
Abstract
Human Activity Recognition has become an important research domain in developing intelligent systems for sectors such as healthcare, 
behavioral analytics, and surveillance monitoring. Traditional vision-based HAR approaches have limitations in terms of subject variability, 
occlusion, and background clutter. To address this, a novel skeleton-based motion analysis model is proposed to enhance the precision 
and temporal understanding of human motions by combining real-time keypoint extraction with graph-structured spatial-temporal 
learning. The proposed YOLOv8 + Graph Temporal Convolution for Human Activity Recognition (YGTC-HAR) consists of four essential 
stages, including: (1) YOLOv8-Pose to detect human figures in real-time, and (2) Graph Convolutional Network (GCN) is used to transform 
the joint coordinates into a graph representation graph representation. (3) The Temporal Convolutional Network (TCN) is designed to 
learn the sequential motion dynamics and time-dependent characteristics of human activities. Additionally, Genetic Algorithm (GA) and 
Bayesian Optimization (BO) are adopted to fine-tune hyperparameters, including learning rate, dropout ratio, and convolutional filters. 
MHealth and WISDM datasets are utilized in this research to enable comprehensive testing across static and dynamic movements. The 
proposed YGTC-HAR is implemented using Python (with TensorFlow and PyTorch) for deep learning, and MATLAB R2023b is used for 
signal processing, graphical visualization, and performance validation. The proposed work is compared against existing HLA, SMO-DNN, 
AMC-CNN, and YOLOv8-ViT models. The model achieves 97.6% accuracy, 98.4% sensitivity, 97.8% specificity, 97.2% F1-score, 96.4% 
MCC, and an AUC of 0.96, which outperforms the existing models by over 4.3%. The proposed YGTC-HAR serves as a single end-to-
end HAR framework that delivers superior generalization, real-time performance, and reliability for HCIA (Human-Centered Intelligent 
Applications). The novelty of the model lies in the combination of YOLOv8-driven skeleton extraction, GCN-based spatial modeling, 
TCN-driven temporal learning, and adaptive optimization.
Keywords: Human Activity Recognition, Deep Learning, Graph Convolutional Networks, Skeleton-based Analysis, Temporal Convolutional 
Networks, YOLOv8.
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Introduction
In recent years, HAR has emerged as a transformative research 
area with a broad spectrum across healthcare, assisted living, 
and intelligent systems. Real-time motion capturing and 
activity detection models exhibit improved performance 
with the aid of inertial sensor data and raw video. The 
majority of conventional HAR techniques have limitations 
related to occlusion, viewpoint dependency, illumination 
challenges, and inconsistent motion representation, which 
reduce the reliability of HAR, especially in dynamic real-
world environments where human movement is irregular 
and complex. To overcome the limitations, the YTGC-HAR 
model is proposed by leveraging the merits of deep learning-
based skeleton motion analysis to learn about the human 
body and abstracting it into a set of joints & connections, 
while eliminating background noise and preserving spatial 
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and temporal relationships. YOLOv8, GCN, TCN, GA, and BO 
combinational techniques are employed in the proposed 
work to address the growing demand for intelligent human-
centric automation. The YTGC-HAR system thus represents a 
significant step toward reliable, efficient, and scalable HAR 
suitable for embedded and real-world deployments, such as 
surveillance, assisted living, rehabilitation tracking, elderly 
care, and remote health assessment, ensuring proactive 
healthcare decision-making and safety monitoring. 

Recent developments in HAR demonstrates notable 
progress through various deep learning architectures and 
optimized feature extraction techniques. An attention-
driven deep learning model with temporal and spatial 
features significantly enhanced feature discrimination 
and attains higher precision in sensor-based HAR. The 
use of dual-attention layers improved focus on critical 
time segments; however, the method’s static weighting 
limits its adaptability under irregular activity transitions 
and real-world healthcare variations (Akter et al., 2023). A 
hybrid learning algorithm combining convolutional and 
recurrent structures (HLA) provided an effective model for 
both spatial and temporal features in wearable sensor data. 
This approach captured continuous movement patterns 
accurately but exhibited reduced generalization across 
subjects, primarily due to noise sensitivity and sensor 
orientation inconsistencies (Athota & Sumathi, 2022). A 
multichannel convolutional neural network enhanced with 
extensive data augmentation improved the recognition of 
overlapping activities by capturing feature diversity across 
multiple sensor streams. Although the approach yielded 
higher accuracy, its heavy computational cost limited its 
application in low-power wearable healthcare systems (Shi 
et al., 2022). 

A deep learning technique incorporating Spider 
Monkey Optimization (SMO-DNN) provided efficient feature 
selection and convergence control. The algorithm effectively 
improved accuracy on benchmark datasets; however, it 
required extensive parameter tuning and longer training 
times, which restricted its use for large-scale or real-time 
activity recognition (Kolkar & Geetha, 2023). A hybrid deep 
learning architecture utilizing convolutional layers with 
logistic gating enhanced information flow and mitigated 
gradient vanishing in IoT-based HAR. Despite achieving 
strong performance, the absence of spatial body-joint 
modeling limited its interpretability in skeleton-based 
applications (Ding, Abdel-Basset, & Mohamed, 2023). An 
orientation-invariant deep learning framework employing 
angular normalization stabilized predictions across devices 
placed in varying positions. While this method enhanced 
orientation robustness, it showed weaker adaptability to 
multimodal sensor combinations with high-dimensional 
signals (He, Sun, & Zhang, 2024). Graph-based neural 
representations modeled human joints as interconnected 

nodes to effectively capture the relationships between body 
structure and motion. Although this method preserved 
spatial information, it lacked adequate temporal modeling, 
which is critical for distinguishing similar dynamic activities 
such as running and walking (Bsoul, 2025). A hybrid YOLOv8-
based deep learning framework further extended HAR 
accuracy using pose extraction and data augmentation on 
MHealth and WISDM datasets. It demonstrated robust cross-
subject generalization but remained limited by sequential 
CNN–RNN architectures that inadequately represented 
spatio-temporal dependencies (Subna & Kamalraj, 2025).

Problem Statement 
Existing HAR models face persistent challenges in accurately 
classifying essential activities such as walking, sitting, lying 
down, or exercising, which are key indicators of patient 
mobility and recovery progress in patient monitoring 
environments. Conventional deep learning models trained 
on raw image frames and inertia sensor-based scanning 
often overfit in feature analysis, leading to poor spatial 
and temporal reasoning with limited interpretability. In 
the skeleton-based approach, the motion abstraction is 
clean and straightforward. In contrast, the present graph-
based architectures failed to handle spatial and temporal 
dependencies simultaneously, resulting in incomplete 
modeling of human kinematics.  The fundamental problem 
addressed in this research is the inadequate integration of 
spatial and temporal learning for precise activity recognition. 
YGTC-HAR overcomes the limitations of optimized fusion of 
detection, representation, and sequence learning, offering 
real-time adaptability and scalability across diverse datasets. 
The proposed work will provide a unified framework for 
extracting, encoding, and robustly interpreting skeletal 
motion patterns. YGTC-HAR serves as an optimized pipeline 
for accurate and robust activity recognition, filling the gap 
left by existing baseline models.

Key Objectives of the Proposed Model
The primary objective of the YTGC-HAR model is to design 
and implement a robust, performance-oriented skeleton-
based HAR framework that recognizes human activities with 
greater accuracy by integrating spatial-temporal feature 
learning with bio-inspired AGA and Bayesian optimization 
for fine-tuning. The following are the key objectives of the 
proposed deep learning framework.
•	 To extract real-time skeletal key points from human 

frames using YOLOv8-Pose and refine them using 
Media-Pipe pose estimation.

•	 To model skeletal motion as a spatial-temporal graph, 
where nodes represent body joints and edges define 
anatomical relations.

•	 To employ a Graph Convolutional Network (GCN) for 
learning spatial dependencies between joints and 
a Temporal Convolutional Network (TCN) to analyse 
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motion transitions and long-range dependencies across 
frames.

•	 To optimize hyperparameters through Genetic Algorithm 
(GA) and Bayesian Optimization (BO) for improved 
efficiency and convergence.

•	 To validate performance using MHealth and WISDM 
datasets under real-time simulation in Python and 
MATLAB environments.

These combinational steps collectively demonstrate that 
the suggested YTGC-HAR model achieves high recognition 
accuracy, faster inference, and robust adaptability across 
subjects and activities in real-time, setting a novel pattern 
for human motion understanding in next-generation 
intelligent systems.

Related Works 
Recent work on HAR for industrial and clinical settings 
showcases the task realism, such as manual material handling, 
where deep learning techniques must separate subtle load-
bearing postures from ordinary motion. A comprehensive 
pipeline utilizing deep learning enhances the detection 
of ergonomically risky actions, yet remains sensitive to 
occlusions and rapid viewpoint shifts common on factory 
floors, underscoring the need for stronger temporal context 
and skeleton priors (Bassani et al., 2025). Surveys provide 
machine-learning models that highlight HAR in terms of 
feature learning, transferability, and deployment, yet also 
notable gaps in cross-dataset robustness and interpretability 
for decision support in healthcare. The consensus calls 
for hybrid spatio-temporal modeling and clear post-
hoc explanations to gain clinician trust (Hossen & Abas, 
2025). Security-oriented healthcare studies demonstrate 
that deep learning can learn distinctive intrinsic patterns 
from constrained sensors, indicating that well-structured 
physiological signals are highly discriminative. Still, these 
systems often lack temporal generalization across sessions 
and devices, a limitation directly relevant to HAR wearables 
(Indhumathi et al., 2025). Decision analytics pipelines in 
agriculture are illustrated, demonstrating how domain-
aware features and intelligent fusion enhance reliability 
under noisy conditions. Despite its high accuracy, many such 
systems rely on static thresholds and handcrafted rules for 
final decisions, which limits their adaptability when motion 
dynamics drift—a pattern also observed in naive HAR post-
processing (Jijendra & Nithyanandh, 2025).

Hybrid deep learning for sensor HAR combining 
convolutional backbones with recurrent or attention heads 
boosts accuracy and energy efficiency. However, reliance 
on fixed window sizes reduces sensitivity to variable-speed 
actions, motivating the use of dilated temporal encoders 
that flexibly cover multiple time scales (Khan, Afzal, & 
Lee, 2022). Surveillance-focused interaction recognition 
benefits from coupling deep features with classical machine-
learning classifiers to stabilize small-sample regimes. 

Nevertheless, without an explicit joint-level structure, 
models struggle to parse fine-grained interactions, such 
as handovers or near-collisions—precisely where skeleton 
graphs are helpful (Khean et al., 2024). Vision research on 
enhancing human sight perception for machine vision 
highlights the importance of multi-resolution cues and 
attention in suppressing background clutter. While object-
centric attention improves precision, activity recognition 
additionally requires modeling dependencies across joints 
over time, beyond region saliency alone (Krishnaveni et 
al., 2023). Residual networks with squeeze-and-excitation 
mechanisms provide channel-wise recalibration, sharpening 
salient motion features and yielding explainability through 
activation maps.

Despite this, channel attention alone cannot encode 
relational kinematics; joint-edge reasoning is needed 
for nuanced pose transitions (Mekruk & Jitpattanakul, 
2025). Wearable biosensor applications (e.g., smart knee 
bandages) demonstrate that localized sensors can predict 
rehabilitation activities; however, segment generalization 
remains brittle when patients alter their gait or cadence. 
Structured spatio-temporal models can mitigate such drift 
by anchoring predictions to joint graphs and tempo-robust 
encoders (Savanich, Jantawong, & Jitpattanakul, 2022). A 
detailed overview of deep HAR highlights the maturity 
of CNN/RNN baselines and emphasize the importance of 
data augmentation for achieving class balance. Still, many 
systems underperform when activities overlap in space and 
time, underscoring the need for temporal receptive fields 
with dilation and residual connections (Moola & Hossain, 
2022). Object-detection pipelines with modern detectors, 
such as YOLOv8, illustrate that robust localization is feasible 
in real-time, but downstream activity semantics require 
structured modeling beyond bounding boxes. Bridging 
fast detection with graph-temporal reasoning is therefore a 
logical next step (Nithyanandh, 2025). Multimodal biometric 
security, which combines gait and face recognition, suggests 
that complementary views can compensate for modality-
specific failures. For HAR, analogous fusion (pose + inertial) 
can stabilize predictions under camera occlusion, though 
careful alignment and calibration remain open challenges 
(Nivedita et al., 2025). Wearable-sensor HAR continues to 
benefit from deep learning with careful segmentation, 
normalization, and augmentation. However, many pipelines 
treat each window independently, missing long-range 
dependencies and inter-joint constraints that distinguish 
closely related actions (Nouriani, McGovern, & Rajamani, 
2022).

Research Gap Analysis
Across these studies, few major strengths include improved 
feature saliency, augmentation, and domain-specific 
tailoring. Current HAR models predominantly focus on 
either spatial or temporal components, often overlooking 
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Table 1: Analysis of Related Studies Supporting Human Activity Recognition

Authors Methods Adopted Merits Limitations

Surek et al. 
(2023)

Deep learning-based video HAR using CNN 
and LSTM models for sequential motion 
interpretation.

Achieved high frame-wise recognition 
accuracy; effective for video sequence 
understanding.

Computationally intensive for 
real-time deployment; limited to 
controlled datasets.

Uddin et al. 
(2024)

Hybrid deep learning combining CNN, 
Conv-LSTM, and LRCN for temporal-spatial 
feature extraction.

Enhanced activity recognition accuracy; 
captured both short-term and long-term 
dependencies.

Requires large labeled datasets 
and high GPU resources; prone to 
overfitting.

Xu et al. (2025) Attention-enhanced deep neural 
network integrating context-aware 
motion weighting for HAR.

Improved interpretability and dynamic 
attention adaptability in feature 
extraction.

Performance declines under noisy 
sensor signals; lacks temporal 
robustness.

Zhang et al. 
(2024)

Multi-channel hybrid deep learning for 
multi-sensor data fusion and robust 
activity classification.

Superior fusion of heterogeneous sensor 
modalities; reduced feature redundancy.

Fusion complexity increases with 
more modalities; needs feature 
alignment optimization.

Sarveshwaran et 
al. (2022)

Comprehensive investigation of deep 
learning architectures (CNN, RNN) for 
HAR performance evaluation.

Provided baseline analysis of DL 
performance; highlighted dataset 
dependency challenges.

Limited to small-scale datasets; 
lacks graph-based structural 
analysis.

Selvam & Joy 
(2024)

Deep learning AEN with Mask R-CNN for 
multivariable feature selection and region-
based detection.

Accurate region-based detection; strong 
performance in multivariable feature 
environments.

High memor y consumption; 
requires fine-tuning for varied 
image resolutions.

Sharen et al. 
(2024)

WISNet deep neural network for human 
activity recognition from wearable sensor 
data.

High accuracy for wearable sensor HAR; 
robust to sensor noise and drift.

Not tested for cross-subject 
generalization; lacks temporal 
modeling.

Omprakash et 
al. (2023)

Energy-aware adaptive sleep scheduling 
with improvised Firefly Algorithm for 
efficient IoT communication.

Extended network lifetime and energy 
efficiency in IoT environments.

Designed for IoT energy systems for 
sensor-based target class detection 
tasks.

Prabhu et al. 
(2025)

Bio-inspired routing using intelligent 
algorithms for secure and energy-
optimized 6G communication.

Improved routing reliability, 
authentication, and energy utilization 
in 6G IoT systems.

Focuses on sensor security; limited 
applicability to human motion 
recognition.

Eldho & 
Nithyanandh 
(2024)

3D CNN model applied on CT-DICOM 
dataset for lung cancer detection and 
severity classification.

Accurate 3D volumetric analysis for 
clinical diagnostics; reduced false 
positives.

Deep object detection is not 
generalized for non-medical 
datasets or HAR applications.

Eldho et al. 
(2025)

Quantum Hybrid Harris Hawk Optimization 
with Graph Neural Network for WSN 
reliability.

Enhanced fault detection and routing 
efficiency under varying WSN conditions.

Complexity in quantum 
optimization; increased 
computational overhead.

Devi et al. 
(2024)

GAN-enabled AI-based bio-inspired 
protocol for efficient and secure IoT data 
transmission.

Ensured secure and low-latency IoT 
communication; minimized data loss.

High model complexity; limited 
generalization under dynamic 
conditions.

Arularasan et al. 
(2024)

Deep learning model for sign language 
recognition using spatial feature extraction 
and classification.

Improved sign recognition precision for 
hearing-impaired assistance applications.

Limited dataset diversity; requires 
multi-lingual gesture expansion.

their joint correlation. Moreover, optimization processes in 
existing models are computationally demanding and prone 
to local convergence. Persistent gaps involve (i) insufficient 
modeling of joint relationships and temporal dependencies 
together, (ii) limited cross-subject and cross-dataset 
generalization, and (iii) a lack of real-time, explainable 
inference suitable for healthcare workflows. 

The proposed YTGC-HAR addresses these gaps by 
fusing fast pose extraction (YOLOv8) with graph-based 
spatial reasoning (GCN) and dilated temporal encoding 
(TCN), delivering interpretable, scalable, and robust activity 
recognition across realistic healthcare scenarios. This 

unified design ensures precise, real-time, and scalable HAR 
suitable for healthcare, surveillance, and activity monitoring 
applications.

Proposed Methodology
The proposed YTGC-HAR (YOLOv8-Temporal Graph 
Convolutional Human Activity Recognition) framework 
integrates spatial and temporal learning techniques to 
classify human activities from skeleton-based motion 
data accurately. The methodology is designed to extract 
meaningful motion representations from raw sensor 
readings and body joint positions, combining the strengths 



5245	 THE SCIENTIFIC TEMPER, December 2025

of deep learning and optimization-based tuning for 
robust human activity recognition. As a first step, data 
from the MHealth and WISDM datasets are pre-processed 
and normalized. From the MHealth dataset, attributes 
such as accelerometer, gyroscope, and magnetometer 
readings (along X, Y, Z axes) are utilized to represent linear 
acceleration, angular velocity, and orientation. Similarly, 
in the WISDM dataset, sensor readings from smartphones 
and smartwatches are extracted, including acceleration, 
body movement, and posture variations. These multivariate 
features form the temporal signal inputs for constructing 
skeletal joint patterns that represent each user’s motion 
frame by frame. After the pre-processing stage, YOLOv8-
Pose is used to detect human figures and extract key 
skeletal joints, including the head, shoulders, elbows, 
wrists, knees, and ankles. Each detected joint acts as a node, 
and anatomical connections between joints act as edges 
in a graph structure. The GCN then processes this graph 
and learns the spatial dependencies between connected 
joints, identifying correlated movement regions. To capture 
motion steadiness, the TCN analyzes sequential frames, 
identifying long-term dependencies and distinguishing 
between similar actions, such as jogging, running, and 
climbing. The framework is further optimized using an AGA 
to fine-tune parameters such as the learning rate, dropout, 
and convolutional depth, ensuring fast convergence and 
improved generalization. Figure 2 shows the systematic flow 
diagram of the proposed YTGC-HAR model. 

Materials and Methods for Implementation
To evaluate the effectiveness of the proposed YTGC-HAR 
deep learning model, a robust methodology is adopted by 
integrating data acquisition, pre-processing, model training, 
and optimization. The framework combines YOLOv8-based 
skeleton extraction with GCN–TCN learning to capture 

Figure 1: Research Gap based on Literature Study

Figure 2: Systematic Flow of Methodology

spatiotemporal dynamics, ensuring accurate and real-
time human activity recognition, validated on benchmark 
healthcare datasets. This section describes datasets, 
pre-processing techniques, model architecture, training 
process, optimization, and evaluation strategies employed 
to implement the proposed HAR model.

Dataset Description
Two benchmark datasets, MHealth and WISDM, are 
utilized for training, testing, and validation purposes. The 
MHealth dataset comprises accelerometer, gyroscope, and 
magnetometer signals from 10 participants performing 12 
activities, whereas WISDM provides over one million motion 
readings from 36 users, captured through smartphones and 
smartwatches.

Data Pre-processing
Raw signals are filtered using a Butterworth noise filter, 
normalized using z-score scaling, and segmented into fixed 
time windows. Video frames were extracted for skeleton 
generation using YOLOv8-Pose, followed by keypoint 
refinement with MediaPipe.

Model Training
The skeleton key-points are converted into a spatio-
temporal graph, processed through GCN for spatial learning 
and TCN for motion sequence modeling.

Optimization
An Adaptive Genetic Algorithm (AGA) bio-inspired 
optimization was used to fine-tune learning parameters for 
faster convergence and improved generalization.
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Implementation Tools
Model training and analysis were conducted in Python 
(TensorFlow and PyTorch), while visualization and statistical 
validation were performed in MATLAB R2023b.

Evaluation
Performance is evaluated using six key metrics, such as 
accuracy, sensitivity, specificity, F1-score, MCC, and AUC, to 
ensure robustness and real-time efficiency.

Dataset Acquisition and Preprocessing Techniques
The proposed YTGC-HAR framework is built upon two 
widely recognized datasets, MHealth and WISDM, to ensure 
robust and generalizable human activity modeling. These 
datasets were selected due to their extensive coverage of 
physical movements, sensor diversity, and data consistency, 
which collectively provide a strong foundation for both 
sensor-based and vision-based human activity recognition. 
The MHealth (Mobile Health) dataset was designed 
for healthcare-oriented activity analysis and physical 
monitoring applications. It contains time-synchronized 
recordings from 10 volunteer subjects, each performing 
12 distinct physical activities, including standing, sitting, 
cycling, walking, jogging, running, climbing stairs, 
lying down, and jumping. Data were captured using 
accelerometer, gyroscope, and magnetometer sensors 
placed on the chest, left ankle, and right wrist of each 
subject. Each sensor stream records signals at a sampling 
frequency of 50 Hz , yielding multivariate time-series 
data. These signals represent tri-axial motion information 
( ), ,  X Y Z axes  for linear acceleration, angular velocity, and 
orientation, producing over 23,000 labeled activity 
segments. MHealth Data Source: https://archive.ics.uci.edu/
dataset/319/mhealth+dataset 

The WISDM dataset complements MHealth by providing 
a large-scale motion dataset captured from everyday 
smartphone and smartwatch sensors. It includes data 
from 36 individuals performing six fundamental activities: 
walking, jogging, standing, sitting, ascending stairs, and 

descending stairs. Each reading contains timestamped 
accelerometer and gyroscope data at sampling rates 
of 20 50 − Hz , totaling over 1 million labeled motion 
instances. The WISDM dataset offers real-world complexity 
by accounting for device orientation changes and natural 
variations in user motion, making it highly valuable for 
testing model generalization. By integrating both datasets, 
the YTGC-HAR model benefits from a dual-domain input, 
such as (1) wearable sensor data for quantitative motion 
analysis and (2) video frame-based skeletal data for spatial 
feature extraction. This fusion ensures a comprehensive 
understanding of human movements across physical, 
behavioral, and contextual dimensions. Figure 3 shows 
the pre-processing flow of the proposed model. WISDM 
Data Source: https://archive.ics.uci.edu/datase t/507/
wisdm+smartphon e+and+smar twatch+activity+an 
d+biom etrics+dataset 

To prepare the datasets for model training, five major 
pre-processing steps are employed to ensure signal quality, 
normalization, and structural uniformity. These steps 
mitigate sensor noise, irregular sampling, and dynamic 
variations among users.

Step 1: Noise Filtering using Butterworth Filter - BWF
The Raw inertial signals are prone to high-frequency noise 
generated by sensor vibration or hardware inconsistencies. 
A Butterworth low-pass filter of order 4=n  with a cutoff 
frequency  20 =cf Hz  is applied to preserve smooth motion 
transitions. The transfer function is mathematically 
represented as,

( )
2

1

1
ω

=
 

+  
 

n

c

H s
s  			  (1)

where, s  is the complex frequency and 2ω π=c cf  represents 
the clear cut-off angular frequency. This filter (BVF) ensures 
a maximum flat frequency response in the frequency 

Figure 3: Data Pre-Processing in YTGC-HAR
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passband, which effectively suppress the unwanted noise 
while retaining motion-relevant components.

Step 2: Normalization using Z-Score Scaling - ZSS
As, the sensor readings from accelerometers and gyroscopes 
vary in magnitude & range, the data standardization 
is crucial for stable model training.  scoreZ normalization 
transforms each attribute to have zero mean and unit 
variance, ensuring all features contribute equally to the 
learning process calculated using the below equation.

µ
σ

′ −
=

XX 	 (2)

where X  represents the raw signal, µ  denotes the 
mean, and σ  is the standard deviation of the feature 
representation. This ü  process prevents bias toward 
high-magnitude features and improves the convergence 
rate during gradient-based optimization.

Step 3: Segmentation into Fixed Time Windows - 
FTW 
To convert continuous motion signals into discrete 
samples, the filtered and normalized data are segmented 
into overlapping time windows of fixed length T . The 
segmentation function is expressed as,

( )1, 1, , + −
 = + … t t t t TS x x x 	 (3)

where,  tS represents the segmented window starting at 
time t . Overlapping windows (e.g., 60% overlap) are used 
to preserve temporal continuity and minimize information 
loss at segment boundaries.

Step 4: Signal Smoothing using Moving Average 
Filter - MAF
To remove the residual noise and stabilize signal fluctuations 
after BWF filtering, a simple moving average (SMA) is applied, 

1

0

ˆ 1  
=

−
=

= ∑
N

t t i
i

x x
N

	 (4)

where  N is the window size and ˆtx  is the smoothed signal 
at time t . This helps ensure consistent transition curves in 
motion sequences.

Step 5: Data Augmentation through Random Noise 
Injection - RNI
In order to prevent overfitting and simulate sensor variations, 
Gaussian Noise (GN) is added during training process.

( )2,   0,σ′ = + ∼x x Nò ò 	 (5)

where ( )20,σN  represents the GN with mean  0  and variance 
2σ . This maintains a natural variability and improves model 

generalization. Following a robust signal pre-processing 
using multiple techniques, the video frame sequences 
associated with motion samples are fully extracted. Each 
frame is processed through YOLOv8-Pose, a high-speed 
detection model that identifies human figures and localizes 
skeletal joints such as the head, shoulders, elbows, knees, 
and ankles. The output key-points from YOLOv8 are refined 
using MediaPipe Pose Estimation, which improves joint 
localization accuracy under varying lighting conditions or 
partial occlusions. This step ensures that each movement 
frame is represented by a set of structured ( )2  or 3D D  joint 
coordinates, which serve as the input features for graph 
construction in subsequent stages. These processed signals 
and skeleton coordinates enable accurate modeling of both 
the spatial structure of human joints and the temporal 
dynamics of motion patterns. As a result, the system 
achieves reliable and interpretable activity recognition 
performance across different subjects, devices, and 
environmental conditions.

Skeleton Extraction and Feature Extraction using 
YOLOv8-Pose
The proposed YTGC-HAR model depends on precise 
skeletal joint extraction to capture human body motion and 
spatial structure efficiently. Skeleton-based representation 
eliminates redundant background information and focuses 
solely on the dynamic relationships between body joints, 
which is crucial for accurate and interpretable activity 
recognition. The YOLOv8-Pose framework is adopted for 
this purpose due to its superior detection speed, joint 
localization accuracy, and robustness against environmental 
variations such as illumination changes, partial occlusions, 
and multi-person scenes.

Skeleton Extraction using YOLOv8-Pose
In this stage, input frames derived from sensor or video 
streams are processed through the YOLOv8-Pose model, 
which performs object detection and keypoint estimation 
simultaneously. Each human subject in a frame is represented 
by a bounding box ( ), , ,= min min max maxB x y x y  and a set of key-points 

( ) 1{ , , } == N
i i i iK x y c ,  where ix and  iy denote the 2D coordinates 

of the thi  joint and  ic is the corresponding confidence 
score. The YOLOv8 model employs a modified CSP-
Darknet backbone for feature extraction and a pose head 
for keypoint regression using heatmap estimation. The 
localization of a joint  i is optimized by minimizing the pose 
estimation loss is mathematically expressed as,

2
2

1

ˆ1  
=

= −∑ 

N

i
i

Lpose K Ki
N

	 (6)

where ˆ
iK  denotes the predicted keypoint and iK  is the 

ground truth. This MSE loss ensures that each detected joint 
aligns closely with the actual human body configuration.
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Keypoint Refinement using MediaPipe
After initial extraction, the predicted skeleton coordinates 
are refined using MediaPipe Pose Estimation, which employs 
landmark-based regression with biomechanical constraints. 
This step reduces jitter, corrects inconsistent key-points, and 
maintains anatomical symmetry. A confidence-weighted 
smoothing function is applied across frames to stabilize 
motion trajectories which is expressed as,

( ) ( ) ( ) ( )' '1  1α α= + − −i i iK t K t K t  	 (7)

where α  is the smoothing coefficient ( )(0   1 ), α< < iK t  
represents the current joint position, and ( )' 1−iK t  is the 
previously smoothed position. This recursive formulation 
minimizes abrupt transitions, ensuring temporal continuity 
of jont motion sequences.

Feature Representation for Graph Construction
The refined skeletal data are transformed into structured 
feature representations for graph modeling. Each frame’s 
skeleton is represented as a feature matrix ×∈ N d

tX  , where 
 N is the number of joints and d  is the dimensionality 

(e.g., 2D or 3D coordinates plus confidence). Each node 
corresponds to a joint, and edges correspond to anatomical 
connections (e.g., wrist-elbow, knee-hip). To enhance 
discriminative power, both spatial and temporal derivatives 
of joint motion are computed which is expressed in the 
below equation. 

( ) ( ) ( )1= − −i iV t K t K ti  			   (8)

where ( )iV t represents the instantaneous velocity of the 
thi  joint. This temporal difference captures the dynamic 

variation in joint displacement, which is essential for 
recognizing continuous or rapid activities like running 
or jumping. The resulting feature vector for each joint 
becomes, 

[ ], , ,=i i i i iF x y c V 	 (9)

Which forms the input feature map for the Graph 
Convolutional Network (GCN). This skeleton extraction 
stage thus bridges low-level video or sensor data with 
high-level spatio-temporal reasoning. By focusing on 
human joints instead of pixel intensities, the YTGC-HAR 
framework minimizes computational complexity, improves 
interpretability, and strengthens robustness against 
environmental noise, ultimately providing a reliable 
foundation for precise activity recognition across healthcare, 
surveillance, and behavioral analytics applications.

Graph Construction and Spatial Feature Learning 
using GCN
After extracting refined skeletal coordinates from YOLOv8-
Pose, the next critical phase in the YTGC-HAR framework 
involves constructing a structured graph and applying 
GCN to model the spatial dependencies between human 
joints. The GCN-based learning mechanism forms the core 
of spatial understanding, capturing both local and global 
body movement correlations essential for accurate activity 
recognition. 

Graph Construction using GCN
In the graph formulation, the human skeleton is represented 
as a graph ( ),=G V E , where V  denotes the set of joints (nodes), 
and E  represents the anatomical connections (edges) 
between them. For example, nodes may correspond to the 
head, shoulders, elbows, wrists, knees, and ankles, while 
edges signify physical linkages such as shoulder-elbow 
or knee-ankle. Each node ∈iv V carries a feature vector 

[ ], , ,=i i i i ix x y c V , containing positional coordinates, confidence, 
and velocity features derived from earlier stages. The 
relationships between these joints are encoded in an 
adjacency matrix ×∈ N NA  , where 1=ijA  if nodes i and j
are connected, and 0 otherwise. The normalized adjacency 

Figure 4: Graph Construction for YTGC-HAR
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matrix A  is computed to stabilize learning and prevent 
gradient explosion during message propagation.

( )1/2 1/2~ / −= +A D A I D  	  	 (10)

where, I  is the identity matrix representing self-connections, 
and D  is the diagonal degree matrix with ( ) = +∑ii ij ijj

D A I .  This 
normalization ensures uniform feature scaling and balanced 
information flow among neighboring joints.

Spatial Feature Learning using GCN
Once the graph structure is constructed, Graph Convolutional 
Networks are applied to perform spatial aggregation and 
feature propagation across connected joints. Each GCN 
layer performs a weighted combination of a node’s own 
features and its neighbors’ features, thereby encoding 
joint dependencies. The propagation rule for a GCN layer is 
mathematically expressed as, 

( )1 ~σ+ =lH A H Wl l  		  (11)

where, H l  is the input feature matrix at layer l , ( )lW is the 
learnable weight matrix, and ( )σ ⋅ is a nonlinear activation 
function called .ReLU  The multiplication with A  ensures 
that each joint node aggregates contextual information 
from its spatial neighbors, effectively learning the structural 
configuration of the human body in motion. Through 
multiple stacked GCN layers, the model progressively 
abstracts joint-level information into higher-level spatial 
representations, where earlier layers focus on local joint 
coordination (e.g., arm movement) and deeper layers 
capture global body postures (e.g., walking, jumping, or 
sitting).

As shown in the Figure 4, the left side represents the 
Input Graph, where skeletal joints act as nodes connected 
by edges defined in the adjacency matrix A . The center 
block (Graph Convolution) illustrates how message passing 
occurs through GCN layers, utilizing the normalized 
adjacency matrix and feature matrix. Finally, the right side 
displays the Output Features, where node embeddings are 
refined into spatial descriptors representing distinct human 
postures. This transformation enables the model to learn 
body coordination patterns efficiently before the temporal 
sequence modeling stage, which TCN handles. By learning 
structured spatial dependencies, the GCN module equips 
the YTGC-HAR framework with superior representation 
capabilities compared to CNN and RNN models, which 
fail to encode inter-joint relationships explicitly. The GCN-
driven learning process ensures that spatial features are not 
merely localized but contextually aware, paving the way for 
improved recognition accuracy, reduced misclassification, 
and enhanced interpretability of human motion behaviours 
across diverse healthcare and surveillance environments.

Temporal Modeling and Sequential Activity Learning 
using TCN 
After spatial dependencies between skeletal joints are 
learned using the GCN, where the next essential step in 
the YTGC-HAR model is to capture the temporal evolution 
of those spatial features over time. Human activities such 
as walking, jogging, or stretching are not defined by static 
poses alone but by how those poses transition and evolve 
across consecutive frames. To achieve this, TCN is employed 
to model sequential motion dynamics effectively.

Temporal Feature Representation
The outputs from the GCN module are sequential feature 
vectors  tH for each frame t , representing the spatial joint 
configurations. These feature maps are arranged into a 
sequence { }1 2, ,..., TH H H , where T  denotes the total number 
of frames or time steps within an activity segment. Unlike 
recurrent models such as LSTM or GRU, the TCN uses causal 
and dilated convolutions, allowing it to model long-range 
temporal dependencies efficiently while avoiding the 
vanishing gradient problem. To ensure that each prediction 
at time t  depends only on current and past information, the 
TCN applies causal convolutions, mathematically expressed 
as,

1

0

 
−

−
=

= ⋅∑
k

ü
i

y fi x  	 (12)

where  ty represents the output feature at time t , −t ix  
represents the input feature from the ( )− tht i  step, and  if is 
the learnable convolutional filter weights. This ensures that 
the temporal learning process respects the natural time 
order of human actions. 

Dilated Temporal Convolution
To efficiently capture both short-term and long-term 
dependencies, dilated convolutions are introduced. Dilation 
enlarges the receptive field of the convolution filter without 
increasing computational cost. The dilated convolution 
operation is defined as,

1

.
0

 
−

−
=

= ⋅∑
k

t t d i
i

y fi x  				    (13)

where d  is the dilation factor, controlling how far the 
filter skips input steps. As d  increases exponentially 
(e.g., 1, 2, 4, 8), the network learns temporal relationships 
at multiple scales capturing micro-movements like wrist 
rotations as well as macro-movements like walking cycles. 
This hierarchical time-scale analysis enables the YTGC-HAR 
model to recognize complex and overlapping activities 
efficiently.

Sequential Activity Learning in YTGC-HAR
Within the YTGC-HAR framework, the TCN receives graph-
based spatial features from the GCN module and processes 



The Scientific Temper. Vol. 16, No. 12 	 Subna M P and Kamalraj N	 5250

them through a stack of temporal convolutional layers. 
Each layer includes residual connections and normalization 
to maintain temporal stability and prevent information 
loss. These layers successively abstract motion sequences 
into compact temporal embeddings that represent the 
full evolution of an activity. For instance, activities such 
as “walking” or “running” are characterized by rhythmic 
patterns in limb movement, while “sitting” or “lying down” 
show low temporal variation. The TCN differentiates these 
patterns by analyzing velocity and acceleration trends 
within joint features over time. As a result, it becomes highly 
effective in distinguishing subtle transitions like walking-to-
running or sitting-to-standing, which are often misclassified 
by static models.

AGA Optimization in YTGC-HAR
The AGA plays a major role in fine-tuning the YTGC-HAR 
model’s hyperparameters, ensuring optimal learning and 
convergence. Unlike conventional static optimizers, AGA 
dynamically adjusts crossover and mutation probabilities 
based on the population’s fitness diversity. During training, 
parameters such as learning rate ( ) ,η  dropout rate ( ) ,δ  and 
filter size ( )F  are encoded as chromosomes, and fitness is 
measured using classification accuracy from the validation 
set. The adaptive mechanism evaluates the fitness  if of 
each candidate and updates crossover and mutation rates 
according to, 

1
 −

= −  − 

i min
max

avg min

f fP P
f fi  	 (14)

where iP  is the adaptive probability for the thi solution, üf , 
üf , and  üP denote the minimum, average, and maximum 

fitness values, respectively. This adaptive search mechanism 
ensures faster convergence, minimizes overfitting, and 
enhances classification accuracy across the MHealth and 
WISDM datasets in the YTGC-HAR model. 

Model Training, Optimization, and Performance 
Evaluation
The YTGC-HAR model is trained using a structured three-
phase process comprising training, validation, and testing 
to ensure high generalization and stability across both 
datasets, MHealth and WISDM. The combined dataset was 

Table 2: Confusion Matrix of YTGC-HAR Model

Actual / Predicted Walking Jogging Sitting Standing Lying Climbing

Walking 1225 22 0 3 0 0

Jogging 17 1240 5 0 0 2

Sitting 0 2 1178 6 0 0

Standing 1 0 9 1187 3 0

Lying 0 0 2 1 1193 0

Climbing 2 1 0 0 0 1204

Figure 5: Heatmap Representation

split into three parts with an 80 :10 :10  ratio, where ü  
of the samples were used for training, ü  for validation 
to fine-tune hyperparameters, and the remaining ü  
for independent testing. Data shuffling and subject-wise 
separation were applied to prevent bias and ensure cross-
participant reliability. During the training phase, skeleton-
based feature matrices derived from YOLOv8-Pose and 
preprocessed sensor signals were fed into the GCN–TCN 
hybrid network. The model parameters were optimized 
using the Adam optimizer with an adaptive learning rate 
of 0.0005 , a batch size of 32 , and a dropout rate of ü  to 
minimize overfitting. The AGA automatically tunes key 
hyperparameters, such as learning rate, dilation factor, and 
number of filters, to achieve faster convergence and optimal 
accuracy. The cross-entropy loss (CE-Loss) function was 
used to measure classification error, while early stopping 
monitored validation performance to prevent overtraining. 
Each epoch involved forward propagation through the GCN 
for spatial reasoning and the TCN for temporal sequence 
learning, followed by backward updates to minimize the 
overall loss. Training continued until validation loss stabilized 
for five consecutive epochs. Performance evaluation was 
conducted using standard metrics, including accuracy, 
sensitivity, specificity, F1-score, AUC, and MCC is shown in 
Figure 5. 
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Step-by-Step Process of YTGC-HAR Model

1.	 Input & Settings 

Initialize window length T , hop, learning rate, batch size, joints J , class set C .
2.	 Data Ingest 

Stream/Load IMU signals ( , , acc gyro magnetometer ) and/or video frames.
3.	 Preprocessing 

Apply Butterworth low-pass filter →  −z score  normalization →  segment into overlapping windows of length T . 
4.	 Extract frames per window (if video).
5.	 Pose Extraction & Refinement 

For each frame: run YOLOv8-Pose → get key-points ( ), ,i i ix y c for ü=i J . 
Smooth key-points (EMA/One-Euro) and correct with MediaPipe landmarks.

6.	 Graph Construction 

Build skeleton graph ( ),=G V E : nodes V =joints, edges E =bones. 

Form normalized adjacency ( )1/2 1/2− −= +A D A I D . 

Compose node features per joint: [ ], , ,Ä ,Äx y c x y .
7.	 Spatial Encoding (GCN) 

For each time step t : 

( ) ( ) ( )( )1 σ+ = 

l l l
t tH AH W . 

Pool across joints → spatial embedding tS .
8.	 Temporal Encoding (TCN) 

Stack { }1, ,… →TS S  apply causal, dilated 1-D convolutions with residuals to capture short- and long-range motion 
→ temporal embedding Z .

9.	 Feature Fusion & Classification 
Concatenate IMU features with Z . 

Global temporal pooling →  Fully Connected + Softmax  → predicted label  y and confidence.
10.	Training Loop 

Optimize cross-entropy on training set; validate each epoch; early-stop on plateau.
11.	Adaptive Optimization (AGA) 

Periodically tune LR, dilation, dropout, and channels using AGA based on validation fitness to improve convergence 
and generalization.

12.	Evaluation 
Compute Accuracy, Sensitivity, Specificity, F1, MCC, AUC and plot confusion matrix on the test split.

13.	Real-Time Inference 
Slide window over live streams →  Steps 4–8  → emit activity label  + confidence and log events.

Real-Time Implementation using YTGC-HAR Model 
The real-time deployment of YTGC-HAR is designed as 
a low-latency edge-to-cloud pipeline that continuously 
ingests sensor and video streams, extracts skeletons on-the-
fly, and performs spatio-temporal reasoning for instant 
decisions. At the edge, wearable IMUs (accelerometer, 
gyroscope, magnetometer) and a camera stream event 
into a lightweight ingest and buffering layer that forms 
sliding windows ( ). ., 2 4 −e g s  while timestamp-synchronizing 
modalities. A compact preprocessing block executes 

Butterworth filtering, z-score normalization, and frame 
extraction; these operations are vectorized to keep CPU 
usage minimal.

The Video frames are forwarded to YOLOv8-Pose, 
running on GPU (or an NPU on embedded boards 
such as Jetson/Coral), to produce joint key-points with 
confidences. A short temporal smoother (e.g., exponential 
moving average) stabilizes jitter. The refined key-points 
are converted into a skeleton graph (nodes=joints, 
edges=bones). In parallel, IMU features (magnitudes, tilt-
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compensated angles, short-term velocities) are aligned to 
the same window; if vision drops due to occlusion, the IMU 
branch sustains predictions. The fused sequence enters 
the GCN+TCN core, where GCN layers aggregate spatial 
relations across joints, while dilated TCN layers capture 
multi-scale motion dynamics. Output embeddings feed a 
fully connected head with SoftMax to yield the activity label 
and calibrated confidence. An Adaptive Genetic Algorithm 
(AGA) periodically tunes learning rate, dilation factors, and 
dropout based on rolling validation metrics from a shadow 
buffer, keeping the model responsive to environment drift 
without interrupting service.

L a t e n c y  i s  b u d g e t e d  p e r  s t a g e  ( i n g e s t 
5 < ms ,  p r e p r o c e s s i n g  8 < ms ,  Y O L O v 8 - P o s e 

15 25  @ 416 640 ,  5 ,  1 ),− − + < <ms px GCN TCN ms head ms  
achieving 25 > ü  on mid-range GPUs and real-time 
operation on edge accelerators. Events, predictions, 
and confidences are logged to a monitoring service for 
dashboards and alerts (e.g., fall detection). This architecture 
supports healthcare wards, rehabilitation labs, and smart-
home monitoring, delivering reliable, interpretable activity 
labels with graceful degradation during occlusions. Figure 
6 shows the clear architecture of YTGC-HAR model with 
multiple layers. 

Performance Evaluation Metrics 
The performance of the YTGC-HAR model is evaluated 
using a comprehensive set of quantitative metrics that 

measure accuracy, precision, recall (sensitivity), specificity, 
F1-score, and the Matthews Correlation Coefficient (MCC). 
These metrics collectively assess the model’s classification 
capability across multiple activity categories in both the 
MHealth and WISDM datasets. The evaluation process 
is conducted after model convergence during training, 
where the optimal results are typically achieved around 
the 30th iteration out of 40 total epochs, with a batch size 
of 32 . The model maintains stable performance, achieving 
over 97% accuracy, with an average evaluation time of 
approximately 0.08 seconds per batch, corresponding to 
a processing rate of 25 30−  frames per second, suitable for 
real-time deployment. PyTorch serves as the primary deep 
learning framework, handling model training, validation, 
and inference through GPU acceleration, tensor operations, 
and automatic differentiation. It processes both sensor (IMU) 
and skeletal keypoint data to generate predictions. MATLAB, 
on the other hand, is utilized for initial data pre-processing 
filtering, normalization, segmentation and for visualization 
of results, such as plotting the confusion matrix and 
performance curves. This hybrid setup leverages MATLAB’s 
signal processing strengths and PyTorch’s scalable neural 
computation to deliver a fully integrated performance 
evaluation environment.
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Accuracy
Quantifies the YTGC-HAR model’s ability to correctly 
recognize activities such as walking, sitting, or climbing from 
both sensor and skeletal inputs under real-time conditions.

Sensitivity
It evaluates how consistently the system identifies all 
instances of a specific activity, crucial for continuous 
healthcare monitoring without missing key movements.

F1-Score
Highlights the balance achieved by the hybrid GCN–TCN 
architecture between precise detection and comprehensive 
activity coverage.

Figure 6: Real-Time YTGC-HAR Working Model 
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MCC
MCC provides a holistic reliability score showing that 
the model performs uniformly well across balanced and 
imbalanced activity classes.

AUC
AUC demonstrates the model’s discriminative strength 
across all thresholds, confirming its stable decision boundary 
for real-time HAR scenarios.

Precision
Precision reflects how effectively the model avoids false 
detections, ensuring that every predicted activity truly 
corresponds to the intended human motion pattern.

Results and Discussions
This section presents the experimental results and 
comparative analysis of the proposed YTGC-HAR framework 
against several contemporary state-of-the-art Human 
Activity Recognition (HAR) models. The performance 
evaluation focuses on accuracy, sensitivity, specificity, 
F1-score, MCC, and AUC metrics using the MHealth 
and WISDM datasets. The YTGC-HAR model integrates 
spatial–temporal learning through the combination of 
YOLOv8-Pose, GCN and TCN optimized using the AGA for 
hyperparameter tuning. For benchmarking, four existing 
deep learning models were used as comparative baselines. 
Table 3 gives the parameters and values for experimental 
settings in PyTorch and MATLAB execution.
•	 HLA [3]: A Hybrid Learning Algorithm combining CNN 

and RNN layers for wearable sensor HAR, demonstrating 

good temporal feature capture but lacking spatial body 
structure modeling.

•	 SMO-DNN [16]: Spider Monkey Optimization-based Deep 
Neural Network, achieving improved convergence yet 
suffering from high computational cost and overfitting.

•	 AMC-CNN [29]: Augmented Multichannel CNN designed 
for multi-sensor fusion, effective in signal diversity 
handling but weak in long-sequence dependency 
learning.

•	 YOLOv8-ViT HAR [30]: A recent hybrid vision transformer 
model integrating YOLOv8 for pose extraction; strong in 
global visual attention but limited in temporal sequence 
understanding.

Accuracy 
The proposed new YTGC-HAR model achieved an impressive 
97.6% accuracy, demonstrating its ability to consistently 
recognize multiple human activities across varying 
subjects and environments which is shown in Table 4. This 
high accuracy stems from the fusion of YOLOv8-based 
skeleton extraction with GCN–TCN integration, enabling 
precise spatio-temporal learning. The Adaptive Genetic 
Algorithm (AGA) ensured optimal convergence, minimizing 
classification errors during both sensor and video-based 
recognition. Compared to existing baselines like SMO-DNN 
(82.6%) and YOLOv8-ViT HAR (95.4%), the proposed model 
maintained superior consistency across cross-validation 
folds, indicating strong generalization. The combination of 
skeleton and sensor modalities provided comprehensive 
spatial alignment and temporal continuity.

Table 3: Experimental Settings

Parameter Value / Settings Description

Programming Environment Python 3.10 and MATLAB R2023b Development and experimentation environment used for 
model implementation.

Simulation Tools Used PyTorch, MATLAB Signal Processing Toolbox Primary tools for data processing, training, and evaluation.

Frameworks YOLOv8, Graph Convolutional Network (GCN), 
Temporal Convolutional Network (TCN)

Hybrid deep learning architecture components used in 
model development.

Processor Intel i9 13th Gen CPU configuration for training computation.

GPU NVIDIA RTX 4090 (24 GB VRAM) GPU used for model acceleration and skeleton extraction.

Learning Rate 0.001 (Adaptive with AGA) Initial learning rate dynamically optimized via Adaptive 
Genetic Algorithm.

Epochs 40 Total number of training iterations before convergence.

Optimizer Adam Optimizer with AGA fine-tuning Optimization algorithm used with adaptive tuning.

Dataset Used MHealth and WISDM Datasets Datasets used for evaluating model performance.

Sampling Rate 50 Hz Sampling frequency of sensor signals in MHealth dataset.

Window Size 2–4 seconds sliding window Length of segmented data for time-series analysis.

Activation Function ReLU Non-linear activation function used in GCN and TCN layers.

Loss Function Categorical Cross Entropy Objective function to minimize during model training.
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Table 4: Accuracy Analysis 

Metrics / Models HLA [3] SMO-DNN [16] AMC-CNN [29] YOLOv8-ViT [30] YGTC-HAR

Accuracy (IT-1) 78.6 74.5 76.1 92.8 95.6

Accuracy (IT-N) 83.2 82.6 84.7 95.4 97.6

Table 5: Sensitivity & Specificity Analysis

Metrics / Models HLA [3] SMO-DNN [16] AMC-CNN [29] YOLOv8-ViT [30] YGTC-HAR

Sensitivity 72.4 76.8 82.4 93.4 98.4

Specificity 73.6 74.6 80.2 96.6 97.8

Table 6: F1-Score Analysis

Metrics / Models HLA [3] SMO-DNN [16] AMC-CNN [29] YOLOv8-ViT [30] YGTC-HAR

F1-Score (IT-1) 74.2 78.4 84.6 91.8 95.4

F1-Score (IT-N) 72.4 76.6 78.8 94.6 97.2

Sensitivity and Specificity 
An outstanding model reliability with a sensitivity of 98.4% 
and specificity of 97.8%, proving its capability to accurately 
detect true activities while minimizing false detections is 
portrayed in Table 5. High sensitivity ensures that genuine 
actions such as walking, sitting, or climbing are consistently 
recognized without omission, which is particularly vital 
in healthcare and rehabilitation monitoring. The TCN 
component captures subtle motion transitions and temporal 
continuity, preventing missed detections of short-duration 
activities. Conversely, high specificity confirms that the 
model effectively filters irrelevant background movements 
and avoids misclassification between similar actions. The 
GCN contributes by learning inter-joint dependencies, 
allowing precise spatial differentiation even under motion 
overlap. Furthermore, adaptive fine-tuning using the 
AGA dynamically balances false positives and negatives, 
optimizing the model’s discriminative behavior. Compared 
to SMO-DNN and YOLOv8-ViT HAR, YTGC-HAR achieves a 
stronger equilibrium between true detection accuracy and 
noise rejection, ensuring dependable and interpretable 
recognition in real-world, real-time environments.

F1-Score 
An outperformed F1-score of 97.2%, balancing the precision 
and recall effectively across all activity classes. This strong 
result highlights the framework’s ability to maintain both 
high detection accuracy and low false-positive rates. The 
synergy between YOLOv8-Pose and the GCN–TCN hybrid 
ensures reliable recognition even for complex transitions 
such as walking-to-running or sitting-to-standing. The 
adaptive optimization enhanced the model’s balance 
between learning speed and feature sensitivity. Compared 
to HLA (72.4%) and AMC-CNN (78.8%), YTGC-HAR exhibited 
a superior equilibrium between correct detection and 

minimal error rates, making it ideal for real-time continuous 
activity monitoring. Table 6 shows the promising results of 
F1-score analysis.

AUC 
An AUC value of 0.96 validates the discriminative capability 
of the YTGC-HAR model in distinguishing between 
different activity classes across varying thresholds. The 
ROC curve demonstrated a smooth, high true-positive rate 
with minimal false alarms. The combination of YOLOv8’s 
precise joint localization and GCN–TCN’s hierarchical 
learning significantly enhanced classification boundaries. 
The adaptive hyperparameter optimization through AGA 
improved decision surface smoothness, yielding stable 
performance during both training and inference. Compared 
to AMC-CNN (0.78) and YOLOv8-ViT HAR (0.92), YTGC-HAR 
demonstrated greater resilience to noise and overlapping 
patterns, ensuring reliable recognition under real-time, 
multi-user, and dynamic healthcare scenarios. Table 7 shows 
the clear trade-off between TPR and FPR. 

Matthews Correlation Coefficient - MCC  
MCC of 96.4% confirms the overall robustness and reliability 
of YTGC-HAR across both balanced and imbalanced activity 
distributions is shown in Table 8. MCC evaluates the 
correlation between predicted and actual activity labels, 
and this high score demonstrates strong generalization and 
stability. The joint optimization of feature fusion, adjacency 
modeling, and temporal convolution ensured minimal 
misclassification. Unlike SMO-DNN, which exhibited variance 
under skewed class data, YTGC-HAR maintained balanced 
predictive power for frequent and rare activities alike. This 
metric underscores the strength of the GCN-TCN architecture 
in learning meaningful spatio-temporal embeddings that 
perform consistently across all test conditions. 
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Table 7: AUC-ROC Analysis

Metrics / Models HLA [3] SMO-DNN [16] AMC-CNN [29] YOLOv8-ViT [30] YGTC-HAR

TPR 0.60 0.68 0.74 0.92 0.96

FPR 0.64 0.72 0.78 0.92 0.97

Table 8: MCC Analysis

Metrics / Models HLA [3] SMO-DNN [16] AMC-CNN [29] YOLOv8-ViT [30] YGTC-HAR

MCC (IT-1) 68.4 74.6 80.8 91.6 96.2

MCC (IT-N) 70.2 76.4 82.8 93.2 96.4

Figure 6: Comparative Analysis of Existing & Proposed Models

Figure 7: AUC-ROC Curve
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Conclusion
The suggested deep learning-based YTGC-HAR framework 
provides an advanced and efficient approach for real-time 
human activity recognition by integrating novel methods 
like YOLOv8-based skeleton extraction, GCN for spatial 
learning, and TCN for temporal motion understanding. By 
combining these components with adaptive optimization 
using AGA, the model effectively captures fine-tuned 
spatial dependencies and dynamic motion transitions 
in complex activities. MHealth and WISDM datasets are 
utilized for training, testing and validation and ensure that 
the framework is robust across both wearable sensor and 
smartphone-based environments. Experimental results 
demonstrate that YTGC-HAR achieves promising results 
with 97.6% accuracy, 98.4% sensitivity, 97.8% specificity, 
and an AUC of 0.96, outperforming conventional HLA 
[3], SMO-DNN [16], AMC-CNN [29], and YOLOv8-ViT HAR 
[30] architectures. The model’s capability to generalize 
across diverse subjects and activity patterns validates its 
suitability for healthcare monitoring, rehabilitation tracking, 
and intelligent surveillance applications. Additionally, the 
real-time performance and reduced false recognition rate 
establish its potential for deployment in edge-based and IoT-
enabled systems. Overall, the YTGC-HAR model represents a 
substantial advancement in skeleton-based motion analysis, 
providing a precise, interpretable, and scalable solution 
for HAR in real-world healthcare and behavioral analytics 
contexts.

Limitations
Although the model achieves high accuracy, it requires 
substantial computational resources for real-time video 
and skeleton processing. Performance may degrade under 
severe occlusions or low-light conditions. Future work 
should focus on lightweight model compression, cross-
dataset adaptation, and integration with multi-modal data 
for broader real-world deployment.
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