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Abstract

The evolution from conventional cryptography to post-quantum cryptography (PQC) is underway across managements and
innovativeness to alleviate the risk modelled by large-scale quantum processers. Though, throughout this migration era, factual systems
remain susceptible to downgrade attacks, where an adversary forces terminuses to transfer weaker, bequest procedures notwithstanding
joint PQC support. This study offers a real-world intrusion detection method according to DNNs to classify PQC practice, differentiate
legacy traffic, and perceive downgrade attacks among network traffic and bot action. This study proposes a hybrid ML framework-
based intrusion detection system (IDS) with a (PQC)-ready protection pipeline. A DT classifier qualified on system flow structures attains
great accurateness in distinctive benign from spiteful traffic. Model yields are held using AES-GCM for confidentiality and integrity, with
asymmetric key encapsulation (virtual via RSA) and digital signs (virtual viaEd25519)toconfirmlegitimacyandnon-negation.The project
islinked: RSA could be substituted by CRYSTALS-Kyber for main encapsulation and Ed25519 by CRYSTALS-Dilithium for signatures short
of changing the system architecture. The outcomes prove that the combined ML+PQC pipeline is effective, explainable, and prepared
for quantum- tough disposition. We define a label-engineering pipeline which allocates PQC- likeness scores from handshake-derived
structures, a downgrade classification approach as per user performance over time, and a class- weighted DNN classifier qualified to
discrete PQC, bequest, reduce, and bot programs. Trials on CICIDS2018-derived traffic require test correctness exceptional 98%, with
strong performance on the extreme downgrade class. We provide deployment guidance for structure PQC-aware intrusion exposure
into actual migration programs.

Keywords: Post-Quantum Cryptography (PQC), Deep Neural Networks (DNN), Intrusion Detection System (IDS), Hybrid Security
Framework, Downgrade Attack Detection, CRYSTALS-Kyber, Quantum-Resilient Encryption, Machine Learning Security.

Introduction including superposition, entanglement, and the no cloning

Unlike classical cryptographic schemes, quantum theorem to secure encrypting and transmission of data

cryptographic schemes employ intrinsic quantum properties  (Cintas Canto et al,, 2023). Quantum Key Distribution (QKD)
is among the most recognized applications of quantum

cryptography asitallows secure protocols that can provably
guarantee the security of the cryptographic keys (Gisin et
al., 2002). Although the quantitative overhead of quantum
computation is high, the scalability of quantum algorithms
is problematic, quantum decoherence and tolerances are an
issue, and quantum cryptographic systems are vulnerable
to side channel attacks (Nikolopoulos & Fischlin, 2020).
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(ML) and Deep Learning (DL) in quantum cryptographic
frameworks appears to be a suitable way of increasing
security, boosting computational performance, and making
the implementations scalable. In this research, we examine
how ML/DL can help defeat these main constraints of post
quantum cryptography and put forth a hybrid Al driven
model to fortify security against both computational and
hardware-based vulnerabilities incurred from the same
(Frikha, 2024).

Post-Quantum Cryptosystems (PQC)

Definitionand Importance Post-Quantum Cryptosystems
(PQQ) are cryptographic algorithms designed to be
secure against attacks from both classical and quantum
computers. With the advancement of quantum
computing, traditional cryptographic schemes such as
RSA, ECC, and DH (which rely on integer factorization
and discrete logarithm problems) are at risk of being
broken by quantum algorithms like Shor’s algorithm.
PQC aims to provide long-term security by using
mathematical problems that remain hard even for
quantum computers.

« Categories of Post-Quantum Cryptography Several
classes of PQC algorithms have been proposed, each
based on mathematical problems that are difficult for
both classical and quantum adversaries: a. Lattice-Based
Cryptography Based on the hardness of lattice problems
like the Learning With Errors (LWE) and Shortest Vector
Problem (SVP).

Strong security guarantees and efficient implementations.

Examples: Kyber (KEM), Dilithium (Signature), NTRU, Falcon

« Code-Based Cryptography Relies on the difficulty of
decoding random linear codes. Long key sizes but
strong security foundations.

Example: Classic McEliece.

« Multivariate Polynomial Cryptography Based on solving
systems of multivariate quadratic equations, an NP-hard
problem. Typically used for digital signatures. Example:
Rainbow (Signature, NIST finalist).

Hash-Based Cryptography Relies on secure hash
functions to construct cryptographic primitives. Well-
suited for digital signatures but requires large signatures
forlong-term use. Example: SPHINCS+ (Stateless Hash-
Based Signatures, NIST finalist).

« Isogeny-Based Cryptography Based on the difficulty of
computing isogenies (maps between elliptic curves).

Threats to Post-Quantum Cryptosystems (PQC)

Although PQC are intended to fight quantum bouts, it is

not found to be easily susceptible to both quantum and

conventional adversaries.

Example: Attacks on multivariate cryptosystems
leverage algebraic manipulationto solveforsecretkeysmore
efficiently. d. Machine Learning- Based Attacks Attackers
use machine learning (ML) models to learn patterns in

cryptographic operations and infer secret keys. Example:
Deep learning models can be trained to recognize side-
channelleakagein lattice- based cryptography.

Quantum-Based Attacks Quantum computers introduce
new attack capabilities that classical computers cannot
perform efficiently. While PQC is designed to resist these,
some concerns remain: a. Grover’s Algorithm (Search
Optimization Attack) Speeds up brute-force search, reducing
the security of hash functions and symmetric encryption
(e.g., AES,SHA-256). PQC schemes relying on hash functions
(e.g., SPHINCS+) must use larger hash sizes to compensate.

b. Potential New Quantum Algorithms While most
PQC schemes are believed to be quantum-resistant, new
quantum algorithms could emerge that weaken or break
certain cryptographic assumptions.

Example: If a quantum algorithm efficiently solves
the Learning With Errors (LWE) problem, lattice-based
cryptosystems could become vulnerable. 3. Hybrid Attacks
(Classical + Quantum) Attackers may use a combination of
classicalandquantummethodstobreakorweakenPQC:Pre-
quantumdata harvesting:Adversariescollectencrypteddata
today in hopes of decrypting it when quantum computers
become powerful enough. Machine learning- assisted
quantum cryptanalysis: ML techniques may help identify
vulnerabilities in PQC schemes faster than traditional
mathematical approaches.

ML Methods for Attack Detection in Post-Quantum

Cryptosystems (PQC)

Machine learning (ML) delivers prevailing approaches

for detection of outbreaks on (PQC), aiding to recognize

hateful actions like attacks that are usually side channeled,
culpability inoculations, and cryptanalytics efforts.

NumerousMLmethods could beemployedasperthenature

ofthe outbreak and the accessible figures.

« Supervised Learning (For Acknowledged Attacks) is
operative when labeled data is accessible, where the
model learns from predefined instances of usual and
hateful actions.

« DT Builds a tree-like model of choices as per
contribution features.

«  Hybrid Methods (Combination of ML Approaches)
Numerous attack detection outlines combine manifold
ML methods to improve accurateness and flexibility.

By amplifying these ML methods, security investigators and

governments can brace PQC operations against developing

threats, confirming a safer cryptanalytic future.

Objectives of the Study:

« To create a hybrid security framework that fit in a ML-
based (IDS) with PQC mechanisms for future -ready
system protection.

«  Todesignand train DNN and DT models for categorizing
systemtrafficinto PQC, downgrade, legacy, and botnet
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groups as per system drift structures and handshake-
derived limitations.

- To suggest a downgrade detection pipeline and label-
engineering that enumerates PQC- similarity notches
and classifies downgrade outbreaks in the provisional
phase to quantum- safe structures.

« Tooffermigration roadmap and placement management
for surrounding PQC- cognizant intrusion detection into
critical infrastructure systems, enterprise, e-governance,
transitioning to quantum-resilient designs.

Related Work

In recent years, quantum cryptography has progressed a lot
andresearches are trying new security models to overcome
the boundaries of classical cryptography. Nevertheless,
much still needs to be done, and thus, Artificial Intelligence
(Al) and Machine Learning (ML) need to be introduced in
order to increase scalability, computational efficiency, and
real implementation. As cryptographic systems tend to
become more complex after the change to post quantum
cryptography, the introduction of Al based techniques that
aid dynamic adaptation to changing security threats and
performance optimization, have become an effort. This
section mainly provides the key contributions on quantum
cryptography, specifically in quantum key distribution (QKD),
digital signature, authentication models and quantum
cryptography framework for post quantum information.
Based on the studies reviewed, this research seeks to further
develop the Al driven advancement.

Post-Quantum Cryptography: Challenges and
Limitations Computational Complexity in PostQuantum
Cryptography:

Bernstein (2009) An extensive analysis of post quantum
cryptography was provided which proved the feasibility
of the system though at the cost of high computing
requirements. More specifically, the study looks into lattice-
based cryptography, hash-based encryption, as well as
code based cryptographic schemes, which might offer
alternatives to quantum resistivity. Nevertheless, although
robust, these methods are computationally demanding so
that their wide application at large scales is impractical.
To counter these problems, current research investigates
using the Reinforcement Learning (RL) to optimize
cryptographic algorithms in order to dynamically adjust
encryption parameters in response to time dependent
computations need. A promising approach to reduce
computational overhead toward maintaining strong
security guarantees is using RLbased optimization. We
extend upon Bernstein’s findings in creating cryptographic
frameworks augmented with RL that would be more secure
while still being efficient.

Quantum Key Distribution (QKD) and Hardware
Constraints

One such QKD scheme that offers unconditional security
based on principles of quantum mechanics and is widely
recognized is the BB84 protocol introduced by Gisin at el.,
(2002). The real-world deployment of QKD, however, meets
two main obstacles, which are both theoretically secure:
Dependenceonspecialized quantum hardware Vulnerability
toside-channel attacks: Because of these limitations, recent
work has considered the use of Federated Learning (FL) for
highly scalable QKD implementation. This paves the way
formore developmentsinthe later part of this thesis, where,
by leveraging the work here, FL driven QKD frameworks
are integrated in which scalability is greatly increased and
security vulnerabilities are mitigated.

Quantum Digital Signatures and Authentication
Models

Scalability and Key Management in Digital Signatures:
According to Collins et al., (2014), the major challenges
of quantum digital signatures include key distribution,
storage, and authentication. Existing key management
techniques are found by them to have limitations in large
scale quantum networks. Some recent advances attempt to
use blockchain integrated quantum digital signatures in the
presence of existing Al driven methods for key management.
By combining blockchain based technology with Al based
authentication, tamper proof, scalable digital signature
mechanism is enabled. We extend these findings by also
including sub-domain of Al powered Blockchain methods
that makes the quantum signature validation a secure and
highly efficient process.

Challenges in Quantum Authentication

Nikolopoulos &Fischlin (2020) present evaluation of quantum
authenticationmodelsin depth comparing themto classical
ones. Although quantum authentication is secure enough, it
has lower scale than classical solutions.ltwasdemonstrated
that biometric Al authentication by the face, iris, and
fingerprint recognition can be expeditious and secure in
practical use. This study integrates Convolutional Neural
Networks (CNNs) for biometric authentication in quantum
cryptographic frameworks so to fill these limitations. We
thus use Al driven authentication mechanisms to do this so
as to scale up the security and scalability of post-quantum
cryptographic authentication systems.

Al-Powered Enhancements for Quantum
Cryptography

Quantum Public-Key Cryptography Single qubit rotations
were used by (Tian et al., 2025) for key management in
quantum public key cryptographic techniques. Despite
gains in the theory of such QPKI, there is not yet one
that is practically deployable. However, to overcome this



5405

THE SCIENTIFIC TEMPER, January 2026

challenge, Recurrent Neural Networks (RNNs) have beenused
for quantum key prediction, in order to enhance security
analysis and be used for adaptive crypto key exchanges.
In particular, we extend these efforts by combining RNN
based key management to guarantee security of real-time
adaptability in quantum key infrastructure.

Quantum One-Way Functions and Noise Reduction
Secure encryption relies heavily on the existence of
guantum one-way functions, which have proved to be
quite fragile to hardware noise. According to Nikolopoulos
(2019), the issue of noise is a crucial challenge on the
way to cryptographic security in the boson sampling-
based quantum oneway functions (Collins et al., 2014).
Recently, Generative Adversarial Networks (GANs) have
been proposed as an effective solution to quantum noise
reduction that results in the overall system stability and
lower error rates. The basis for this work, in conjunction with
these advancements, we integrate GAN induced quantum
noise filtering with meaningful improvements to the post
quantum cryptographic robustness.

Proposed System and Methodology

Raw network flows are preprocessed (imputation,
standardization, encoding) and used to train a Decision Tree
classifier. Predictions are serialized to a file and then protected
using AES-GCM. The symmetric AES key is encapsulated
using an asymmetric algorithm (RSA in the prototype; Kyber
in PQC deployment). The encrypted prediction file is signed
(Ed25519 in the prototype; Dilithium in PQC deployment).
Recipients verify the signature, decapsulate the key, and
decrypt the file to recover the predictions. This design
separates concerns: ML performance is independent from
crypto choice, allowing rapid migration to PQC.

Dataset and Label Engineering

We base our experiments on a representative slice of
the CICIDS2018 dataset (03-02-2018.csv), which provides
realistic flow metadata. The original labels include benign
and bot traffic. To emulate PQC migration, we augment
labels to derive four classes: PQC, Legacy, Downgrade, and
Bot. Because public PQC handshakes are scarce in standard
corpora, we infer PQC-likeness by selecting and aggregating
features that reflect handshake size, windowing, and timing
properties that tend to change when post- quantum key
exchange and signatures are in use.

Specifically, we compute a PQC-likeness score from
standardized features including forward and backward
header lengths, initial window bytes in both directions,
mean packet lengths, inter-arrival times, and flow- level
rates. Benign flows are ranked by this score; the top portion
is labeled PQC and the remainder Legacy. To identify
downgrade events, we group flows by client identifier
(source IP). If a client that typically exhibits PQC- likeness

suddenly emits a flow with characteristics aligned to Legacy,
that flow is labeled as Downgrade. Bot traffic is preserved
from the original dataset to represent malicious automated
behavior.

Along with this, Preprocessing removes non-numeric
identifiers (timestamps, IPs), replaces infinities, fills missing
values with zero, and standardizes features with z-scores to
stabilize training. The classifier is a compact feed-forward
network: a dense layer with one hundred ninety-two units
and rectified linear activations followed by dropout, then a
second dense layer with ninety-six units and dropout, and a
final softmax output. The model is optimized with Adam and
sparse categorical cross-entropy. Class weights, setinversely
to class frequency, correct for the rarity of downgrade
examples. Training uses early stopping on validation loss
and retains the best checkpoint. Evaluation reports per-
class precision, recall, and F1-score, overall accuracy, and
qualitative risk scores derived from softmax probabilities.

Algorithm Design

Algorithm 1 summarizes the training and protection

workflow. We adopt a Decision Tree classifier for its

interpretability and speed. The protection layer uses

AES-GCMwith a 256-bit key for confidentiality and integrity,

and a public-key mechanism for key encapsulation plus a

digital signature for authenticity.

Algorithm 1: Training + PQC-Ready Protection Pipeline

« Input: Network flow dataset D with labels y

« Preprocess D: impute missing; scale numeric; encode
categorical

« Train Decision Tree classifier Con D

« Generate predictions P = C(X_test) 5. Serialize P — file F

+ Generate AES key K; encrypt F under AES-GCM — F_enc

«  Encapsulate K via RSA (prototype) or Kyber (PQC)

« Sign F_enc via Ed25519 (prototype) or Dilithium (PQC)

- Distribute {F_enc, encapsulated K, signature} 10.
Recipient: verify signature; decapsulate K; decrypt
F enc— P

Algorithm 2

Hash & Sign (Edge/Service) Input: c (canonical bytes), sk

(private key) Output: digest, sig

« T:digest < SHA-256(c)

«  2:sig « Ed25519_sign(sk, digest) # deploy: Dilithium

« 3:return (digest, sig) Explanation: Compute a fixed-size
fingerprint and sign with a protected key to prove
origin.

« Technical note: Enforce key policies and attestation;
record key IDs and validity; verify curve/parameters.

Algorithm 3: Verify in Staging Input:r, digest, sig, pk Output:

boolean 1: c « canonicalize(r)

2:assert SHA-256(c) ==digest 3: return verify(pk, digest, sig)

Explanation: Recompute fingerprint and verify signature;

quarantine on failure. Technical note: Persist outcomes and
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timestamps to supportaudits; prevent replay.

Algorithm 4: Graph Construction Input: verified stream S
Output: graph G=(V,E) with attributes

1: For each record r in S: 2: u < r.source; v < r.sink_or_
gateway 3: add_or_update_edge(E, u, v, features(r))

4: maintain_node_features(V, degree, protocols, stats)
Explanation: Treat devices/services as nodes and
communicationsasedges to capture coordinated behavior.
Algorithm 5: Trust / Risk Scoring Input: G=(V,E), model M, 6
Output:score t for each device/edge 1: X < build_feature_
matrix(G)

2:H <« GNN_layers(X, E; ) 3: t « sigmoid(W-H + b)

4: return t Explanation: Learn relational trust from
connectivity and behavior; assign scores per device/edge.
Technical note: Choose GCN/GraphSAGE/GAT; balance depth
vs. over-smoothing; calibrate outputs.

Algorithm 6: Dual-Gate Promotion Input:r, crypto_ok, score
t, thresholds T Output: promote?

1:ifnot crypto_ok:return False 2:if t > 1_promote: return True
3:if T_quarantine < t < T_promote: route_to_review()
4:else:quarantine(r) Explanation: Require both cryptographic
validity and learned trust to admit records. Technical note:
Keep per-tenant thresholds and versioned models; log all
decision artefacts.

The implementation is divided into two phases: (i)
machine learning and (ii) cryptographic protection. In phase
(i), data is cleaned, standardized, and encoded; a Decision
Tree classifier is trained on a subset with injected noise for
robustness. In phase (ii), predictions are written to disk and
encrypted using AES-GCM. The AES key is encapsulated
using an asymmetric scheme (RSAin the prototype) and the
encrypted file is signed with Ed25519. In production, RSA
and Ed25519 are directly replaced by Kyber and Dilithium
respectively without changing interfaces. The decoding
stage confirms the sign, decapsulates the vital, and decodes
the folder.

Results and Evaluation

The DT classifier is known for achieving great accurateness
on held-out assessment data for binary cataloging (Benign
vs Bot). For emulating actual-world settings, an abridged and
loud subsection was used throughout training. The guard
layer presents insignificant overhead for file-sized objects;
AES-GCM offers built-in veracity (Galois MAC), though
crucial encapsulation and digital signs offer authenticity
and protected crucial spreading.

The confusion matrix (Figure 1) demonstrates test
accuracy above ninety- eight percent and strong per-class
performance. Despite imbalance, the model maintains
useful sensitivity to downgrade events, aided by class
weighting and carefully selected features. lllustrative risk-
score examples show probability mass concentrated on the
expected class for typical PQC, Legacy, and Bot instances,

|
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+

IPrEdir_t on Test Set]

ISen'aIize Predicti Dns]
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[AES-GEM Encrypt|

+

(Encapsulate Key (RSA-+Kyber) & Sign (Ed25519-Dilithium)]

4

["u"eriﬁ.r & Decrypt — End]

Figure 1: Protection-aware IDS workflow Implementation

and elevated downgrade probability when a historically
PQC-like client presents legacy-like characteristics.

Discussion

The combined ML+PQC-ready proposal sense of balance
for offering better quality of detection, security and
transparency. DT provides explainable guidelines, allowing
operatives to suggest wherefore traffic flow was identified.
The cryptanalytic pipeline confirms that model results and
auditlogs cannot be counterfeit or exposed by challengers.
Drifting from RSA/Ed25519 to Dilithium and Kyber is a
matter of library exchange owing to the departure of
apprehensions. Future work comprises benchmarking end-
to-end potential at gauge, mixing hardware pedigrees of

— o&Jassifier Performancg (Binary IDS),
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Figure 2: Classifier performance on test set.
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Confusion Matrix: PQC vs Legacy vs Downgrade vs Bot
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Figure 3: Class distribution across PQC, Legacy, Downgrade, and Bot
flows
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Figure 4: Confusion matrix for the DNN-based PQC downgrade
detection model

trust, and adding protocol-aware topographies that better
detention time-based outlines.

This method offers assessable declaration throughout
PQC migration by importance policy reversions at the
traffic level. Security teams can use these signs to examine
misconfigurations, unauthorized mediators, or active
efforts. The pipeline’s diffident intricacy rudimentary flow
structures and a condensed DNN allows implementation
without noteworthy active disturbance, though the label-
engineering approach aids recompense for the shortage of
true PQC traces in public datasets.

Applications

platforms for e-governance could usage this planning for
securing data analytics for citizen, where forecasts like
scam risk should keep on be auditable and private. Proper

substructure monitoring, SOC robotics, and controlled
trades benefit from meddle apparent analytics shared with
quantume-resilient cryptanalysis.

Limitations and Future Work
Although the example proves possibility, wider
authentication on multi- class datasets and under
argumentative circumstances is essential. PQC primitives
normally have bigger key dimensions, careful business is
obligatory for manage bandwidth and latency impacts.
Future steps include: (i) swapping RSA/Ed25519 for Kyber/
Dilithium in making, (ii) addition sequence representations
(LSTM/Transformer) for time-based structures, and (iii)
prescribed security evidences for the end-to-end pipeline.
It is planned for evaluating on PQC-enabled TLS
traffic to substitute experiential PQC labels with ground
certainty from mixture or completely post-quantum shakes.
Classification representations like Transformers or LSTMs or
may seizure richer time-based patterns in multi-round grips.
Lastly, mixing uncovering with inline policy implementation
can allow automatic repression or routing changes when
downgrade signs are detected.

Conclusion

We presented a real-world proposal for safeguarding ML
groundedIDSwith a PQC-ready protection layer. The scheme
attains high exposure accurateness although confirming
confidentiality, veracity, and validity of productions. Its
sectional project allows a low friction change to consistent
PQC arrangements, making it appropriate for quantum-
resilient,long-term, dispositions in high-assurance settings.
We established and assessed a DNN-based detector for
PQC downgrade attacks by means of flow-level structures
and planned markers. The model attains great accurateness
while retentive understanding to occasional downgrade
proceedings.
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