summaries from a set 
of edge nodes and carries out Mini-Batch K-Means (MBK) 
clustering based on the MapReduce model for scalable, 
low-latency world-wide pattern extraction. This design 
improves scalability and decreases computation time with 
high clustering accuracy for huge volumes of healthcare 
data streams.

Initialization
The summaries (pre-processed features) from edge devices 
can be denotes as:

 { }1 2 3, , , . ,  = … d
S tZ z z z z z F 	 (5)

where S denotes the total number of summarized instances, 
and d denotes the feature dimension.

Where N denotes number of clusters; mb denotes mini-
batch size.

Centroids at iteration i  can be denoted as,

( ) ( ) ( ) ( ){ }1 1, , .= …i i i i
NC c c c   	   (6)

At initialization stage (for i=0), centroids or centres are 
randomly selected using below equation,

( ) ( )0 ,=C Initialize Z N   	   (7)

Mini-Batch Sampling
The small subset(mini-batch) of data is taken randomly at 
every iteration (i≥1) without any replacement.

( ) , =iM sample Z mb    	  (8)

This randomization procedure makes stochastic exploration 
as well as computation more efficient, which makes it 
possible to cluster large datasets.

Assignment Step
For available centroids ( )1 ,−iC  each data point is allocated to 
nearby centroid with the help of Euclidean distance.

 
{ }

( )1 2

  1,2,..
arg min −= − i

t t uu N
b z c


	 (9)

The above result generates partitions based on mini-batch 
cluster ,( )i uM .

Update Step
Following that, the centroids are modified little by little 
according to the average of the new samples or members 
in every cluster: 

  	  (10) 

 

,

,
,

1   = ∑
t i u

t u t
z Mi u

z z
M 

 	 (11)

Also,  is the learning rate multiplied through the 
total number of samples ( )  i

un for cluster u.

Convergence Criterion
The iterative update procedure keeps going on as long as the 
centroid shift between iterations is less than an acceptable 
threshold T. 

( ) ( )1−− <i i
FC C T  	  (12)

In above equation, .F  represents the Frobenius norm.
When everything is done, all of the observations in Z are put 
into their closest last centroids *C .
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Integrating MapReduce
The MapReduce structure executes the algorithm 
simultaneously such as this:
•	 Map Phase: Every one mapper node creates a small batch 

of data on its own on a data segment.
•	 Reduce Phase: By employing weighted averaging, 

reducer nodes combine partial centroids.

( ) , ,1

,1

=

=

= ∑
∑

M
m u m ur m

u M
m um

w c
c

w
 	    (13)

The centroid from mapper m is denoted as ,m uc , and the 
sample weight is denoted using ,m uw . This distributed 
formulation speeds up convergence and makes sure that 
real-time healthcare analytics can work on a large scale in 
the cloud.

Convergence and Robustness
Similar to traditional K-Means, Mini-Batch K-Means remains 
sensitive to its initialization. Yet it converges faster and uses 
less memory, which makes it perfect for aggregating high-
frequency IoT data. This method converges to a local optimal 
value, which may be different from traditional K-Means 
because of random sampling.

Mutli-objective Optimization
The three objectives are balanced by system such as 
accuracy, latency as well as energy which is given in eqn(14).

( ) ( ) ( ) ( )Objective function   1  α β γ= − + +G accuracy latency energy  	 (14)

Here, α, β, γ denotes the weights reflecting trade-offs.
The following are the algorithm for proposed FDBSCAN-

MBKSched (Algorithm 1)

Results and Discussion

Experimental setup
The proposed FDBSCAN–MBKSched were tested on two 
datasets mentioner earlier: DigitalExposome (40 subjects; 
physiological + environmental signals) and PIF (wearable 
physiological + inertial signals, marked fall events). 
Experiments are performed on 1.5 GHz CPU, 1 GB RAM 
devices to mimic edge and a cloud cluster of 4 nodes for 
aggregation and clustering. Three baselines are used for 
comparison:
•	 Centralized DBSCAN + centralized model training, no 

federated learning.
•	 Standard FedAvg, with periodic transmission each round 

and no adaptive scheduling.
•	 FedProx-style federated learning (using proximal 

regularization) to address heterogeneity.
The following metrics are reported: classification accuracy, 
precision, recall, F1-score for emergency detection; 
anomaly detection latency; communication cost (total data 
communicated); clustering quality: Silhouette Score and 

Davies–Bouldin Index; and energy consumption (simulated 
on device model, in Joules per round).

Performance evaluation on emergency detection 
The comparison of performance across various methods 
shows the substantial gain made by the proposed FDBSCAN–
MBKSched framework. The proposed method made 93.4% 
accurate predictions, performing better than baseline 
methods like Centralized training (82.3%), FedAvg without 
scheduling (87.5%), and FedProx (89.1%). This indicates that 
integrating dynamic cluster-based scheduling with mini-
batch k-means in a federated learning framework impacts 
model generalization over disparate datasets accurately.

Precision (92%) and Recall (93%) of the proposed 
FDBSCAN–MBKSched approach are always better than 
the baselines, which show better reliability in accurate 
identification of positive samples and reducing false 
negatives. Also, F1-Score (92.5%) validates an optimal 
balance between precision and recall, asserting that the 
FDBSCAN–MBKSched approach exhibits stable performance 
in all metrics. 

FedAvg with no scheduling achieves better performance 
than local centralized training and demonstrates the 
benefit of federated aggregation. FedProx, targeting data 
heterogeneity, performs somewhat better than FedAvg 
but still falls short of the proposed FDBSCAN–MBKSched, 
showing the significance of effective client scheduling 
according to data clusters.

The bar chart in Et alure 2 clearly shows that all the 
performance measures of the proposed approach are best 
among the methods compared, validating the efficiency 
and superiority of FDBSCAN–MBKSched. The enhancement 
is especially marked in F1-Score, which is of maximum 
importance in applications where balanced precision and 
recall are important.

Latency and False Alarm Rate during Anomaly 
Detection
The detection latency reduces significantly when anomaly 
detection is done at the edge of the network in place of a 
centralized environment. The designed Edge + Adaptive 
Scheduling achieves the least latency of 0.92 s, against 2.15 
s with centralized DBSCAN and 1.40 s with Edge-DBSCAN 
without scheduling (Table 1). This enhancement is because 
of local processing at the edge, which removes the latency 

Table 1: Comparison of latency and false alarm rate for different 
anomaly detection methods.

Method Detection 
Latency (s)

False Alarm 
Rate (%)

Centralized DBSCAN 2.15 8.7

Edge-DBSCAN (no scheduler) 1.40 5.2

Edge + Adaptive Scheduling (proposed) 0.92 2.1
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Algorithm 1: Overall workflow of proposed FDBSCAN-MBKSched model
Input: DigitalExposome, PIF datasets; window length (W); overlap (O); DBSCAN (ε, MinPts); FL and scheduler parameters 
(α, β, γ, τ_immediate, τ_delay); MBK parameters (N, mb, T).
Output: Global model (W_{global}), cloud centroids (C^*), emergency alerts.
Begin
Preprocessing:
 Apply low-pass & median filters → denoise signals.
 Normalize to zero mean and unit variance.
 Segment into sliding windows (W, O).
 Extract statistical, frequency & temporal features.
 Label emergencies using thresholds (HR > 150 bpm, falls).
Edge-level Anomaly Detection (DBSCAN):
 Compute quartiles 𝑄1 to 𝑄3 and QI .
 ε ℵ üü ; MinPts = 2 × dimension.
 Run DBSCAN on recent window.
 If cluster = −1
 send emergency alert;
 else 
 store summary features.
Adaptive Federated Scheduling:
 Each device trains local model ( DW ).
 Compute scheduling score using Eqn (3)

( ) ( ) ( ) . . 1 .α β γ= + − +D D D DP norm U norm S norm E  

 If DP
 ≥ 
τ immediate : send update;

 else if DP  ∈ ( , )τ τ−delay low immediate : delay;
 else: skip.
Federated Aggregation (Cloud):
 Aggregate received updates using Eqn (4)

 1

1

=

=

= ∑
∑

K
k kk

K
kk

n W
W

n

 Broadcast new global model to all devices.
Cloud Clustering (Mini-Batch K-Means + MapReduce):
 Initialize centroids 

( )0C  using Eqn (7)
 Sample mini-batch iM

; assign each tz  to nearest centroid.
 Update 

( )i
uC  using eqn(10) 

 Map: local centroids → Reduce: weighted average combine.
 Stop when 

( ) ( )1−− <i i
FC C T

; output 
*C .

Optimization:
 Tune scheduler parameters (α, β, γ, τ) to balance clustering accuracy, latency, and energy.
 Repeat Steps 2–6 until convergence of 

,m uw
 and 

( )r
uc .

 End 

of the network, and the adaptive scheduling feature that 
gives precedence to urgent anomalies to indicate them right 
away without waiting for periodic update cycles.
The rate of false alarms is also drastically lowered, falling 
to 2.1% from 8.7% for Edge-DBSCAN with centralized 
scheduling and 5.2% for Edge-DBSCAN without any 
scheduling. Dynamic ε tuning, that appropriately modifies 
the sensitivity of clustering according to local data patterns, 
is responsible for this ~60–75% decrease, avoiding the 

labeling of noisy points as abnormalities. Edge processing as 
well as adaptive scheduling integrate to improve detection 
speed along with accuracy, making the framework ideal 
for real-time anomaly detection in resource-constrained 
environments. Overall, these results showed that edge 
computing and intelligent scheduling overcome the 
fundamental trade-off among detection speed as well 
as fidelity to provide a dual benefit: a faster response to 
anomalies and fewer false positives.
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Table 2: Comparison of Communication and energy usage per 
device per round for various federated learning techniques.

Methods Data Sent per 
Round (MB)

Energy (J) per 
Device per Round

FedAvg (every round) 2.5 12.0

FedProx 2.5 12.5

Proposed FDBSCAN–
MBKSched

1.2 7.8

Table 3: Comparison of clustering quality for different K-Means 
approaches

Method Silhouette Score Davies-Bouldin Index

Centralized K-Means 0.61 1.48

Mini-Batch K-Means 
(non-distributed)

0.63 1.42

MBK-MapReduce (our 
method)

0.67 1.28

Communication and Energy Efficiency
The results (Table 2) highlight how successful the proposed 
FDBSCAN–MBKSched framework has been. Because many 
updates are delayed and omitted according to adaptive 
scheduling, the amount of information sent per round is 
reduced by at least 50% (in the range of 2.5 MB towards 
1.2 MB). Compared to FedAvg and FedProx, which update 
continuously, energy consumption per device also drops 
by about 35–40% per round (from an average of 12.0–12.5 
J towards 7.8 J). Such improvements demonstrated 
that intelligent scheduling and clustering in federated 
learning might effectively lower energy consumption 
and communication overhead without compromising 
the learning process, rendering the approach particularly 
effective for resource-constrained edge devices.

Cloud Clustering Quality
Clustering performance is assessed by two common metrics: 
Silhouette Score, which indicates the similarity of a point 
to its own cluster versus other clusters where higher range 
is preferable. The Davies-Bouldin Index, which measures 
cluster compactness and separation where lower range is 
desirable. 

With a higher Silhouette Score (0.67) along with a 
lesser Davies-Bouldin Index (1.28), the proposed MBK-
MapReduce method (as indicated in Table 3) works better 
than centralized K-Means (0.61, 1.48) and non-distributed 

Mini-Batch K-Means (0.63, 1.42). These results demonstrate 
stable clusters as well as more effectively cluster quality. 
Additionally, in comparison to centralized Mini-Batch 
K-Means, distributed MBK converges faster due to the 
parallel mapper and reducer setup, reducing computation 
time in cloud clustering about 40%. These findings prove 
MBK-MapReduce efficiently balances cluster quality and 
efficiency for large-scale, high-dimensional data set.

Discussion
The increased F1-score is due to two main reasons: (i) 
adaptive, edge-based anomaly detection using DBSCAN 
with dynamically calculated ε suppresses false negatives/
positives, particularly in noisy physiological signals; and (ii) 
federated learning makes the global model leverage diverse 
local patterns without overfitting on any single participant.

Edge‐based detection ensures emergencies are flagged 
immediately, bypassing cloud communication delay. 
Adaptive scheduling avoids needless communication under 
low urgency, which cuts energy and bandwidth costs. There 
may be a small overhead in edge computation (feature 
extraction, DBSCAN), but in our measurements this overhead 
(~0.3-0.5 s per window) is much smaller than the avoided 
network latency (~1-2 s) and energy cost.

Mini-Batch K-Means under MapReduce scales well, 
giving nearly the same Silhouette/Davies-Bouldin results 
as centralized clustering while reducing computation time.
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Conclusion
With 93.4% accuracy along with the best precision, recall, 
and F1-score among every metric of assessment, the 
suggested FDBSCAN–MBKSched framework outperforms 
present federated learning techniques. By combining 
Mini-Batch K-Means aggregation, adaptive scheduling, and 
DBSCAN-based local clustering, the framework efficiently 
reduces data heterogeneity, speeds up convergence, and 
improves predictive stability. Furthermore, it is more efficient 
for resource-constrained edge devices than FedAvg and 
FedProx, reducing communication overhead by roughly 
50% and device energy consumption by 35–40% per round. 
All things considered, FDBSCAN–MBKSched provides a 
scalable, energy-conscious, and reliable solution for actual 
IoMT-based federated healthcare systems. In order to further 
improve scalability and security in practical use cases, future 
research will concentrate on expanding the FDBSCAN–
MBKSched approach to cross-silo along with multimodal 
IoMT environments, integrating privacy-preserving 
strategies like differential privacy and blockchain-driven 
trust systems.
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