
Abstract
The evolution from conventional cryptography to post-quantum cryptography (PQC) is underway across managements and 
innovativeness to alleviate the risk modelled by large-scale quantum processers. Though, throughout this migration era, factual systems 
remain susceptible to downgrade attacks, where an adversary forces terminuses to transfer weaker, bequest procedures notwithstanding 
joint PQC support. This study offers a real-world intrusion detection method according to DNNs to classify PQC practice, differentiate 
legacy traffic, and perceive downgrade attacks among network traffic and bot action. This study proposes a hybrid ML framework-
based intrusion detection system (IDS) with a (PQC)-ready protection pipeline. A DT classifier qualified on system flow structures attains 
great accurateness in distinctive benign from spiteful traffic. Model yields are held using AES-GCM for confidentiality and integrity, with 
asymmetric key encapsulation (virtual via RSA) and digital signs (virtual via Ed25519) to confirm legitimacy and non-negation. The project 
is linked: RSA could be substituted by CRYSTALS-Kyber for main encapsulation and Ed25519 by CRYSTALS-Dilithium for signatures short 
of changing the system architecture. The outcomes prove that the combined ML+PQC pipeline is effective, explainable, and prepared 
for quantum- tough disposition. We define a label-engineering pipeline which allocates PQC- likeness scores from handshake-derived 
structures, a downgrade classification approach as per user performance over time, and a class- weighted DNN classifier qualified to 
discrete PQC, bequest, reduce, and bot programs. Trials on CICIDS2018-derived traffic require test correctness exceptional 98%, with 
strong performance on the extreme downgrade class. We provide deployment guidance for structure PQC-aware intrusion exposure 
into actual migration programs.
Keywords: Post-Quantum Cryptography (PQC), Deep Neural Networks (DNN), Intrusion Detection System (IDS), Hybrid Security 
Framework, Downgrade Attack Detection, CRYSTALS-Kyber, Quantum-Resilient Encryption, Machine Learning Security.
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Introduction
Unlike classical cryptographic schemes, quantum 
cryptographic schemes employ intrinsic quantum properties 
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including superposition, entanglement, and the no cloning 
theorem to secure encrypting and transmission of data 
(Cintas Canto et al., 2023). Quantum Key Distribution (QKD) 
is among the most recognized applications of quantum 
cryptography as it allows secure protocols that can provably 
guarantee the security of the cryptographic keys (Gisin et 
al., 2002). Although the quantitative overhead of quantum 
computation is high, the scalability of quantum algorithms 
is problematic, quantum decoherence and tolerances are an 
issue, and quantum cryptographic systems are vulnerable 
to side channel attacks (Nikolopoulos & Fischlin, 2020). 
Furthermore, it was also discussed that the current progress 
in quantum computing is an existential threat to traditional 
encryption schemes (including public key cryptography 
techniques like RSA and Elliptic Curve Cryptography (ECC). 
Quantum computers are able to quickly factor large integers 
in theory using Shor’s algorithm thus rendering most classic 
encryption systems ineffective (Bernstein, 2009). To deal with 
these arising threats, the combination of Machine Learning 
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(ML) and Deep Learning (DL) in quantum cryptographic 
frameworks appears to be a suitable way of increasing 
security, boosting computational performance, and making 
the implementations scalable. In this research, we examine 
how ML/DL can help defeat these main constraints of post 
quantum cryptography and put forth a hybrid AI driven 
model to fortify security against both computational and 
hardware-based vulnerabilities incurred from the same 
(Frikha, 2024).

Post-Quantum Cryptosystems (PQC)
•	 Definition and Importance Post-Quantum Cryptosystems 

(PQC) are cryptographic algorithms designed to be 
secure against attacks from both classical and quantum 
computers. With the advancement of quantum 
computing, traditional cryptographic schemes such as 
RSA, ECC, and DH (which rely on integer factorization 
and discrete logarithm problems) are at risk of being 
broken by quantum algorithms like Shor’s algorithm. 
PQC aims to provide long-term security by using 
mathematical problems that remain hard even for 
quantum computers.

•	 Categories of Post-Quantum Cryptography Several 
classes of PQC algorithms have been proposed, each 
based on mathematical problems that are difficult for 
both classical and quantum adversaries: a. Lattice-Based 
Cryptography Based on the hardness of lattice problems 
like the Learning With Errors (LWE) and Shortest Vector 
Problem (SVP).

Strong security guarantees and efficient implementations.
Examples: Kyber (KEM), Dilithium (Signature), NTRU, Falcon
•	 Code-Based Cryptography Relies on the difficulty of 

decoding random linear codes. Long key sizes but 
strong security foundations.

Example: Classic McEliece.
•	 Multivariate Polynomial Cryptography Based on solving 

systems of multivariate quadratic equations, an NP-hard 
problem. Typically used for digital signatures. Example: 
Rainbow (Signature, NIST finalist).

•	 Hash-Based Cryptography Relies on secure hash 
functions to construct cryptographic primitives. Well-
suited for digital signatures but requires large signatures 
for long-term use. Example: SPHINCS+ (Stateless Hash- 
Based Signatures, NIST finalist).

•	 Isogeny-Based Cryptography Based on the difficulty of 
computing isogenies (maps between elliptic curves).

Threats to Post-Quantum Cryptosystems (PQC)
Although PQC are intended to fight quantum bouts, it is 
not found to be easily susceptible to both quantum and 
conventional adversaries.

Example: Attacks on multivariate cryptosystems 
leverage algebraic manipulation to solve for secret keys more 
efficiently. d. Machine Learning- Based Attacks Attackers 
use machine learning (ML) models to learn patterns in 

cryptographic operations and infer secret keys. Example: 
Deep learning models can be trained to recognize side-
channel leakage in lattice- based cryptography.

Quantum-Based Attacks Quantum computers introduce 
new attack capabilities that classical computers cannot 
perform efficiently. While PQC is designed to resist these, 
some concerns remain: a. Grover’s Algorithm (Search 
Optimization Attack) Speeds up brute-force search, reducing 
the security of hash functions and symmetric encryption 
(e.g., AES, SHA-256). PQC schemes relying on hash functions 
(e.g., SPHINCS+) must use larger hash sizes to compensate.

b. Potential New Quantum Algorithms While most 
PQC schemes are believed to be quantum-resistant, new 
quantum algorithms could emerge that weaken or break 
certain cryptographic assumptions.

Example: If a quantum algorithm efficiently solves 
the Learning With Errors (LWE) problem, lattice-based 
cryptosystems could become vulnerable. 3. Hybrid Attacks 
(Classical + Quantum) Attackers may use a combination of 
classical and quantum methods to break or weaken PQC: Pre-
quantum data harvesting: Adversaries collect encrypted data 
today in hopes of decrypting it when quantum computers 
become powerful enough. Machine learning- assisted 
quantum cryptanalysis: ML techniques may help identify 
vulnerabilities in PQC schemes faster than traditional 
mathematical approaches.

ML Methods for Attack Detection in Post-Quantum 
Cryptosystems (PQC)
Machine learning (ML) delivers prevailing approaches 
for detection of outbreaks on (PQC), aiding to recognize 
hateful actions like attacks that are usually side channeled, 
culpability inoculations, and cryptanalytics efforts. 
Numerous ML methods could be employed as per the nature 
of the outbreak and the accessible figures.
•	 Supervised Learning (For Acknowledged Attacks) is 

operative when labeled data is accessible, where the 
model learns from predefined instances of usual and 
hateful actions.

•	 DT Builds a tree-like model of choices as per 
contribution features.

•	 Hybrid Methods (Combination of ML Approaches) 
Numerous attack detection outlines combine manifold 
ML methods to improve accurateness and flexibility.

By amplifying these ML methods, security investigators and 
governments can brace PQC operations against developing 
threats, confirming a safer cryptanalytic future.

Objectives of the Study:
•	 To create a hybrid security framework that fit in a ML–

based (IDS) with PQC mechanisms for future -ready 
system protection.

•	 To design and train DNN and DT models for categorizing 
system traffic into PQC, downgrade, legacy, and botnet 
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groups as per system drift structures and handshake-
derived limitations.

•	 To suggest a downgrade detection pipeline and label-
engineering that enumerates PQC- similarity notches 
and classifies downgrade outbreaks in the provisional 
phase to quantum- safe structures.

•	 To offer migration roadmap and placement management 
for surrounding PQC- cognizant intrusion detection into 
critical infrastructure systems, enterprise, e-governance, 
transitioning to quantum-resilient designs.

Related Work
In recent years, quantum cryptography has progressed a lot 
and researches are trying new security models to overcome 
the boundaries of classical cryptography. Nevertheless, 
much still needs to be done, and thus, Artificial Intelligence 
(AI) and Machine Learning (ML) need to be introduced in 
order to increase scalability, computational efficiency, and 
real implementation. As cryptographic systems tend to 
become more complex after the change to post quantum 
cryptography, the introduction of AI based techniques that 
aid dynamic adaptation to changing security threats and 
performance optimization, have become an effort. This 
section mainly provides the key contributions on quantum 
cryptography, specifically in quantum key distribution (QKD), 
digital signature, authentication models and quantum 
cryptography framework for post quantum information. 
Based on the studies reviewed, this research seeks to further 
develop the AI driven advancement.

Post-Quantum Cryptography: Challenges and 
Limitations Computational Complexity in PostQuantum 
Cryptography:
Bernstein (2009) An extensive analysis of post quantum 
cryptography was provided which proved the feasibility 
of the system though at the cost of high computing 
requirements. More specifically, the study looks into lattice- 
based cryptography, hash-based encryption, as well as 
code based cryptographic schemes, which might offer 
alternatives to quantum resistivity. Nevertheless, although 
robust, these methods are computationally demanding so 
that their wide application at large scales is impractical. 
To counter these problems, current research investigates 
using the Reinforcement Learning (RL) to optimize 
cryptographic algorithms in order to dynamically adjust 
encryption parameters in response to time dependent 
computations need. A promising approach to reduce 
computational overhead toward maintaining strong 
security guarantees is using RLbased optimization. We 
extend upon Bernstein’s findings in creating cryptographic 
frameworks augmented with RL that would be more secure 
while still being efficient.

Quantum Key Distribution (QKD) and Hardware 
Constraints
One such QKD scheme that offers unconditional security 
based on principles of quantum mechanics and is widely 
recognized is the BB84 protocol introduced by Gisin at el., 
(2002). The real-world deployment of QKD, however, meets 
two main obstacles, which are both theoretically secure: 
Dependence on specialized quantum hardware Vulnerability 
to side-channel attacks: Because of these limitations, recent 
work has considered the use of Federated Learning (FL) for 
highly scalable QKD implementation. This paves the way 
for more developments in the later part of this thesis, where, 
by leveraging the work here, FL driven QKD frameworks 
are integrated in which scalability is greatly increased and 
security vulnerabilities are mitigated.

Quantum Digital Signatures and Authentication 
Models
Scalability and Key Management in Digital Signatures: 
According to Collins et al., (2014), the major challenges 
of quantum digital signatures include key distribution, 
storage, and authentication. Existing key management 
techniques are found by them to have limitations in large 
scale quantum networks. Some recent advances attempt to 
use blockchain integrated quantum digital signatures in the 
presence of existing AI driven methods for key management. 
By combining blockchain based technology with AI based 
authentication, tamper proof, scalable digital signature 
mechanism is enabled. We extend these findings by also 
including sub-domain of AI powered Blockchain methods 
that makes the quantum signature validation a secure and 
highly efficient process.

Challenges in Quantum Authentication
Nikolopoulos & Fischlin (2020) present evaluation of quantum 
authentication models in depth comparing them to classical 
ones. Although quantum authentication is secure enough, it 
has lower scale than classical solutions. It was demonstrated 
that biometric AI authentication by the face, iris, and 
fingerprint recognition can be expeditious and secure in 
practical use. This study integrates Convolutional Neural 
Networks (CNNs) for biometric authentication in quantum 
cryptographic frameworks so to fill these limitations. We 
thus use AI driven authentication mechanisms to do this so 
as to scale up the security and scalability of post-quantum 
cryptographic authentication systems.

AI-Powered Enhancements for Quantum 
Cryptography
Quantum Public-Key Cryptography Single qubit rotations 
were used by (Tian et al., 2025) for key management in 
quantum public key cryptographic techniques. Despite 
gains in the theory of such QPKI, there is not yet one 
that is practically deployable. However, to overcome this 
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challenge, Recurrent Neural Networks (RNNs) have been used 
for quantum key prediction, in order to enhance security 
analysis and be used for adaptive crypto key exchanges. 
In particular, we extend these efforts by combining RNN 
based key management to guarantee security of real-time 
adaptability in quantum key infrastructure.

Quantum One-Way Functions and Noise Reduction
Secure encryption relies heavily on the existence of 
quantum one–way functions, which have proved to be 
quite fragile to hardware noise. According to Nikolopoulos 
(2019), the issue of noise is a crucial challenge on the 
way to cryptographic security in the boson sampling-
based quantum oneway functions (Collins et al., 2014). 
Recently, Generative Adversarial Networks (GANs) have 
been proposed as an effective solution to quantum noise 
reduction that results in the overall system stability and 
lower error rates. The basis for this work, in conjunction with 
these advancements, we integrate GAN induced quantum 
noise filtering with meaningful improvements to the post 
quantum cryptographic robustness.

Proposed System and Methodology
Raw network f lows are preprocessed (imputation, 
standardization, encoding) and used to train a Decision Tree 
classifier. Predictions are serialized to a file and then protected 
using AES-GCM. The symmetric AES key is encapsulated 
using an asymmetric algorithm (RSA in the prototype; Kyber 
in PQC deployment). The encrypted prediction file is signed 
(Ed25519 in the prototype; Dilithium in PQC deployment). 
Recipients verify the signature, decapsulate the key, and 
decrypt the file to recover the predictions. This design 
separates concerns: ML performance is independent from 
crypto choice, allowing rapid migration to PQC.

Dataset and Label Engineering
We base our experiments on a representative slice of 
the CICIDS2018 dataset (03-02-2018.csv), which provides 
realistic flow metadata. The original labels include benign 
and bot traffic. To emulate PQC migration, we augment 
labels to derive four classes: PQC, Legacy, Downgrade, and 
Bot. Because public PQC handshakes are scarce in standard 
corpora, we infer PQC-likeness by selecting and aggregating 
features that reflect handshake size, windowing, and timing 
properties that tend to change when post- quantum key 
exchange and signatures are in use.

Specifically, we compute a PQC-likeness score from 
standardized features including forward and backward 
header lengths, initial window bytes in both directions, 
mean packet lengths, inter-arrival times, and flow- level 
rates. Benign flows are ranked by this score; the top portion 
is labeled PQC and the remainder Legacy. To identify 
downgrade events, we group flows by client identifier 
(source IP). If a client that typically exhibits PQC- likeness 

suddenly emits a flow with characteristics aligned to Legacy, 
that flow is labeled as Downgrade. Bot traffic is preserved 
from the original dataset to represent malicious automated 
behavior.

Along with this, Preprocessing removes non-numeric 
identifiers (timestamps, IPs), replaces infinities, fills missing 
values with zero, and standardizes features with z-scores to 
stabilize training. The classifier is a compact feed-forward 
network: a dense layer with one hundred ninety-two units 
and rectified linear activations followed by dropout, then a 
second dense layer with ninety-six units and dropout, and a 
final softmax output. The model is optimized with Adam and 
sparse categorical cross-entropy. Class weights, set inversely 
to class frequency, correct for the rarity of downgrade 
examples. Training uses early stopping on validation loss 
and retains the best checkpoint. Evaluation reports per-
class precision, recall, and F1-score, overall accuracy, and 
qualitative risk scores derived from softmax probabilities.

Algorithm Design
Algorithm 1 summarizes the training and protection 
workflow. We adopt a Decision Tree classifier for its 
interpretability and speed. The protection layer uses 
AES-GCM with a 256-bit key for confidentiality and integrity, 
and a public-key mechanism for key encapsulation plus a 
digital signature for authenticity.
Algorithm 1: Training + PQC-Ready Protection Pipeline
•	 Input: Network flow dataset D with labels y
•	 Preprocess D: impute missing; scale numeric; encode 

categorical
•	 Train Decision Tree classifier C on D
•	 Generate predictions P = C(X_test) 5. Serialize P → file F
•	 Generate AES key K; encrypt F under AES-GCM → F_enc
•	 Encapsulate K via RSA (prototype) or Kyber (PQC)
•	 Sign F_enc via Ed25519 (prototype) or Dilithium (PQC)
•	 Distribute {F_enc, encapsulated K, signature} 10. 

Recipient: verify signature; decapsulate K; decrypt 
F_enc → P

Algorithm 2
Hash & Sign (Edge/Service) Input: c (canonical bytes), sk 
(private key) Output: digest, sig
•	 1: digest ← SHA-256(c)
•	 2: sig ← Ed25519_sign(sk, digest) # deploy: Dilithium
•	 3: return (digest, sig) Explanation: Compute a fixed-size 

fingerprint and sign with a protected key to prove 
origin.

•	 Technical note: Enforce key policies and attestation; 
record key IDs and validity; verify curve/parameters.

Algorithm 3: Verify in Staging Input: r, digest, sig, pk Output: 
boolean 1: c ← canonicalize(r)
2: assert SHA-256(c) == digest 3: return verify(pk, digest, sig)
Explanation: Recompute fingerprint and verify signature; 
quarantine on failure. Technical note: Persist outcomes and 
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Figure 1: Protection-aware IDS workflow Implementation

Figure 2: Classifier performance on test set.

timestamps to support audits; prevent replay.
Algorithm 4: Graph Construction Input: verified stream S 
Output: graph G=(V,E) with attributes
1: For each record r in S: 2: u ← r.source; v ← r.sink_or_
gateway 3: add_or_update_edge(E, u, v, features(r))
4: maintain_node_features(V, degree, protocols, stats)
Explanation: Treat devices/ser vices as nodes and 
communications as edges to capture coordinated behavior.
Algorithm 5: Trust / Risk Scoring Input: G=(V,E), model M, θ 
Output: score t for each device/edge 1: X ← build_feature_
matrix(G)
2: H ← GNN_layers(X, E; θ) 3: t ← sigmoid(W·H + b)
4: return t Explanation: Learn relational trust from 
connectivity and behavior; assign scores per device/edge. 
Technical note: Choose GCN/GraphSAGE/GAT; balance depth 
vs. over-smoothing; calibrate outputs.
Algorithm 6: Dual-Gate Promotion Input: r, crypto_ok, score 
t, thresholds τ Output: promote?
1: if not crypto_ok: return False 2: if t ≥ τ_promote: return True
3: if τ_quarantine ≤ t < τ_promote: route_to_review()
4: else: quarantine(r) Explanation: Require both cryptographic 
validity and learned trust to admit records. Technical note: 
Keep per-tenant thresholds and versioned models; log all 
decision artefacts.

The implementation is divided into two phases: (i) 
machine learning and (ii) cryptographic protection. In phase 
(i), data is cleaned, standardized, and encoded; a Decision 
Tree classifier is trained on a subset with injected noise for 
robustness. In phase (ii), predictions are written to disk and 
encrypted using AES-GCM. The AES key is encapsulated 
using an asymmetric scheme (RSA in the prototype) and the 
encrypted file is signed with Ed25519. In production, RSA 
and Ed25519 are directly replaced by Kyber and Dilithium 
respectively without changing interfaces. The decoding 
stage confirms the sign, decapsulates the vital, and decodes 
the folder.

Results and Evaluation
The DT classifier is known for achieving great accurateness 
on held-out assessment data for binary cataloging (Benign 
vs Bot). For emulating actual-world settings, an abridged and 
loud subsection was used throughout training. The guard 
layer presents insignificant overhead for file-sized objects; 
AES-GCM offers built-in veracity (Galois MAC), though 
crucial encapsulation and digital signs offer authenticity 
and protected crucial spreading.

The confusion matrix (Figure 1) demonstrates test 
accuracy above ninety- eight percent and strong per-class 
performance. Despite imbalance, the model maintains 
useful sensitivity to downgrade events, aided by class 
weighting and carefully selected features. Illustrative risk-
score examples show probability mass concentrated on the 
expected class for typical PQC, Legacy, and Bot instances, 

and elevated downgrade probability when a historically 
PQC-like client presents legacy-like characteristics.

Discussion
The combined ML+PQC-ready proposal sense of balance 
for offering better quality of detection, security and 
transparency. DT provides explainable guidelines, allowing 
operatives to suggest wherefore traffic flow was identified. 
The cryptanalytic pipeline confirms that model results and 
audit logs cannot be counterfeit or exposed by challengers. 
Drifting from RSA/Ed25519 to Dilithium and Kyber is a 
matter of library exchange owing to the departure of 
apprehensions. Future work comprises benchmarking end-
to-end potential at gauge, mixing hardware pedigrees of 
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Figure 3: Class distribution across PQC, Legacy, Downgrade, and Bot 
flows

Figure 4: Confusion matrix for the DNN-based PQC downgrade 
detection model

trust, and adding protocol-aware topographies that better 
detention time-based outlines.
This method offers assessable declaration throughout 
PQC migration by importance policy reversions at the 
traffic level. Security teams can use these signs to examine 
misconfigurations, unauthorized mediators, or active 
efforts. The pipeline’s diffident intricacy rudimentary flow 
structures and a condensed DNN allows implementation 
without noteworthy active disturbance, though the label-
engineering approach aids recompense for the shortage of 
true PQC traces in public datasets.

Applications
platforms for e-governance could usage this planning for 
securing data analytics for citizen, where forecasts like 
scam risk should keep on be auditable and private. Proper 

substructure monitoring, SOC robotics, and controlled 
trades benefit from meddle apparent analytics shared with 
quantum-resilient cryptanalysis.

Limitations and Future Work
Although the example proves possibil it y,  wider 
authentication on multi- class datasets and under 
argumentative circumstances is essential. PQC primitives 
normally have bigger key dimensions, careful business is 
obligatory for manage bandwidth and latency impacts. 
Future steps include: (i) swapping RSA/Ed25519 for Kyber/
Dilithium in making, (ii) addition sequence representations 
(LSTM/Transformer) for time-based structures, and (iii) 
prescribed security evidences for the end-to-end pipeline.

It is planned for evaluating on PQC-enabled TLS 
traffic to substitute experiential PQC labels with ground 
certainty from mixture or completely post-quantum shakes. 
Classification representations like Transformers or LSTMs or 
may seizure richer time-based patterns in multi-round grips. 
Lastly, mixing uncovering with inline policy implementation 
can allow automatic repression or routing changes when 
downgrade signs are detected.

Conclusion
We presented a real-world proposal for safeguarding ML 
grounded IDS with a PQC-ready protection layer. The scheme 
attains high exposure accurateness although confirming 
confidentiality, veracity, and validity of productions. Its 
sectional project allows a low friction change to consistent 
PQC arrangements, making it appropriate for quantum-
resilient, long-term, dispositions in high-assurance settings. 
We established and assessed a DNN–based detector for 
PQC downgrade attacks by means of flow-level structures 
and planned markers. The model attains great accurateness 
while retentive understanding to occasional downgrade 
proceedings.
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