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ABSTRACT

In this paper we have considered a special (y, f) — metric (1.2) and find some important tensors.
We have also considered the hypersurface given by the equation 5(x) = constant with the special

(y, p) — metric (1.2).
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INTRODUCTION

In 1979 Matsumoto.M., [1] introduced the concept of
cubic metric given by

L(x,y)={ay (x)y"yfyk}”3 (1.1)

where a_, (x) are the components of symmetric tensor
field of (0, 3§ type which depends on the position x alone.
In 2011 Pandey. T. N. and Chaubey. V.K.[9], introduced
the concept of (y, f) — metric

L=L(y p)

where v is a cubic metric and = b.)" is a one form metric.
We have also some research papers on (y, f)— metric
[2,7,9,10,11,12], whose studies have definitely contributed
to the growth of Finsler geometry. In this paper we have
introduced a special (y, f)— metric given by

L= C173 +3C2}/2,B+3C37/ﬂ2 +C4ﬂ3 (1.2)

By taking this metric, we have calculated basic tensors
suchasl;, h;, g, g” and some important theorems.

In 1995, Matsumoto. M., [6], had discussed the
properties of a special hypersurface of Rander’s spaces
with b, ( xz = (0,b) being the gradient of a scalar function
b(x). He had considered a hypersurface given by the
equation b(x) = constant.

In this paper we have also used the hypersurface given
by the equation b(x) = constant, of the Finsler space with a
special (y, ) — metric given by the equation (1.2).

2. The Finsler space with metric (1.2)

Let F" = ( M", L) be an n —dimensional Finsler space

with (y, f) — metric given by the equation (1.2), where

P 1/
y ={ay (x) 'y}
B=h (x)yi is a 1 — form in M". The derivatives of L
(y,p) with respect to y and B are given by

3. . . .
is a Cubic metric in M" and

L =L*(Cy’ +2C,y8+C,f) @1
Ly=L*(C,y* +2CyB+C,B*) (2.2)
L, =207 (Cy+C,B-LLY) (2.3)
Ly, =2L7 (Cyy+C,B-LLB) (2.4)
L,=2L"(Cy+CS—LL,Ly) (2.5)
Where
Lo Lo
9y op
oL oL
L, = — Ly = —
oy op

The normalized element of support /, =0 L is given
by
L}/
li =—a, + Lﬁ’bi

/4

The angular metric tensor hij = Lété ,L, is obtained

(2.6)

as

h;,=P,a,+FRbb,+P, (al.bj +ajbl.)+R4aiaj 2.7)
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Where R, = LL,, = 2L (C37 +C,p —LLzﬁ) The fundamental tensor & =7, +11; is given by
7 g;=Pa,+qbb,+q, (al.bj +ab, ) +q,aa; (2.8)
Pi==3 =2y7°L' (Cy* +2C,B+C,B°) It

LL
P,=—2=2y"L"(Cy+C,f—LL L)

2

gy =B+ Lf=2L" (csy ' cw—%ufﬂj

LL, _ ., 1
4, =Py +=L =2y L Cy+ G- LL L,

2

P —L(L —2ij——2y5Ll(c yB+C,B +yLL) 2
4= = 2 3 5
Uy oqu=P, +7—47=—7 L(2C,7B+2C. 5 +yLL)
In equation (2.7) the subscripts of coefficients P, 2.9
P, P, anq P, are used to indicate respective degrees of We know that ghjg” _5
homogeneity. vy

The reciprocal tensor g'j of & is given by

gij za_ij_ d(qu T =494 T—l)aiaj _d(qu () ”)bibj _ d(qoﬂ-*l 92" )aibj — d(q4‘ 79 ﬂ-) a’b’
RI Rl Rl Rl Rl
Where P +q.,y’ +q,B=r, a,7 +q,B=1
q9.,8+q, b’ =7y P—1+Q-zﬁ+%b2 =7,

1

d=————

T, —7T,

.. lj v . ' . . L. f . .
g’ :;——Sob’bf -5, (a’bf +a’b’)—SZa’a] (2.10)
1
Where

1

d =
{%q41 _(qu)z}(ﬂz _b27/3)_R1(R1 +2q, ﬂ+q0b2 +q74;/3)

S' — d(quf_qo 72'): d[{(Q—z)z_QOq—4}73_q0P_1J
0 Rl Rl

S = d(qoﬂll 4,7 ) _ d(6]41 T—q_, 72') _ d[{‘]o‘]—4 _(q_z )z}ﬂ—P_lq_zJ




On a Special (y, ) - Metric and its Hypersurfaces

Theorem (2.1) The angular metric tensor 4, the
fundamental tensor g; and its reciprocal tensor g7 of (y,
f)—metric are given by equations (2.7), (2.8) and (2.10)
respectively.

3. The Hypersurfaces F™"(c)
In this section, we have taken the special (y,) — metric
with a gradient b, ( x) =0,b for a scalar function b(x) and

a hypersurface F"! (c) which is given by the equation
b(x) = c (constant).
Since the parametric equation of F"! (c) is
x=x (u“), hence
(@/0u™)b(x(u))=0=b,(x)X, where b(x) are
covariant components of a normal vector field of F"~! (c)
Therefore, along the F"™! (c) , we have
b, X; =0 b, y' =0

In general, the induced metric

L(u,V) =C {aaﬁy (”)vavﬂvy}

3.1)

and

(3.2)
where
i viyk
Qopy (u) = (X(u))XaX;,X},
X = ox’'
ou”
By using equation (3.1) and (2.10), we have
y 1 .
i 2 2
g]bibj =b (P——Sob J

where
b* :aijbibj

Hence, we get

b =b | BN,
VP,

Hence from (2.10) and (3.3) we have

(3.3)

e
b i ll’# 4

——szé
P, P,

(3.4)

Theorem (3.1). Let F" be a Finsler space with (y,5) —
metric (1.2), b,(x) = 0b(x) and F! (c) be a hypersurface
of F" given by b(x) = c (constant). If b, is a non- zero field,

then the induced metric of F"' (c) is given by (3.2) and
relations ( 3.3) and (3.4 ) hold.
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