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Abstract

Human Activity Recognition has become an important research domain in developing intelligent systems for sectors such as healthcare,
behavioral analytics, and surveillance monitoring. Traditional vision-based HAR approaches have limitations in terms of subject variability,
occlusion, and background clutter. To address this, a novel skeleton-based motion analysis model is proposed to enhance the precision
and temporal understanding of human motions by combining real-time keypoint extraction with graph-structured spatial-temporal
learning. The proposed YOLOv8 + Graph Temporal Convolution for Human Activity Recognition (YGTC-HAR) consists of four essential
stages, including: (1) YOLOv8-Pose to detect human figures in real-time, and (2) Graph Convolutional Network (GCN) is used to transform
the joint coordinates into a graph representation graph representation. (3) The Temporal Convolutional Network (TCN) is designed to
learn the sequential motion dynamics and time-dependent characteristics of human activities. Additionally, Genetic Algorithm (GA) and
Bayesian Optimization (BO) are adopted to fine-tune hyperparameters, including learning rate, dropout ratio, and convolutional filters.
MHealth and WISDM datasets are utilized in this research to enable comprehensive testing across static and dynamic movements. The
proposed YGTC-HAR is implemented using Python (with TensorFlow and PyTorch) for deep learning, and MATLAB R2023b is used for
signal processing, graphical visualization, and performance validation. The proposed work is compared against existing HLA, SMO-DNN,
AMC-CNN, and YOLOVS8-ViT models. The model achieves 97.6% accuracy, 98.4% sensitivity, 97.8% specificity, 97.2% F1-score, 96.4%
MCC, and an AUC of 0.96, which outperforms the existing models by over 4.3%. The proposed YGTC-HAR serves as a single end-to-
end HAR framework that delivers superior generalization, real-time performance, and reliability for HCIA (Human-Centered Intelligent
Applications). The novelty of the model lies in the combination of YOLOv8-driven skeleton extraction, GCN-based spatial modeling,
TCN-driven temporal learning, and adaptive optimization.

Keywords: Human Activity Recognition, Deep Learning, Graph Convolutional Networks, Skeleton-based Analysis, Temporal Convolutional
Networks, YOLOVS.

Introduction

Inrecentyears, HAR hasemerged as a transformative research
area with a broad spectrum across healthcare, assisted living,
and intelligent systems. Real-time motion capturing and
activity detection models exhibit improved performance
with the aid of inertial sensor data and raw video. The
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majority of conventional HAR techniques have limitations
related to occlusion, viewpoint dependency, illumination
challenges, and inconsistent motion representation, which
reduce the reliability of HAR, especially in dynamic real-
world environments where human movement is irregular
and complex. To overcome the limitations, the YTGC-HAR
modelis proposed by leveraging the merits of deep learning-
based skeleton motion analysis to learn about the human
body and abstracting it into a set of joints & connections,
while eliminating background noise and preserving spatial
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and temporal relationships. YOLOv8, GCN, TCN, GA, and BO
combinational techniques are employed in the proposed
work to address the growing demand for intelligent human-
centricautomation. The YTGC-HAR system thus represents a
significant step toward reliable, efficient, and scalable HAR
suitable forembedded and real-world deployments, such as
surveillance, assisted living, rehabilitation tracking, elderly
care, and remote health assessment, ensuring proactive
healthcare decision-making and safety monitoring.

Recent developments in HAR demonstrates notable
progress through various deep learning architectures and
optimized feature extraction techniques. An attention-
driven deep learning model with temporal and spatial
features significantly enhanced feature discrimination
and attains higher precision in sensor-based HAR. The
use of dual-attention layers improved focus on critical
time segments; however, the method’s static weighting
limits its adaptability under irregular activity transitions
and real-world healthcare variations (Akter et al., 2023). A
hybrid learning algorithm combining convolutional and
recurrent structures (HLA) provided an effective model for
both spatial and temporal features in wearable sensor data.
This approach captured continuous movement patterns
accurately but exhibited reduced generalization across
subjects, primarily due to noise sensitivity and sensor
orientation inconsistencies (Athota & Sumathi, 2022). A
multichannel convolutional neural network enhanced with
extensive data augmentation improved the recognition of
overlapping activities by capturing feature diversity across
multiple sensor streams. Although the approach yielded
higher accuracy, its heavy computational cost limited its
application in low-power wearable healthcare systems (Shi
et al,, 2022).

A deep learning technique incorporating Spider
Monkey Optimization (SMO-DNN) provided efficient feature
selection and convergence control. The algorithm effectively
improved accuracy on benchmark datasets; however, it
required extensive parameter tuning and longer training
times, which restricted its use for large-scale or real-time
activity recognition (Kolkar & Geetha, 2023). A hybrid deep
learning architecture utilizing convolutional layers with
logistic gating enhanced information flow and mitigated
gradient vanishing in loT-based HAR. Despite achieving
strong performance, the absence of spatial body-joint
modeling limited its interpretability in skeleton-based
applications (Ding, Abdel-Basset, & Mohamed, 2023). An
orientation-invariant deep learning framework employing
angular normalization stabilized predictions across devices
placed in varying positions. While this method enhanced
orientation robustness, it showed weaker adaptability to
multimodal sensor combinations with high-dimensional
signals (He, Sun, & Zhang, 2024). Graph-based neural
representations modeled human joints as interconnected

nodes to effectively capture the relationships between body
structure and motion. Although this method preserved
spatial information, it lacked adequate temporal modeling,
which is critical for distinguishing similar dynamic activities
such as running and walking (Bsoul, 2025). A hybrid YOLOv8-
based deep learning framework further extended HAR
accuracy using pose extraction and data augmentation on
MHealth and WISDM datasets. It demonstrated robust cross-
subject generalization but remained limited by sequential
CNN-RNN architectures that inadequately represented
spatio-temporal dependencies (Subna & Kamalraj, 2025).

Problem Statement

Existing HAR models face persistent challenges in accurately
classifying essential activities such as walking, sitting, lying
down, or exercising, which are key indicators of patient
mobility and recovery progress in patient monitoring
environments. Conventional deep learning models trained
on raw image frames and inertia sensor-based scanning
often overfit in feature analysis, leading to poor spatial
and temporal reasoning with limited interpretability. In
the skeleton-based approach, the motion abstraction is
clean and straightforward. In contrast, the present graph-
based architectures failed to handle spatial and temporal
dependencies simultaneously, resulting in incomplete
modeling of human kinematics. The fundamental problem
addressed in this research is the inadequate integration of
spatial and temporal learning for precise activity recognition.
YGTC-HAR overcomes the limitations of optimized fusion of
detection, representation, and sequence learning, offering
real-time adaptability and scalability across diverse datasets.
The proposed work will provide a unified framework for
extracting, encoding, and robustly interpreting skeletal
motion patterns. YGTC-HAR serves as an optimized pipeline
for accurate and robust activity recognition, filling the gap
left by existing baseline models.

Key Objectives of the Proposed Model
The primary objective of the YTGC-HAR model is to design
and implement a robust, performance-oriented skeleton-
based HAR framework that recognizes human activities with
greater accuracy by integrating spatial-temporal feature
learning with bio-inspired AGA and Bayesian optimization
for fine-tuning. The following are the key objectives of the
proposed deep learning framework.

« To extract real-time skeletal key points from human
frames using YOLOv8-Pose and refine them using
Media-Pipe pose estimation.

« To model skeletal motion as a spatial-temporal graph,
where nodes represent body joints and edges define
anatomical relations.

« To employ a Graph Convolutional Network (GCN) for
learning spatial dependencies between joints and
a Temporal Convolutional Network (TCN) to analyse
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motion transitions and long-range dependencies across
frames.

«  Tooptimize hyperparameters through Genetic Algorithm
(GA) and Bayesian Optimization (BO) for improved
efficiency and convergence.

- To validate performance using MHealth and WISDM
datasets under real-time simulation in Python and
MATLAB environments.

These combinational steps collectively demonstrate that
the suggested YTGC-HAR model achieves high recognition
accuracy, faster inference, and robust adaptability across
subjects and activities in real-time, setting a novel pattern
for human motion understanding in next-generation
intelligent systems.

Related Works

Recent work on HAR for industrial and clinical settings
showcases the task realism, such as manual material handling,
where deep learning techniques must separate subtle load-
bearing postures from ordinary motion. A comprehensive
pipeline utilizing deep learning enhances the detection
of ergonomically risky actions, yet remains sensitive to
occlusions and rapid viewpoint shifts common on factory
floors, underscoring the need for stronger temporal context
and skeleton priors (Bassani et al., 2025). Surveys provide
machine-learning models that highlight HAR in terms of
feature learning, transferability, and deployment, yet also
notable gaps in cross-dataset robustness and interpretability
for decision support in healthcare. The consensus calls
for hybrid spatio-temporal modeling and clear post-
hoc explanations to gain clinician trust (Hossen & Abas,
2025). Security-oriented healthcare studies demonstrate
that deep learning can learn distinctive intrinsic patterns
from constrained sensors, indicating that well-structured
physiological signals are highly discriminative. Still, these
systems often lack temporal generalization across sessions
and devices, a limitation directly relevant to HAR wearables
(Indhumathi et al., 2025). Decision analytics pipelines in
agriculture are illustrated, demonstrating how domain-
aware features and intelligent fusion enhance reliability
under noisy conditions. Despite its high accuracy, many such
systems rely on static thresholds and handcrafted rules for
final decisions, which limits their adaptability when motion
dynamics drift—a pattern also observed in naive HAR post-
processing (Jijendra & Nithyanandh, 2025).

Hybrid deep learning for sensor HAR combining
convolutional backbones with recurrent or attention heads
boosts accuracy and energy efficiency. However, reliance
on fixed window sizes reduces sensitivity to variable-speed
actions, motivating the use of dilated temporal encoders
that flexibly cover multiple time scales (Khan, Afzal, &
Lee, 2022). Surveillance-focused interaction recognition
benefits from coupling deep features with classical machine-
learning classifiers to stabilize small-sample regimes.

Nevertheless, without an explicit joint-level structure,
models struggle to parse fine-grained interactions, such
as handovers or near-collisions—precisely where skeleton
graphs are helpful (Khean et al., 2024). Vision research on
enhancing human sight perception for machine vision
highlights the importance of multi-resolution cues and
attention in suppressing background clutter. While object-
centric attention improves precision, activity recognition
additionally requires modeling dependencies across joints
over time, beyond region saliency alone (Krishnaveni et
al., 2023). Residual networks with squeeze-and-excitation
mechanisms provide channel-wise recalibration, sharpening
salient motion features and yielding explainability through
activation maps.

Despite this, channel attention alone cannot encode
relational kinematics; joint-edge reasoning is needed
for nuanced pose transitions (Mekruk & Jitpattanakul,
2025). Wearable biosensor applications (e.g., smart knee
bandages) demonstrate that localized sensors can predict
rehabilitation activities; however, segment generalization
remains brittle when patients alter their gait or cadence.
Structured spatio-temporal models can mitigate such drift
by anchoring predictions to joint graphs and tempo-robust
encoders (Savanich, Jantawong, & Jitpattanakul, 2022). A
detailed overview of deep HAR highlights the maturity
of CNN/RNN baselines and emphasize the importance of
data augmentation for achieving class balance. Still, many
systems underperform when activities overlap in space and
time, underscoring the need for temporal receptive fields
with dilation and residual connections (Moola & Hossain,
2022). Object-detection pipelines with modern detectors,
such as YOLOVS, illustrate that robust localization is feasible
in real-time, but downstream activity semantics require
structured modeling beyond bounding boxes. Bridging
fast detection with graph-temporal reasoning is therefore a
logical next step (Nithyanandh, 2025). Multimodal biometric
security, which combines gait and face recognition, suggests
that complementary views can compensate for modality-
specific failures. For HAR, analogous fusion (pose + inertial)
can stabilize predictions under camera occlusion, though
careful alignment and calibration remain open challenges
(Nivedita et al., 2025). Wearable-sensor HAR continues to
benefit from deep learning with careful segmentation,
normalization, and augmentation. However, many pipelines
treat each window independently, missing long-range
dependencies and inter-joint constraints that distinguish
closely related actions (Nouriani, McGovern, & Rajamani,
2022).

Research Gap Analysis

Across these studies, few major strengths include improved
feature saliency, augmentation, and domain-specific
tailoring. Current HAR models predominantly focus on
either spatial or temporal components, often overlooking
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Table 1: Analysis of Related Studies Supporting Human Activity Recognition

Authors

Methods Adopted

Merits

Limitations

Surek et al.
(2023)

Uddin et al.
(2024)

Xu et al. (2025)

Zhang et al.
(2024)

Sarveshwaran et
al. (2022)

Selvam & Joy
(2024)

Sharen et al.
(2024)

Omprakash et
al. (2023)

Prabhu et al.
(2025)

Eldho &
Nithyanandh
(2024)

Eldho et al.
(2025)

Devi et al.
(2024)

Arularasan et al.
(2024)

Deep learning-based video HAR using CNN
and LSTM models for sequential motion
interpretation.

Hybrid deep learning combining CNN,
Conv-LSTM, and LRCN for temporal-spatial
feature extraction.

Attention-enhanced deep neural
network integrating context-aware
motion weighting for HAR.

Multi-channel hybrid deep learning for
multi-sensor data fusion and robust
activity classification.

Comprehensive investigation of deep
learning architectures (CNN, RNN) for
HAR performance evaluation.

Deep learning AEN with Mask R-CNN for
multivariable feature selection and region-
based detection.

WISNet deep neural network for human
activity recognition from wearable sensor
data.

Energy-aware adaptive sleep scheduling
with improvised Firefly Algorithm for
efficient loT communication.

Bio-inspired routing using intelligent
algorithms for secure and energy-
optimized 6G communication.

3D CNN model applied on CT-DICOM
dataset for lung cancer detection and
severity classification.

Quantum Hybrid Harris Hawk Optimization
with Graph Neural Network for WSN
reliability.

GAN-enabled Al-based bio-inspired
protocol for efficient and secure loT data
transmission.

Deep learning model for sign language
recognition using spatial feature extraction
and classification.

Achieved high frame-wise recognition
accuracy; effective for video sequence
understanding.

Enhanced activity recognition accuracy;
captured both short-term and long-term
dependencies.

Improved interpretability and dynamic
attention adaptability in feature
extraction.

Superior fusion of heterogeneous sensor
modalities; reduced feature redundancy.

Provided baseline analysis of DL
performance; highlighted dataset
dependency challenges.

Accurate region-based detection; strong
performance in multivariable feature
environments.

High accuracy for wearable sensor HAR;
robust to sensor noise and drift.

Extended network lifetime and energy
efficiency in loT environments.

Improved routing reliability,
authentication, and energy utilization
in 6G loT systems.

Accurate 3D volumetric analysis for
clinical diagnostics; reduced false
positives.

Enhanced fault detection and routing
efficiency under varying WSN conditions.

Ensured secure and low-latency loT
communication; minimized data loss.

Improved sign recognition precision for
hearing-impaired assistance applications.

Computationally intensive for
real-time deployment; limited to
controlled datasets.

Requires large labeled datasets
and high GPU resources; prone to
overfitting.

Performance declines under noisy
sensor signals; lacks temporal
robustness.

Fusion complexity increases with
more modalities; needs feature
alignment optimization.

Limited to small-scale datasets;
lacks graph-based structural
analysis.

High memory consumption;
requires fine-tuning for varied
image resolutions.

Not tested for cross-subject
generalization; lacks temporal
modeling.

Designed for loT energy systems for
sensor-based target class detection
tasks.

Focuses on sensor security; limited
applicability to human motion
recognition.

Deep object detection is not
generalized for non-medical
datasets or HAR applications.

Complexity in quantum
optimization; increased
computational overhead.

High model complexity; limited
generalization under dynamic
conditions.

Limited dataset diversity; requires
multi-lingual gesture expansion.

their joint correlation. Moreover, optimization processes in
existing models are computationally demanding and prone
to local convergence. Persistent gaps involve (i) insufficient
modeling of joint relationships and temporal dependencies
together, (ii) limited cross-subject and cross-dataset
generalization, and (iii) a lack of real-time, explainable
inference suitable for healthcare workflows.

The proposed YTGC-HAR addresses these gaps by
fusing fast pose extraction (YOLOv8) with graph-based
spatial reasoning (GCN) and dilated temporal encoding
(TCN), delivering interpretable, scalable, and robust activity
recognition across realistic healthcare scenarios. This

unified design ensures precise, real-time, and scalable HAR
suitable for healthcare, surveillance, and activity monitoring
applications.

Proposed Methodology

The proposed YTGC-HAR (YOLOv8-Temporal Graph
Convolutional Human Activity Recognition) framework
integrates spatial and temporal learning techniques to
classify human activities from skeleton-based motion
data accurately. The methodology is designed to extract
meaningful motion representations from raw sensor
readings and body joint positions, combining the strengths



5245 THE SCIENTIFIC TEMPER, December 2025

Inadequate modeling\.

of joint and temporal
relationships

0

Amited generalization

across subjects
and datasets

™ i

Poor accuracy on complex
spatial-temporal activities

Research
Gap

R

=Ly

Lack of real-time and
explainable inference

Figure 1: Research Gap based on Literature Study

of deep learning and optimization-based tuning for
robust human activity recognition. As a first step, data
from the MHealth and WISDM datasets are pre-processed
and normalized. From the MHealth dataset, attributes
such as accelerometer, gyroscope, and magnetometer
readings (along X, Y, Z axes) are utilized to represent linear
acceleration, angular velocity, and orientation. Similarly,
in the WISDM dataset, sensor readings from smartphones
and smartwatches are extracted, including acceleration,
body movement, and posture variations. These multivariate
features form the temporal signal inputs for constructing
skeletal joint patterns that represent each user’s motion
frame by frame. After the pre-processing stage, YOLOv8-
Pose is used to detect human figures and extract key
skeletal joints, including the head, shoulders, elbows,
wrists, knees, and ankles. Each detected joint acts as a node,
and anatomical connections between joints act as edges
in a graph structure. The GCN then processes this graph
and learns the spatial dependencies between connected
joints, identifying correlated movement regions. To capture
motion steadiness, the TCN analyzes sequential frames,
identifying long-term dependencies and distinguishing
between similar actions, such as jogging, running, and
climbing. The framework is further optimized using an AGA
to fine-tune parameters such as the learning rate, dropout,
and convolutional depth, ensuring fast convergence and
improved generalization. Figure 2 shows the systematic flow
diagram of the proposed YTGC-HAR model.

Materials and Methods for Implementation

To evaluate the effectiveness of the proposed YTGC-HAR
deep learning model, a robust methodology is adopted by
integrating data acquisition, pre-processing, model training,
and optimization. The framework combines YOLOv8-based
skeleton extraction with GCN-TCN learning to capture

spatiotemporal dynamics, ensuring accurate and real-
time human activity recognition, validated on benchmark
healthcare datasets. This section describes datasets,
pre-processing techniques, model architecture, training
process, optimization, and evaluation strategies employed
to implement the proposed HAR model.

Dataset Description

Two benchmark datasets, MHealth and WISDM, are
utilized for training, testing, and validation purposes. The
MHealth dataset comprises accelerometer, gyroscope, and
magnetometer signals from 10 participants performing 12
activities, whereas WISDM provides over one million motion
readings from 36 users, captured through smartphones and
smartwatches.

Data Pre-processing

Raw signals are filtered using a Butterworth noise filter,
normalized using z-score scaling, and segmented into fixed
time windows. Video frames were extracted for skeleton
generation using YOLOv8-Pose, followed by keypoint
refinement with MediaPipe.

Model Training

The skeleton key-points are converted into a spatio-
temporal graph, processed through GCN for spatial learning
and TCN for motion sequence modeling.

Optimization

An Adaptive Genetic Algorithm (AGA) bio-inspired
optimization was used to fine-tune learning parameters for
faster convergence and improved generalization.

—

Input Preprocessing Temporal Encoder
Layer Unit (YT-Module)
.
ﬁ-« ; YOLOv8
e AAN—
Sensor/Video Noise Filtering, Pose
Data Normalization, Creates spatial-temporal
Acquisition Frame Extraction relationships between

joints/nodes

Graph Convolution Temporal Feature
Network (GM Block) Convolution Fusion Layer
Network
% (CCN Block) :><:>)
Learns structured spatial M’] [l Combines GCN
dependencles and TCN
‘Captures dynamic embeddings
time-series
activity transitions
Fully Connected Layer Output Layer
(Classification Head)
O
e ke
-
Maps features to activity Recognized Human
labels Activity Label

Figure 2: Systematic Flow of Methodology
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Implementation Tools

Model training and analysis were conducted in Python
(TensorFlow and PyTorch), while visualization and statistical
validation were performed in MATLAB R2023b.

Evaluation

Performance is evaluated using six key metrics, such as
accuracy, sensitivity, specificity, F1-score, MCC, and AUC, to
ensure robustness and real-time efficiency.

Dataset Acquisition and Preprocessing Techniques
The proposed YTGC-HAR framework is built upon two
widely recognized datasets, MHealth and WISDM, to ensure
robust and generalizable human activity modeling. These
datasets were selected due to their extensive coverage of
physical movements, sensor diversity, and data consistency,
which collectively provide a strong foundation for both
sensor-based and vision-based human activity recognition.
The MHealth (Mobile Health) dataset was designed
for healthcare-oriented activity analysis and physical
monitoring applications. It contains time-synchronized
recordings from 10 volunteer subjects, each performing
12 distinct physical activities, including standing, sitting,
cycling, walking, jogging, running, climbing stairs,
lying down, and jumping. Data were captured using
accelerometer, gyroscope, and magnetometer sensors
placed on the chest, left ankle, and right wrist of each
subject. Each sensor stream records signals at a sampling
frequency of 50Hz, yielding multivariate time-series
data. These signals represent tri-axial motion information
(x.Y,Zaxes) for linear acceleration, angular velocity, and
orientation, producing over 23,000 labeled activity
segments. MHealth Data Source: https://archive.ics.uci.edu/
dataset/319/mhealth+dataset

The WISDM dataset complements MHealth by providing
a large-scale motion dataset captured from everyday
smartphone and smartwatch sensors. It includes data
from 36 individuals performing six fundamental activities:
walking, jogging, standing, sitting, ascending stairs, and

descending stairs. Each reading contains timestamped
accelerometer and gyroscope data at sampling rates
of 20—-50Hz, totaling over 1 million labeled motion
instances. The WISDM dataset offers real-world complexity
by accounting for device orientation changes and natural
variations in user motion, making it highly valuable for
testing model generalization. By integrating both datasets,
the YTGC-HAR model benefits from a dual-domain input,
such as (1) wearable sensor data for quantitative motion
analysis and (2) video frame-based skeletal data for spatial
feature extraction. This fusion ensures a comprehensive
understanding of human movements across physical,
behavioral, and contextual dimensions. Figure 3 shows
the pre-processing flow of the proposed model. WISDM
Data Source: https://archive.ics.uci.edu/datase t/507/
wisdm+smartphon e+and+smar twatch+activity+an
d+biom etrics+dataset

To prepare the datasets for model training, five major
pre-processing steps are employed to ensure signal quality,
normalization, and structural uniformity. These steps
mitigate sensor noise, irregular sampling, and dynamic
variations among users.

Step 1: Noise Filtering using Butterworth Filter - BWF

The Raw inertial signals are prone to high-frequency noise
generated by sensor vibration or hardware inconsistencies.
A Butterworth low-pass filter of order n =4 with a cutoff
frequency f, =20 Hz is applied to preserve smooth motion
transitions. The transfer function is mathematically
represented as,

H(s)= =

1+ 5 )
w

c
where, § is the complex frequency and o, =2z, represents

the clear cut-off angular frequency. This filter (BVF) ensures
a maximum flat frequency response in the frequency

# By ——
Input
Data Normalization Frame Enhancement Output
Acquisition Segmentation
o - Y - DB -
RGB-D
Raw RGB Normalization Segmentation Background Skeleton
+ Depth + using into Fixed subtraction Generation
Skeleton Data Z-Score Scaling |  Time Windows = and Humination and
correction Refinement
| ) /

Figure 3: Data Pre-Processing in YTGC-HAR
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passband, which effectively suppress the unwanted noise
while retaining motion-relevant components.

Step 2: Normalization using Z-Score Scaling - ZSS
As, the sensor readings from accelerometers and gyroscopes
vary in magnitude & range, the data standardization
is crucial for stable model training. Z,,. normalization
transforms each attribute to have zero mean and unit
variance, ensuring all features contribute equally to the
learning process calculated using the below equation.
X' _X-p 2)
o
where x represents the raw signal, 4 denotes the
mean, and o is the standard deviation of the feature
representation. This ;i process prevents bias toward
high-magnitude features and improves the convergence
rate during gradient-based optimization.

Step 3: Segmentation into Fixed Time Windows -
FTW

To convert continuous motion signals into discrete
samples, the filtered and normalized data are segmented
into overlapping time windows of fixed length 7. The
segmentation function is expressed as,

S,= [xt, x, +1..., xH(HJ (3)

where, S[ represents the segmented window starting at
time ¢ . Overlapping windows (e.g., 60% overlap) are used
to preserve temporal continuity and minimize information
loss at segment boundaries.

Step 4: Signal Smoothing using Moving Average
Filter - MAF

To remove the residual noise and stabilize signal fluctuations
after BWF filtering, a simple moving average (SMA) is applied,

1 N=1
X =—>x_
t t—i
N ‘=

(4)

where N isthe window size and X, is the smoothed signal
at time £ . This helps ensure consistent transition curves in
motion sequences.

Step 5: Data Augmentation through Random Noise
Injection - RNI

In order to prevent overfitting and simulate sensor variations,
Gaussian Noise (GN) is added during training process.

X' =x+0, O~N(O,0'2) (5)

where N(0,07) represents the GN with mean 0 and variance
o . This maintains a natural variability and improves model

generalization. Following a robust signal pre-processing
using multiple techniques, the video frame sequences
associated with motion samples are fully extracted. Each
frame is processed through YOLOv8-Pose, a high-speed
detection model that identifies human figures and localizes
skeletal joints such as the head, shoulders, elbows, knees,
and ankles. The output key-points from YOLOv8 are refined
using MediaPipe Pose Estimation, which improves joint
localization accuracy under varying lighting conditions or
partial occlusions. This step ensures that each movement
frame is represented by a set of structured 2D(or3D) joint
coordinates, which serve as the input features for graph
construction in subsequent stages. These processed signals
and skeleton coordinates enable accurate modeling of both
the spatial structure of human joints and the temporal
dynamics of motion patterns. As a result, the system
achieves reliable and interpretable activity recognition
performance across different subjects, devices, and
environmental conditions.

Skeleton Extraction and Feature Extraction using
YOLOv8-Pose

The proposed YTGC-HAR model depends on precise
skeletal joint extraction to capture human body motion and
spatial structure efficiently. Skeleton-based representation
eliminates redundant background information and focuses
solely on the dynamic relationships between body joints,
which is crucial for accurate and interpretable activity
recognition. The YOLOv8-Pose framework is adopted for
this purpose due to its superior detection speed, joint
localization accuracy, and robustness against environmental
variations such as illumination changes, partial occlusions,
and multi-person scenes.

Skeleton Extraction using YOLOv8-Pose

In this stage, input frames derived from sensor or video
streams are processed through the YOLOv8-Pose model,
which performs object detection and keypoint estimation
simultaneously. Each human subjectinaframeis represented
by a bounding box B = (s Y% Yer) and a set of key-points
K={(x.y.c)i, where x,and y; denote the 2D coordinates
of the ;# joint and ¢ is the corresponding confidence
score. The YOLOv8 model employs a modified CSP-
Darknet backbone for feature extraction and a pose head
for keypoint regression using heatmap estimation. The
localization of a joint i is optimized by minimizing the pose
estimation loss is mathematically expressed as,

N

Lpose= iZ:H K- Kl]|22 (6)
N i=1

where K, denotes the predicted keypoint and K, is the

ground truth. This MSE loss ensures that each detected joint

aligns closely with the actual human body configuration.
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Keypoint Refinement using MediaPipe

After initial extraction, the predicted skeleton coordinates
are refined using MediaPipe Pose Estimation, which employs
landmark-based regression with biomechanical constraints.
This step reduces jitter, corrects inconsistent key-points, and
maintains anatomical symmetry. A confidence-weighted
smoothing function is applied across frames to stabilize
motion trajectories which is expressed as,

K. (1)=aK(t)+(1-a)K,;(t-1) (7)

where ¢ is the smoothing coefficient (0<a<1),K,(r)
represents the current joint position, and «;(¢-1) is the
previously smoothed position. This recursive formulation
minimizes abrupt transitions, ensuring temporal continuity
of jont motion sequences.

Feature Representation for Graph Construction

The refined skeletal data are transformed into structured
feature representations for graph modeling. Each frame’s
skeleton is represented as a feature matrix x, e ", where
N is the number of joints and d is the dimensionality
(e.g., 2D or 3D coordinates plus confidence). Each node
corresponds to a joint, and edges correspond to anatomical
connections (e.g., wrist-elbow, knee-hip). To enhance
discriminative power, both spatial and temporal derivatives
of joint motion are computed which is expressed in the
below equation.

() =K, (1)~ K (t-1) ®

where 7,(¢) represents the instantaneous velocity of the
i joint. This temporal difference captures the dynamic
variation in joint displacement, which is essential for
recognizing continuous or rapid activities like running
or jumping. The resulting feature vector for each joint
becomes,

Input Graph

F= ['xﬁyi’ci’Vi] )

Which forms the input feature map for the Graph
Convolutional Network (GCN). This skeleton extraction
stage thus bridges low-level video or sensor data with
high-level spatio-temporal reasoning. By focusing on
human joints instead of pixel intensities, the YTGC-HAR
framework minimizes computational complexity, improves
interpretability, and strengthens robustness against
environmental noise, ultimately providing a reliable
foundation for precise activity recognition across healthcare,
surveillance, and behavioral analytics applications.

Graph Construction and Spatial Feature Learning
using GCN

After extracting refined skeletal coordinates from YOLOv8-
Pose, the next critical phase in the YTGC-HAR framework
involves constructing a structured graph and applying
GCN to model the spatial dependencies between human
joints. The GCN-based learning mechanism forms the core
of spatial understanding, capturing both local and global
body movement correlations essential for accurate activity
recognition.

Graph Construction using GCN

In the graph formulation, the human skeleton is represented
asagraph ¢=(v.£), where v denotes the set of joints (nodes),
and E represents the anatomical connections (edges)
between them. For example, nodes may correspond to the
head, shoulders, elbows, wrists, knees, and ankles, while
edges signify physical linkages such as shoulder-elbow
or knee-ankle. Each node v, €V carries a feature vector
x =[x.».¢,¥], containing positional coordinates, confidence,
and velocity features derived from earlier stages. The
relationships between these joints are encoded in an
adjacency matrix 4eR"", where 4, =1 if nodes jand j
are connected, and 0 otherwise. The normalized adjacency

Output Features

Graph

Convolution

Adjacency Matrix A

ojojofo0]|0
1710(0(|1]0
0j1]0(0]1
ojojof1]0
0jo0jo0f0]|1

Input Features X

0,10,5/0,1]0,3|0,1
1,1(0,2|1,0{03|2.8
3,2(1,6|23({06|25
28(1,1)0,2{08|2,4
1,2(0,310,2({1,3|1,0

Output Features X

Figure 4: Graph Construction for YTGC-HAR
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matrix 4 is computed to stabilize learning and prevent
gradient explosion during message propagation.

A~=D"[(A+I)D™"” (10)

where, I istheidentity matrix representing self-connections,
and D is the diagonal degree matrix with 2,=X (4,+1,). This
normalization ensures uniform feature scaling and balanced
information flow among neighboring joints.

Spatial Feature Learning using GCN

Oncethegraph structureis constructed, Graph Convolutional
Networks are applied to perform spatial aggregation and
feature propagation across connected joints. Each GCN
layer performs a weighted combination of a node’s own
features and its neighbors’ features, thereby encoding
joint dependencies. The propagation rule for a GCN layer is
mathematically expressed as,

H™ :o-(A~H’W’) (11)

where, H' is the input feature matrix at layer 7, wis the
learnable weight matrix, and o(-) is a nonlinear activation
function called ReLU. The multiplication with 4 ensures
that each joint node aggregates contextual information
from its spatial neighbors, effectively learning the structural
configuration of the human body in motion. Through
multiple stacked GCN layers, the model progressively
abstracts joint-level information into higher-level spatial
representations, where earlier layers focus on local joint
coordination (e.g., arm movement) and deeper layers
capture global body postures (e.g., walking, jumping, or
sitting).

As shown in the Figure 4, the left side represents the
Input Graph, where skeletal joints act as nodes connected
by edges defined in the adjacency matrix 4. The center
block (Graph Convolution) illustrates how message passing
occurs through GCN layers, utilizing the normalized
adjacency matrix and feature matrix. Finally, the right side
displays the Output Features, where node embeddings are
refined into spatial descriptors representing distinct human
postures. This transformation enables the model to learn
body coordination patterns efficiently before the temporal
sequence modeling stage, which TCN handles. By learning
structured spatial dependencies, the GCN module equips
the YTGC-HAR framework with superior representation
capabilities compared to CNN and RNN models, which
fail to encode inter-joint relationships explicitly. The GCN-
driven learning process ensures that spatial features are not
merely localized but contextually aware, paving the way for
improved recognition accuracy, reduced misclassification,
and enhanced interpretability of human motion behaviours
across diverse healthcare and surveillance environments.

Temporal Modeling and Sequential Activity Learning
using TCN

After spatial dependencies between skeletal joints are
learned using the GCN, where the next essential step in
the YTGC-HAR model is to capture the temporal evolution
of those spatial features over time. Human activities such
as walking, jogging, or stretching are not defined by static
poses alone but by how those poses transition and evolve
across consecutive frames. To achieve this, TCN is employed
to model sequential motion dynamics effectively.

Temporal Feature Representation

The outputs from the GCN module are sequential feature
vectors H, for each frame ¢, representing the spatial joint
configurations. These feature maps are arranged into a
sequence {H,H,,...H,}, where T denotes the total number
of frames or time steps within an activity segment. Unlike
recurrent models such as LSTM or GRU, the TCN uses causal
and dilated convolutions, allowing it to model long-range
temporal dependencies efficiently while avoiding the
vanishing gradient problem. To ensure that each prediction
attime ! depends only on current and past information, the
TCN applies causal convolutions, mathematically expressed
as,

k-1
yﬁZZﬁ'x— (12)

where y, represents the output feature at time 7, x,_;
represents the input feature from the ¢-i" step, and / is
the learnable convolutional filter weights. This ensures that
the temporal learning process respects the natural time
order of human actions.

Dilated Temporal Convolution

To efficiently capture both short-term and long-term
dependencies, dilated convolutions are introduced. Dilation
enlarges the receptive field of the convolution filter without
increasing computational cost. The dilated convolution
operation is defined as,

k-1
Ve = Zﬁ X ai (13)
i=0

where d is the dilation factor, controlling how far the
filter skips input steps. As d increases exponentially
(e.g., 1, 2, 4, 8), the network learns temporal relationships
at multiple scales capturing micro-movements like wrist
rotations as well as macro-movements like walking cycles.
This hierarchical time-scale analysis enables the YTGC-HAR
model to recognize complex and overlapping activities
efficiently.

Sequential Activity Learning in YTGC-HAR
Within the YTGC-HAR framework, the TCN receives graph-
based spatial features from the GCN module and processes
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them through a stack of temporal convolutional layers.
Each layerincludes residual connections and normalization
to maintain temporal stability and prevent information
loss. These layers successively abstract motion sequences
into compact temporal embeddings that represent the
full evolution of an activity. For instance, activities such
as “walking” or “running” are characterized by rhythmic
patterns in limb movement, while “sitting” or “lying down”
show low temporal variation. The TCN differentiates these
patterns by analyzing velocity and acceleration trends
within joint features over time. As a result, it becomes highly
effective in distinguishing subtle transitions like walking-to-
running or sitting-to-standing, which are often misclassified
by static models.

AGA Optimization in YTGC-HAR

The AGA plays a major role in fine-tuning the YTGC-HAR
model’s hyperparameters, ensuring optimal learning and
convergence. Unlike conventional static optimizers, AGA
dynamically adjusts crossover and mutation probabilities
based on the population’s fitness diversity. During training,
parameters such as learning rate (), dropout rate (6), and
filter size (F) are encoded as chromosomes, and fitness is
measured using classification accuracy from the validation
set. The adaptive mechanism evaluates the fitness / of
each candidate and updates crossover and mutation rates
according to,

1— f;_ fmin (14)
f;zvg_ fmin

where p is the adaptive probability for the i" solution, /i ,
Ji ,and F; denote the minimum, average, and maximum
fitness values, respectively. This adaptive search mechanism
ensures faster convergence, minimizes overfitting, and
enhances classification accuracy across the MHealth and
WISDM datasets in the YTGC-HAR model.

P=P

l max

Model Training, Optimization, and Performance
Evaluation

The YTGC-HAR model is trained using a structured three-
phase process comprising training, validation, and testing
to ensure high generalization and stability across both
datasets, MHealth and WISDM. The combined dataset was

split into three parts with an go:10:10 ratio, where i

of the samples were used for training, ¢ for validation
to fine-tune hyperparameters, and the remaining i
for independent testing. Data shuffling and subject-wise
separation were applied to prevent bias and ensure cross-
participant reliability. During the training phase, skeleton-
based feature matrices derived from YOLOv8-Pose and
preprocessed sensor signals were fed into the GCN-TCN
hybrid network. The model parameters were optimized
using the Adam optimizer with an adaptive learning rate
of 0.0005, a batch size of 32, and a dropout rate of iy to
minimize overfitting. The AGA automatically tunes key
hyperparameters, such as learning rate, dilation factor, and
number of filters, to achieve faster convergence and optimal
accuracy. The cross-entropy loss (CE-Loss) function was
used to measure classification error, while early stopping
monitored validation performance to prevent overtraining.
Each epoch involved forward propagation through the GCN
for spatial reasoning and the TCN for temporal sequence
learning, followed by backward updates to minimize the
overall loss. Training continued until validation loss stabilized
for five consecutive epochs. Performance evaluation was
conducted using standard metrics, including accuracy,
sensitivity, specificity, F1-score, AUC, and MCC is shown in
Figure 5.
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Figure 5: Heatmap Representation

Table 2: Confusion Matrix of YTGC-HAR Model

Actual / Predicted Walking Jogging Sitting Standing Lying Climbing
Walking 1225 22 3 0 0
Jogging 17 1240 0 0 2

Sitting 0 2 1178 6 0 0
Standing 1 0 1187 3 0

Lying 0 0 1 1193 0
Climbing 2 1 0 0 1204
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Step-by-Step Process of YTGC-HAR Model

1. Input & Settings

Initialize window length T, hop, learning rate, batch size, joints J, class set C'.

2. DatalIngest

Stream/Load IMU signals (acc, gyro,magnetometer ) and/or video frames.

3. Preprocessing

Apply Butterworth low-pass filter = z — score normalization — segment into overlapping windows of length 7.

>

Extract frames per window (if video).
5. Pose Extraction & Refinement

For each frame: run YOLOv8-Pose — get key-points (xl.,yl.,cl. ) fori=1 J.
Smooth key-points (EMA/One-Euro) and correct with MediaPipe landmarks.

6. Graph Construction

Build skeleton graph G = (V, E): nodes J =joints, edges E =bones.

Form normalized adjacency A=D™" (A + I)D_I/2 .

Compose node features per joint: [xA/,,A X y] .
7. Spatial Encoding (GCN)

For each time step ¢:

H" <o ("W).

Pool across joints — spatial embedding St .
8. Temporal Encoding (TCN)

Stack {S,,...,S,.t — apply causal, dilated 1-D convolutions with residuals to capture short- and long-range motion
1 T y g-rang

— temporal embedding Z .
9. Feature Fusion & Classification

Concatenate IMU features with Z .

Global temporal pooling — Fully Connected + Softmax —> predicted label y and confidence.

10.Training Loop

Optimize cross-entropy on training set; validate each epoch; early-stop on plateau.

11.Adaptive Optimization (AGA)

Periodically tune LR, dilation, dropout, and channels using AGA based on validation fitness to improve convergence

and generalization.
12.Evaluation

Compute Accuracy, Sensitivity, Specificity, F1, MCC, AUC and plot confusion matrix on the test split.

13.Real-Time Inference

Slide window over live streams — Steps 4-8 — emit activity label + confidence and log events.

Real-Time Implementation using YTGC-HAR Model

The real-time deployment of YTGC-HAR is designed as
a low-latency edge-to-cloud pipeline that continuously
ingests sensor and video streams, extracts skeletons on-the-
fly, and performs spatio-temporal reasoning for instant
decisions. At the edge, wearable IMUs (accelerometer,
gyroscope, magnetometer) and a camera stream event
into a lightweight ingest and buffering layer that forms
sliding windows (eg.2-4s) while timestamp-synchronizing
modalities. A compact preprocessing block executes

Butterworth filtering, z-score normalization, and frame
extraction; these operations are vectorized to keep CPU
usage minimal.

The Video frames are forwarded to YOLOv8-Pose,
running on GPU (or an NPU on embedded boards
such as Jetson/Coral), to produce joint key-points with
confidences. A short temporal smoother (e.g., exponential
moving average) stabilizes jitter. The refined key-points
are converted into a skeleton graph (nodes=joints,
edges=bones). In parallel, IMU features (magnitudes, tilt-
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Figure 6: Real-Time YTGC-HAR Working Model

compensated angles, short-term velocities) are aligned to
the same window; if vision drops due to occlusion, the IMU
branch sustains predictions. The fused sequence enters
the GCN+TCN core, where GCN layers aggregate spatial
relations across joints, while dilated TCN layers capture
multi-scale motion dynamics. Output embeddings feed a
fully connected head with SoftMax to yield the activity label
and calibrated confidence. An Adaptive Genetic Algorithm
(AGA) periodically tunes learning rate, dilation factors, and
dropout based on rolling validation metrics from a shadow
buffer, keeping the model responsive to environment drift
without interrupting service.

Latency is budgeted per stage (ingest
<Sms, preprocessing <8ms, YOLOv8-Pose
15-25ms @416 —-640 px,GCN +TCN < 5Sms,head < 1ms),
achieving >25;  on mid-range GPUs and real-time
operation on edge accelerators. Events, predictions,
and confidences are logged to a monitoring service for
dashboards and alerts (e.g., fall detection). This architecture
supports healthcare wards, rehabilitation labs, and smart-
home monitoring, delivering reliable, interpretable activity
labels with graceful degradation during occlusions. Figure
6 shows the clear architecture of YTGC-HAR model with
multiple layers.

Performance Evaluation Metrics

The performance of the YTGC-HAR model is evaluated
using a comprehensive set of quantitative metrics that

measure accuracy, precision, recall (sensitivity), specificity,
F1-score, and the Matthews Correlation Coefficient (MCC).
These metrics collectively assess the model’s classification
capability across multiple activity categories in both the
MHealth and WISDM datasets. The evaluation process
is conducted after model convergence during training,
where the optimal results are typically achieved around
the 30th iteration out of 40 total epochs, with a batch size
of 32. The model maintains stable performance, achieving
over 97% accuracy, with an average evaluation time of
approximately 0.08 seconds per batch, corresponding to
a processing rate of 25-30 frames per second, suitable for
real-time deployment. PyTorch serves as the primary deep
learning framework, handling model training, validation,
and inference through GPU acceleration, tensor operations,
and automatic differentiation. It processes both sensor (IMU)
and skeletal keypoint data to generate predictions. MATLAB,
on the other hand, is utilized for initial data pre-processing
filtering, normalization, segmentation and for visualization
of results, such as plotting the confusion matrix and
performance curves. This hybrid setup leverages MATLAB's
signal processing strengths and PyTorch'’s scalable neural
computation to deliver a fully integrated performance
evaluation environment.

Accuracy= (TPR i TNR) x100 ( 15)
(TPR+TNR+ FPR+FNR)
TPR
Sensitivity =—————x100 16
ensitivity (TPR N FNR) X (16)
0
AUC= |TPR(FPR)d (FPR) (17)
1
% ] %
FlScore _ 2 (Preczswn Recall ) (18)
(Precision+ Recall)
Precision = 1P (19)
TP+ FP
T
MCC = x100 (20)
JLXT T, T,
Accuracy

Quantifies the YTGC-HAR model’s ability to correctly
recognize activities such as walking, sitting, or climbing from
both sensor and skeletal inputs under real-time conditions.

Sensitivity
It evaluates how consistently the system identifies all

instances of a specific activity, crucial for continuous
healthcare monitoring without missing key movements.

F1-Score

Highlights the balance achieved by the hybrid GCN-TCN
architecture between precise detection and comprehensive
activity coverage.
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mMcc

MCC provides a holistic reliability score showing that
the model performs uniformly well across balanced and
imbalanced activity classes.

AUC

AUC demonstrates the model’s discriminative strength
across all thresholds, confirming its stable decision boundary
for real-time HAR scenarios.

Precision

Precision reflects how effectively the model avoids false
detections, ensuring that every predicted activity truly
corresponds to the intended human motion pattern.

Results and Discussions
This section presents the experimental results and
comparative analysis of the proposed YTGC-HAR framework
against several contemporary state-of-the-art Human
Activity Recognition (HAR) models. The performance
evaluation focuses on accuracy, sensitivity, specificity,
F1-score, MCC, and AUC metrics using the MHealth
and WISDM datasets. The YTGC-HAR model integrates
spatial-temporal learning through the combination of
YOLOvV8-Pose, GCN and TCN optimized using the AGA for
hyperparameter tuning. For benchmarking, four existing
deep learning models were used as comparative baselines.
Table 3 gives the parameters and values for experimental
settings in PyTorch and MATLAB execution.
« HLA [3]: A Hybrid Learning Algorithm combining CNN
and RNN layers for wearable sensor HAR, demonstrating

good temporal feature capture but lacking spatial body
structure modeling.

« SMO-DNN [16]: Spider Monkey Optimization-based Deep
Neural Network, achieving improved convergence yet
suffering from high computational cost and overfitting.

«  AMC-CNN [29]: Augmented Multichannel CNN designed
for multi-sensor fusion, effective in signal diversity
handling but weak in long-sequence dependency
learning.

«  YOLOv8-VIiTHAR [30]: A recent hybrid vision transformer
modelintegrating YOLOv8 for pose extraction; strong in
global visual attention but limited in temporal sequence
understanding.

Accuracy

The proposed new YTGC-HAR model achieved an impressive
97.6% accuracy, demonstrating its ability to consistently
recognize multiple human activities across varying
subjects and environments which is shown in Table 4. This
high accuracy stems from the fusion of YOLOv8-based
skeleton extraction with GCN-TCN integration, enabling
precise spatio-temporal learning. The Adaptive Genetic
Algorithm (AGA) ensured optimal convergence, minimizing
classification errors during both sensor and video-based
recognition. Compared to existing baselines like SMO-DNN
(82.6%) and YOLOV8-ViT HAR (95.4%), the proposed model
maintained superior consistency across cross-validation
folds, indicating strong generalization. The combination of
skeleton and sensor modalities provided comprehensive
spatial alignment and temporal continuity.

Table 3: Experimental Settings

Parameter Value / Settings

Description

Programming Environment  Python 3.10 and MATLAB R2023b

Simulation Tools Used

Development and experimentation environment used for
model implementation.

Frameworks

Processor

GPU
Learning Rate

Epochs

Optimizer

Dataset Used
Sampling Rate
Window Size
Activation Function

Loss Function

PyTorch, MATLAB Signal Processing Toolbox

YOLOVS, Graph Convolutional Network (GCN),
Temporal Convolutional Network (TCN)

Intel i9 13th Gen
NVIDIA RTX 4090 (24 GB VRAM)

0.001 (Adaptive with AGA)

40

Adam Optimizer with AGA fine-tuning
MHealth and WISDM Datasets

50 Hz

2-4 seconds sliding window

RelLU

Categorical Cross Entropy

Primary tools for data processing, training, and evaluation.

Hybrid deep learning architecture components used in
model development.

CPU configuration for training computation.
GPU used for model acceleration and skeleton extraction.

Initial learning rate dynamically optimized via Adaptive
Genetic Algorithm.

Total number of training iterations before convergence.
Optimization algorithm used with adaptive tuning.
Datasets used for evaluating model performance.
Sampling frequency of sensor signals in MHealth dataset.
Length of segmented data for time-series analysis.
Non-linear activation function used in GCN and TCN layers.

Objective function to minimize during model training.
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Table 4: Accuracy Analysis

Metrics / Models HLA[3] SMO-DNN [16] AMC-CNN [29] YOLOVS8-VIT [30] YGTC-HAR
Accuracy (IT-1) 78.6 74.5 76.1 92.8 95.6
Accuracy (IT-N) 83.2 82.6 84.7 95.4 97.6

Sensitivity and Specificity

An outstanding model reliability with a sensitivity of 98.4%
and specificity of 97.8%, proving its capability to accurately
detect true activities while minimizing false detections is
portrayed in Table 5. High sensitivity ensures that genuine
actions such as walking, sitting, or climbing are consistently
recognized without omission, which is particularly vital
in healthcare and rehabilitation monitoring. The TCN
component captures subtle motion transitions and temporal
continuity, preventing missed detections of short-duration
activities. Conversely, high specificity confirms that the
model effectively filters irrelevant background movements
and avoids misclassification between similar actions. The
GCN contributes by learning inter-joint dependencies,
allowing precise spatial differentiation even under motion
overlap. Furthermore, adaptive fine-tuning using the
AGA dynamically balances false positives and negatives,
optimizing the model’s discriminative behavior. Compared
to SMO-DNN and YOLOvS8-ViT HAR, YTGC-HAR achieves a
stronger equilibrium between true detection accuracy and
noise rejection, ensuring dependable and interpretable
recognition in real-world, real-time environments.

F1-Score

An outperformed F1-score of 97.2%, balancing the precision
and recall effectively across all activity classes. This strong
result highlights the framework’s ability to maintain both
high detection accuracy and low false-positive rates. The
synergy between YOLOv8-Pose and the GCN-TCN hybrid
ensures reliable recognition even for complex transitions
such as walking-to-running or sitting-to-standing. The
adaptive optimization enhanced the model’s balance
between learning speed and feature sensitivity. Compared
to HLA (72.4%) and AMC-CNN (78.8%), YTGC-HAR exhibited
a superior equilibrium between correct detection and

minimal error rates, making it ideal for real-time continuous
activity monitoring. Table 6 shows the promising results of
F1-score analysis.

AUC

An AUC value of 0.96 validates the discriminative capability
of the YTGC-HAR model in distinguishing between
different activity classes across varying thresholds. The
ROC curve demonstrated a smooth, high true-positive rate
with minimal false alarms. The combination of YOLOvS8's
precise joint localization and GCN-TCN's hierarchical
learning significantly enhanced classification boundaries.
The adaptive hyperparameter optimization through AGA
improved decision surface smoothness, yielding stable
performance during both training and inference. Compared
to AMC-CNN (0.78) and YOLOvVS8-ViT HAR (0.92), YTGC-HAR
demonstrated greater resilience to noise and overlapping
patterns, ensuring reliable recognition under real-time,
multi-user, and dynamic healthcare scenarios. Table 7 shows
the clear trade-off between TPR and FPR.

Matthews Correlation Coefficient - MCC

MCC of 96.4% confirms the overall robustness and reliability
of YTGC-HAR across both balanced and imbalanced activity
distributions is shown in Table 8. MCC evaluates the
correlation between predicted and actual activity labels,
and this high score demonstrates strong generalization and
stability. The joint optimization of feature fusion, adjacency
modeling, and temporal convolution ensured minimal
misclassification. Unlike SMO-DNN, which exhibited variance
under skewed class data, YTGC-HAR maintained balanced
predictive power for frequent and rare activities alike. This
metric underscores the strength of the GCN-TCN architecture
in learning meaningful spatio-temporal embeddings that
perform consistently across all test conditions.

Table 5: Sensitivity & Specificity Analysis

Metrics / Models HLA[3] SMO-DNN [16] AMC-CNN [29] YOLOVS-VIT [30] YGTC-HAR
Sensitivity 724 76.8 82.4 934 98.4
Specificity 73.6 74.6 80.2 96.6 97.8

Table 6: F1-Score Analysis
Metrics / Models HLA[3] SMO-DNN [16] AMC-CNN [29] YOLOVS8-VIT [30] YGTC-HAR
F1-Score (IT-1) 74.2 78.4 84.6 91.8 95.4
F1-Score (IT-N) 724 76.6 78.8 94.6 97.2
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Table 7: AUC-ROC Analysis

Metrics / Models HLA[3] SMO-DNN [16] AMC-CNN [29] YOLOVS-VIT [30] YGTC-HAR
TPR 0.60 0.68 0.74 0.92 0.96
FPR 0.64 0.72 0.78 0.92 0.97
Table 8: MCC Analysis
Metrics / Models HLA [3] SMO-DNN [16] AMC-CNN [29] YOLOV8-VIT [30] YGTC-HAR
MCC (IT-1) 68.4 74.6 80.8 91.6 96.2
MCC (IT-N) 70.2 76.4 82.8 93.2 96.4
Comparative Analysis
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Figure 7: AUC-ROC Curve
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Conclusion

The suggested deep learning-based YTGC-HAR framework
provides an advanced and efficient approach for real-time
human activity recognition by integrating novel methods
like YOLOv8-based skeleton extraction, GCN for spatial
learning, and TCN for temporal motion understanding. By
combining these components with adaptive optimization
using AGA, the model effectively captures fine-tuned
spatial dependencies and dynamic motion transitions
in complex activities. MHealth and WISDM datasets are
utilized for training, testing and validation and ensure that
the framework is robust across both wearable sensor and
smartphone-based environments. Experimental results
demonstrate that YTGC-HAR achieves promising results
with 97.6% accuracy, 98.4% sensitivity, 97.8% specificity,
and an AUC of 0.96, outperforming conventional HLA
[3], SMO-DNN [16], AMC-CNN [29], and YOLOv8-ViT HAR
[30] architectures. The model’s capability to generalize
across diverse subjects and activity patterns validates its
suitability for healthcare monitoring, rehabilitation tracking,
and intelligent surveillance applications. Additionally, the
real-time performance and reduced false recognition rate
establish its potential for deployment in edge-based and loT-
enabled systems. Overall, the YTGCG-HAR model represents a
substantial advancement in skeleton-based motion analysis,
providing a precise, interpretable, and scalable solution
for HAR in real-world healthcare and behavioral analytics
contexts.

Limitations

Although the model achieves high accuracy, it requires
substantial computational resources for real-time video
and skeleton processing. Performance may degrade under
severe occlusions or low-light conditions. Future work
should focus on lightweight model compression, cross-
dataset adaptation, and integration with multi-modal data
for broader real-world deployment.
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