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A Framework for Environment Thermal Comfort

Prediction Model

Josephine Theresa S*

Abstract

In recent years, the integration of Internet of Things (IoT) technologies across diverse domains has accelerated efforts toward real-time
environmental monitoring. Ensuring a responsive and adaptive ecosystem is essential for maintaining optimal living and working
conditions. loT-enabled sensors autonomously gather and transmit environmental data, facilitating the classification and analysis of
ambient conditions. The pervasive role of |oT lies in its ability to seamlessly interconnect devices and enable dynamic data exchange
across systems. This study investigates the evaluation of thermal comfort levels through advanced classification techniques. A machine
learning framework is employed to train and validate predictive models using a comprehensive benchmark dataset comprising 100,000
samples, each reflecting key environmental attributes. The proposed approach enhances both the reliability and precision of predictive
algorithms. Experimental findings demonstrate that the thermal comfort prediction system offers robust support for intelligent

automation in smart learning environments.
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Introduction

The rapid advancement of Internet of Things (loT)
technologies has transformed environmental monitoring
across various sectors, enabling real-time data acquisition
and intelligent decision-making. In particular, the integration
of l1oT with machine learning has proven instrumental
in optimizing indoor thermal comfort, a critical factor
for occupant well-being and energy efficiency. Recent
frameworks such as BIM-loT (Building Information
Modeling-loT) have demonstrated the potential of digital
twins and sensor networks to dynamically assess and
regulate thermal conditions in smart buildings (Igbal &
Mirzabeigi, 2025).
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Thermal comfort prediction models have evolved to
incorporate diverse environmental parameters, including
temperature, humidity, air velocity, and occupancy patterns.
These models leverage large-scale datasets to train
classification algorithms capable of identifying comfort
levels under varying conditions. For instance, summertime
comfort prediction in residential structures has been
enhanced using DesignBuilder-integrated machine learning
techniques, which adapt to both current and forecasted
weather scenarios (Zhang et al., 2024). Such approaches
underscore the importance of context-aware learning
systems in achieving personalized comfort.

Moreover, occupant-centric models that combine
self-reported comfort data with interpretable machine
learning have addressed limitations in traditional thermal
comfort indices. These models offer greater transparency
and adaptability, allowing for individualized comfort
assessments that reflect real-world variability (Chen & Lj,
2025). The fusion of subjective feedback with sensor-driven
analytics represents a significant shift toward human-centric
smart environments.

This study builds upon these advancements by proposing
arobust classification-based framework for thermal comfort
assessment using a benchmark dataset comprising 100,000
samples. The model not only improves prediction accuracy
but also enhances algorithmic stability, making it suitable for
deployment in smart learning environments. Experimental
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results validate the model’s effectiveness in supporting
automated comfort regulation, contributing to the broader
goal of intelligent environmental control.

Recent advancements in thermal comfort prediction
have leveraged a variety of machine learning and loT-based
frameworks. Chen and Li (2025) introduced an interpretable
model combining self-reported comfort data with machine
learning, enhancing personalization but facing challenges
in generalizability across diverse populations. Igbal and
Mirzabeigi (2025) proposed a BIM-IoT digital twin framework
for real-time comfort optimization, though its complexity
limits deployment in smaller infrastructures. Zhang et al.
(2024) developed a machine learning-based prediction
model for building environments, yet their approach lacked
adaptability to occupant-specific preferences. Ahmed
and Rahimi (2025) utilized SVM and Random Forest for
indoor comfort classification, achieving high accuracy but
struggling with real-time responsiveness. Similarly, Singh
and Ramesh (2024) applied multivariate regression with loT
sensors, but their linear modeling approach failed to capture
nonlinear thermal dynamics.

Deep learning and hybrid models have also gained
traction. Le et al. (2025) optimized a CNN-M-LSTM model
using Bayesian techniques for both comfort prediction
and load forecasting, though the model required extensive
training data and computational power. Huang et al. (2024)
proposed an EMD-LSTM-Markov hybrid for cooling load
forecasting, which improved temporal accuracy but was
sensitive to noise in sensor data. Chillén Geck et al. (2024)
focused on low-cost, personalized thermal monitoring using
loT, offering affordability but limited scalability. Feng et al.
(2025) introduced an Al-powered blockchain framework for
predictive temperature control, enhancing data integrity
but introducing latency due to consensus mechanisms.
Jeoung etal. (2022) also explored blockchain-loT integration
for personalized control, though their system lacked
adaptability to dynamic occupancy patterns.

Reinforcement learning and edge computing
approaches have further expanded the field. Kannari
et al. (2025) applied reinforcement learning for HVAC
optimization in real buildings, identifying implementation
hurdles such as convergence delays and sensor calibration.
Christopoulos et al. (2024) proposed a deep reinforcement
learning model for smart homes using loT-edge systems,
which improved responsiveness but was constrained by
edge device limitations. Fan et al. (2024) developed a data-
driven framework incorporating user interaction, enhancing
engagement but requiring frequent user input. Ghahramani
et al. (2018) explored unsupervised learning with infrared
thermography, offering novel insights but lacking real-time
applicability. Kim and Kwon (2024) combined supervised
and unsupervised learning for adaptive air conditioning
scheduling, yet their model’s performance degraded

under highly dynamic environmental conditions. Among
the foundational resources for thermal comfort modeling,
the dataset curated by Miller (2022) on Kaggle has played
a pivotal role in benchmarking predictive frameworks.
This dataset, derived from ASHRAE field studies, includes
over 100,000 samples covering diverse environmental and
physiological parameters such as air temperature, humidity,
clothing insulation (Clo), metabolic rate (Met), PMV, and
PPD. Its richness and granularity enable robust training
and validation of machine learning models, particularly in
occupant-centric comfort prediction. The proposed TCLA
model leverages this dataset to ensure generalizability
across seasons, building types, and user preferences, making
it a reliable foundation for scalable smart environment
applications.

While these studies collectively advance thermal
comfort prediction, they exhibit common limitations:
high computational demands, limited personalization,
sensitivity to environmental noise, and challenges in real-
time deployment. The proposed framework addresses
these gaps by integrating a lightweight, classification-
based model trained on a large-scale benchmark dataset
of 100,000 samples. It emphasizes algorithmic stability,
adaptability to occupant variability, and suitability for smart
learning environments. By combining robust preprocessing,
optimized feature selection, and scalable architecture,
the framework aims to deliver accurate, real-time thermal
comfort predictions with minimal overhead—bridging
the gap between theoretical innovation and practical
implementation.

Methodology
Figure-1 illustrates the workflow of the proposed Thermal
Comfort Level Assessment (TCLA) algorithm. Machine
learning is used to build a mathematical model based on
training data (learning) that predict results for new data
(Prediction) and adapt the model based on new conditions..
In the proposed work the class attribute is thermal comfort
and the classifier is represented to predict the thermal
comfort based on the classification rules framed. Test data
is used to predict the accuracy of the rules framed. If the
value is considered acceptable then the rules framed to the
classification of future data records. . Independent features
are compared for making the prediction of thermal comfort
using temperature and humidity of the environment.

Maximum number of features that are examined for the
splitting for each node is computed in the proposed research
work. Max feature size regularization parameter is used to
restrict the over fitting in tree generation in the proposed
thermal comfort prediction model.

Data Preprocessing is carried out to eliminate the string
values and retain the categorical values for processing the
data. Eliminate the column values which hold null values.
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Figure 1: Proposed Block Diagram of Thermal Comfort Assessment

Removed null values are replaced with average values and
data cleaning is handled with removing not available values.
Data is encoded after data cleaning.

Thermal comfort model is created with encoded data.
Training data 80% and Test data with 20% of data for training
the data for the proposed model.

Thiswork uses bagging ensemble. Bootstrap aggregation
or bagging is a type of ensemble meta-algorithm designed
to improve the stability and accuracy of machine learning
algorithms. It also reduces variance and helps to avoid over
fitting. Multiple data subsets are created for the bagging
process. This work uses Decision Tree as the base learner.

The base learner is fit on the given data subsets. The
samples are independent and identically distributed.

Assuming that we have n bootstrap
samples, each of size p

sample, = {sll,sé,. . .s;}

sample, = {Sl”,s;,. . .s;}

we can fit nbase learners to each of these samples
L= DT(Samplel)

L =DT (samplen)

Acronyms used in Algorithm

X is a dataset

x_train is a predicted variables

x_test is a predicted values

y_train is a resposne variable

y_test is a response values

Algorthm-1 Thermal Comfort Level Assessment (TCLA)
Initialize the base class libraries

Initialize the dataset

[s={x_iy_i}]_(1=1)Am

Input Parameters:x,x_train,x_test, y_train, y_test
Output Parameters: CM, ACC, RC, PRE
Call Data Preprocessing (del_x_rws, del_xobj_data, del_
xuni,sel_x_rws)
Forilton

del_x_rows=NULL

del_xobj_data="OBJECT’
del_xuni=del_x_columns('UNIQUE)
end
sel_x_rows=3(!del_x_rows+del_xobj_data+!del_xuni)
Encode(fil_x_col)

(fil_x_col)" = ZLO(sel_ x_rows)x'a""

Train_x[fil_x-col]=Encode[fil_x_col] as typelint]
#Split the dataset for training and testing
Test_x=x(frac=0.2)
# In the concept of random forest we need two variables
x and y where x is predicted variable and y is a response
variable
Train_x=—(TC,x =1).values
Test_x=Train(X[TC]l.values])
Train_y=—(TC,x =1).values
Test_y=Train(Z[TC].values])
Fori:lton
RF=3(DT(Train_x)+BAG(Train_x)+FBAG(Train_)+AGG
(Train_x)
End
rf.fit(X_train, y_train)
pred=rf.predict(X_test)
Compute CM(Test_y,pred)
Compute ACC(Test_y,pred)
Compute RC(Test_y,pred,avg="w’)
Compute PRE(Test_y,pred,avg='w’)
Return CM

Algorithm-1 explains the base class libraries are included
in the program. It is followed by importing the bench mark
dataset collected from (Miller and Ton,2022) which consists
of 1 lakh values for the thermal comfort assessment with
various parameters. Machine Learning process is started
to clean the data followed by training and testing the data.
Random forest bagging technique is used to obtain the
predicted data results. The performance of the classification
technique is tested using the confusion matrix metrics.
Table 1 show the parameters and description of the
parameters used for the proposed work.
Acronyms used in Table-2
E-Existing
P-Proposed
DC-Discomfort
NDC-NO Discomfort
MDC-Moderate Discomfort
SDC-Strong Discomfort
VSDC- Very Strong Discomfort
VVSDC - Very Very Strong Discomfort
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Table 1: Parameters used for predicting the Thermal Comfort.

Parameters Description
Season Spring, Summer, Autumn, Winter
Building type Classroom, Multifamily housing, Office, Senior Center, Others

Cooling startegy_building level

Sex

Thermal preference
Air movement preference
Year

Thermal sensation
Thermal sensation acceptability
PMV

PPD

SET

Clo

Met

Air temperature (iC)
Air temperature (iF)
Ta_h (iC)

Ta_h (iF)

Tg_h (iQ)

Tg_h (iF)

Relative humidity (%)
Air velocity (m/s)

Air velocity (fpm)
Velocity_h (m/s)
Velocity_h (fpm)

Outdoor monthly air temperature (iC)

Outdoor monthly air temperature (iF)

Air Conditioned = can be air, radiant, etc. and no operable windows. Naturally Ventilated = no
mechanical. cooling, but with operable windows. Mixed Mode = mechanical

Male, Female, Undefined

cooler, no changes, warmer

less, no change, more

Year when the field study was conducted

ASHRAE thermal sensation vote, from -3 (cold) to +3 (hot)

0 = unacceptable, 1 = acceptable

Predicted Mean Vote

Predicted Percentage of Dissatisfied

Standard Effective Temperature in Celsius degree

Intrinsic clothing ensemble insulation of the subject (clo)
Average metabolic rate of the subject (Met)

Air temperature measured in the occupied zone in Celsius degree
Air temperature measured in the occupied zone in Fahrenheit degree
Air temperature at 1.1 m above the floor in Celsius degree

Air temperature at 1.1 m above the floor in Fahrenheit degree
Globe temperature at 1.1 m above the floor in Celsius degree
Globe temperature at 1.1 m above the floor in Fahrenheit degree
Relative humidity (%)

Air speed in meter per second

Air speed in feet per minute

Air speed at 1.1 m above the floor in meter per second

Air speed at 1.1 m above the floor in feet per minute

Outdoor monthly average temperature when the field study was done in Celsius degree

Outdoor monthly average temperature when the field study was done in Fahrenheit degree

Implementation

Experimental Setup

depicts the match between the actual and predicted class. It
also show the difference between the actual and predicted
class. Itis used to check the performance per class. It also

Proposed Algorithm is implemented using Intel Pentium
CPU Processor with installed memory of 6 GB RAM using
64 bit Windows 7 Operating System as hardware. Python
software is used for assessment of this proposed approach.

Results and Discussion

Confusion Matrix

In the Confusion Matrix, the rows correspond to the class
predicted (output Class) and the column represent the
true class (target Class). Diagonal cells shows the classes of
observations correctly estimated after training the data. It

helps to identify the poor performance of the classifier. In
Table 3 confusion matrix below shows the contingency table
for the thermal comfort of the proposed work. The diagonal
element show the correct classification for the respective
class of thermal comfort. Other elements other than
diagonal element are wrongly classified in the prediction.
From this the performance accuracy of the prediction can
be evaluated.

In the proposed thermal comfort prediction model the
thermal comfort is measured on 6 point scale From 1 (very
uncomfortable) to 6 (very comfortable) using Decision Tree
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Table 2: Measurement of comfort Level

Measurement of Existing and Proposed Comfort Level

<20 >=20 &<=29 >=30 &<35 >=35 &<40 >=40 >50
Sensor
E P E P E E P E P E P
Temperature - DC - NDC DC MDC - SDC - VSDC - VVSDC
Humidity - DC - NDC - MDC - SDC - VSDC DC VVSDC
Classifier. Thus the above confusion matrix in table 1 shows Table 3: Confusion Matrix Actual
the predicted and actual value of the thermal comfort. In Actual
the table above first row and first column value 68 indicates 5 ] 5 3 4 s 6
the predicted value of the thermal comfort scale 1 and
actual value of the thermal comfort scale 1 is 69. Number R ! 68 ! 0 ! 2 0
of correctly classified instance is the sum of the diagonals in E 2 1 160 2 5 1 1
the confusion matrix all the others are incorrectly classified. D 3 0 0 350 7 12 4
Based on the above confusion matrix values the accuracy
of the model is 95%. Thus out of 100 records 95 records are ! 4 0 2 7 762 63 3
correctly predicted by the proposed model. C 5 0 0 2 22 1311 23
T 6 0 0 2 3 26 820

Performance Evaluation Metrics:

Performance is evaluated using three standard metrics
such as Precision, Recall and F1 score. These performance
evaluation parameters are defined below.

Precision
Precision is a proportion of the samples which truly have
the class X among all those which were classified as class X
divided by the sum over the relevant column

True Positive

Precision = — — m
True Positive + False Positive

In the above Table 4 Precision is calculated using true
positive divided by true positive plus false positive. Here
68 from confusion matrix table in column 1 first row is true
positive divided by 68 true positive in column 1 first row
plus 1in second row is false positive ie 68/(68+1) = 0.985507
ie 0.99.Thus precision for all the class is computed as given
in equation 1.

Figure-2 below show the class based analysis for
precision measure of performance metrics for the proposed
model. It range between 0 to 0.99 for class 1 and between
0.93 to 0.98 for other class.

Recall

Recall is measurement is True Positive divided by true
positive plus false negative.

True Positi
Recall = rue Positive 2)

True Positive + False Negative

In the above Table 5 Recall is computed using True Positive
divided by True Positive plus False Negative. Here 68 from
confusion matrix table in columnin 1 first row is true positive
divided by 68 from column 1 first row plus remaining column
value in first row which is 4 ie 68/(68+1+1+2) = 0.94444 ie

Table 4: Precision Measure

Precision Measure

Precision
1 0.99
0.98
0.96
0.95
0.93
0.96

Comfort Level

a U1 A W N

Class based Analysis: Precision

1
0.9
0.8
0.7

5 0.6
2 05
]

& 0.4
0.3
0.2
0.1

0
1 2 3 4 5 6

Class

Figure 2: Class Based Analysis -Precision

0.94. Thus recall measure for all the class is computed using
the equation 2 defined above.

Figure 3 below shows the recall measure of performance
of the proposed model.lt ranges between 0.91 to 0.97 for
the classes which is shown graphically.

Precision Recall Curve

Table 6 shows the Precision and recall measure performance
of the classifer for the proposed model.
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Table 5: Recall Measure

Table 6: Precision & Recall Measure

Recall Measure Precision & Recall Measure
Comfort Level Recall Recall Precision
1 0.94 1 0
2 0.94 1 0.94 0.99
3 0.94 0 1
4 0.91 2 0.94 0.98
5 0.97 1 0
6 0.96 3 0.94 0.96
1 0.94 0 1
2 0.94 4 0.91 0.95
1 0
Class based Analysis: Recall 5 0.97 0.93
0 1
6 0.96 0.96
1 0

Recall

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1 2 3 4 5 6

Class

Figure 3: Class Based Analysis - Recall

Figure 4 shows the Precision Recall Curve for the proposed
model.

F1 Score

F1 score isacombined measure for precision and recall. Itis
ameasure that takes both false positives and false negatives
into account to strike a balance between precision and recall.

2* Precision® Recall

F1 score =

— (€)
Precision + Recall

From the above Table 7 F1 score is computed using Twice
Precision and Recall value divided by Precision plus Recall.
From the precision table column1 row 1 0.99 and Recall
table column 1 and row 1 0.94 F1 score is computed as
2*0.99%0.94/(0.98+0.94) whichis0.96. Thus F1 score measure
for all the classes is computed using equation 3 defined
above.

These measures described above are used for comparing
the classifiers.

Figure 5 show the class based analysis for F1 score which
is the combined measure of performance metric for the
proposed prediction model. It range between 0.93 to 0.96
for the respective classes which is shown below.

PR Curve

Precision

Recall

Figure 4: Precision-Recall curve

Table 7: F1 Score Measure

F1-Score

Comfort Level F1 Score
1 0.96

2 0.96

3 0.95

4 0.93

5 0.95

6 0.96

Comparison of Thermal Comfort Model Accuracy with
existing work is shown Table 8.

The Proposed Thermal Comfort Level Assessment
(TCLA) Model demonstrates superior performance over
existing approaches due to its strategic integration of
decision tree classifiers with bagging ensemble techniques,
which collectively enhance prediction accuracy and
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Table 8: Comparison of proposed model with other models

Model / Study Accuracy Precision Recall F1 Score
Ahmed & Rahimi (2025) - SVM + RF 92% 0.94 0.91 0.92
Chen & Li (2025) - Interpretable ML 90% 0.91 0.89 0.90
Igbal & Mirzabeigi (2025) - BIM-loT 88% 0.89 0.87 0.88
Zhang et al. (2024) — ML Building Model 85% 0.88 0.85 0.86
Proposed TCLA Model - DT + Bagging 95% 0.96 0.94 0.95
Acknowledgements

Class based Analysis: F1-Score

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
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Figure 5: Class Based Analysis F1-Score

reduce overfitting. Achieving a notable 95% accuracy, the
model outperforms others by maintaining high precision,
recall, and F1 scores across all comfort levels. Unlike deep
learning models that demand extensive computational
resources, TCLA is lightweight and scalable, making it
suitable for deployment in smart classrooms and low-
resource environments. Its design incorporates robust
preprocessing, effective handling of missing and categorical
data, and a comprehensive feature set drawn from over
100,000 samples, including environmental and physiological
parameters such as PMV, SET, Clo, and Met. The model’s
performance is validated through confusion matrix analysis
and class-based metrics, confirming its reliability and
consistency. By balancing algorithmic rigor with practical
feasibility, the TCLA model offers a compelling solution for
real-time thermal comfort prediction in intelligent learning
environments.

Conclusion

The proposed assessment algorithm supports the thermal
comfort level environment as well as living environment.
Even though the comfort level may vary for various
environment, the performance and accuracy of the
classifiers remains the same. Nearly 18 parameters are used
to train and test the data results. One lakh samples are taken
from bench mark data set and machine learning techniques
are applied to predict the result. The experimental results
justifies the performance accuracy of the proposed model
using confusion matrix metrics.

The authors extend their thanks and gratitude to the journal
editors and reviewers for their valuable comments.
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