
Abstract
In recent years, the integration of Internet of Things (IoT) technologies across diverse domains has accelerated efforts toward real-time 
environmental monitoring. Ensuring a responsive and adaptive ecosystem is essential for maintaining optimal living and working 
conditions. IoT-enabled sensors autonomously gather and transmit environmental data, facilitating the classification and analysis of 
ambient conditions. The pervasive role of IoT lies in its ability to seamlessly interconnect devices and enable dynamic data exchange 
across systems. This study investigates the evaluation of thermal comfort levels through advanced classification techniques. A machine 
learning framework is employed to train and validate predictive models using a comprehensive benchmark dataset comprising 100,000 
samples, each reflecting key environmental attributes. The proposed approach enhances both the reliability and precision of predictive 
algorithms. Experimental findings demonstrate that the thermal comfort prediction system offers robust support for intelligent 
automation in smart learning environments.
Keywords: Decision tree, Confusion Matrix, Bagging, Machine Learning, Comfort Level.

A Framework for Environment Thermal Comfort 
Prediction Model
Josephine Theresa S*

RESEARCH ARTICLE

© The Scientific Temper. 2025
Received: 11/11/2025				    Accepted: 12/12/2025		  Published: 25/12/2025

Assistant Professor, Department of Computer Science, St. Joseph’s 
College (A), Affilated to Bharathidasan University, Tiruchirappalli, 
India.
*Corresponding Author: Josephine Theresa S, Assistant Professor, 
Department of Computer Science, St. Joseph’s College (A), 
Affilated to Bharathidasan University, Tiruchirappalli, India, E-Mail: 
josephinetheresa_cs2@mail.sjctni.edu 
How to cite this article: Theresa, J.S. (2025). A Framework for 
Environment Thermal Comfort Prediction Model. The Scientific 
Temper, 16(12):5223-5230.
Doi: 10.58414/SCIENTIFICTEMPER.2025.16.12.10
Source of support: Nil

Conflict of interest: None.

Introduction
The rapid advancement of Internet of Things (IoT) 
technologies has transformed environmental monitoring 
across various sectors, enabling real-time data acquisition 
and intelligent decision-making. In particular, the integration 
of IoT with machine learning has proven instrumental 
in optimizing indoor thermal comfort, a critical factor 
for occupant well-being and energy efficiency. Recent 
frameworks such as BIM-IoT (Building Information 
Modeling–IoT) have demonstrated the potential of digital 
twins and sensor networks to dynamically assess and 
regulate thermal conditions in smart buildings (Iqbal & 
Mirzabeigi, 2025).
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Thermal comfort prediction models have evolved to 
incorporate diverse environmental parameters, including 
temperature, humidity, air velocity, and occupancy patterns. 
These models leverage large-scale datasets to train 
classification algorithms capable of identifying comfort 
levels under varying conditions. For instance, summertime 
comfort prediction in residential structures has been 
enhanced using DesignBuilder-integrated machine learning 
techniques, which adapt to both current and forecasted 
weather scenarios (Zhang et al., 2024). Such approaches 
underscore the importance of context-aware learning 
systems in achieving personalized comfort.

Moreover, occupant-centric models that combine 
self-reported comfort data with interpretable machine 
learning have addressed limitations in traditional thermal 
comfort indices. These models offer greater transparency 
and adaptability, allowing for individualized comfort 
assessments that reflect real-world variability (Chen & Li, 
2025). The fusion of subjective feedback with sensor-driven 
analytics represents a significant shift toward human-centric 
smart environments.

This study builds upon these advancements by proposing 
a robust classification-based framework for thermal comfort 
assessment using a benchmark dataset comprising 100,000 
samples. The model not only improves prediction accuracy 
but also enhances algorithmic stability, making it suitable for 
deployment in smart learning environments. Experimental 
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results validate the model’s effectiveness in supporting 
automated comfort regulation, contributing to the broader 
goal of intelligent environmental control.

Recent advancements in thermal comfort prediction 
have leveraged a variety of machine learning and IoT-based 
frameworks. Chen and Li (2025) introduced an interpretable 
model combining self-reported comfort data with machine 
learning, enhancing personalization but facing challenges 
in generalizability across diverse populations. Iqbal and 
Mirzabeigi (2025) proposed a BIM-IoT digital twin framework 
for real-time comfort optimization, though its complexity 
limits deployment in smaller infrastructures. Zhang et al. 
(2024) developed a machine learning-based prediction 
model for building environments, yet their approach lacked 
adaptability to occupant-specific preferences. Ahmed 
and Rahimi (2025) utilized SVM and Random Forest for 
indoor comfort classification, achieving high accuracy but 
struggling with real-time responsiveness. Similarly, Singh 
and Ramesh (2024) applied multivariate regression with IoT 
sensors, but their linear modeling approach failed to capture 
nonlinear thermal dynamics.

Deep learning and hybrid models have also gained 
traction. Le et al. (2025) optimized a CNN-M-LSTM model 
using Bayesian techniques for both comfort prediction 
and load forecasting, though the model required extensive 
training data and computational power. Huang et al. (2024) 
proposed an EMD-LSTM-Markov hybrid for cooling load 
forecasting, which improved temporal accuracy but was 
sensitive to noise in sensor data. Chillón Geck et al. (2024) 
focused on low-cost, personalized thermal monitoring using 
IoT, offering affordability but limited scalability. Feng et al. 
(2025) introduced an AI-powered blockchain framework for 
predictive temperature control, enhancing data integrity 
but introducing latency due to consensus mechanisms. 
Jeoung et al. (2022) also explored blockchain-IoT integration 
for personalized control, though their system lacked 
adaptability to dynamic occupancy patterns.

Reinforcement learning and edge computing 
approaches have further expanded the field. Kannari 
et al. (2025) applied reinforcement learning for HVAC 
optimization in real buildings, identifying implementation 
hurdles such as convergence delays and sensor calibration. 
Christopoulos et al. (2024) proposed a deep reinforcement 
learning model for smart homes using IoT-edge systems, 
which improved responsiveness but was constrained by 
edge device limitations. Fan et al. (2024) developed a data-
driven framework incorporating user interaction, enhancing 
engagement but requiring frequent user input. Ghahramani 
et al. (2018) explored unsupervised learning with infrared 
thermography, offering novel insights but lacking real-time 
applicability. Kim and Kwon (2024) combined supervised 
and unsupervised learning for adaptive air conditioning 
scheduling, yet their model’s performance degraded 

under highly dynamic environmental conditions. Among 
the foundational resources for thermal comfort modeling, 
the dataset curated by Miller (2022) on Kaggle has played 
a pivotal role in benchmarking predictive frameworks. 
This dataset, derived from ASHRAE field studies, includes 
over 100,000 samples covering diverse environmental and 
physiological parameters such as air temperature, humidity, 
clothing insulation (Clo), metabolic rate (Met), PMV, and 
PPD. Its richness and granularity enable robust training 
and validation of machine learning models, particularly in 
occupant-centric comfort prediction. The proposed TCLA 
model leverages this dataset to ensure generalizability 
across seasons, building types, and user preferences, making 
it a reliable foundation for scalable smart environment 
applications.

While these studies collectively advance thermal 
comfort prediction, they exhibit common limitations: 
high computational demands, limited personalization, 
sensitivity to environmental noise, and challenges in real-
time deployment. The proposed framework addresses 
these gaps by integrating a lightweight, classification-
based model trained on a large-scale benchmark dataset 
of 100,000 samples. It emphasizes algorithmic stability, 
adaptability to occupant variability, and suitability for smart 
learning environments. By combining robust preprocessing, 
optimized feature selection, and scalable architecture, 
the framework aims to deliver accurate, real-time thermal 
comfort predictions with minimal overhead—bridging 
the gap between theoretical innovation and practical 
implementation.

Methodology
Figure-1 illustrates the workflow of the proposed Thermal 
Comfort Level Assessment (TCLA) algorithm. Machine 
learning is used to build a mathematical model based on 
training data (learning) that predict results for new data 
(Prediction) and adapt the model based on new conditions.. 
In the proposed work the class attribute is thermal comfort 
and the classifier is represented to predict the thermal 
comfort based on the classification rules framed. Test data 
is used to predict the accuracy of the rules framed. If the 
value is considered acceptable then the rules framed to the 
classification of future data records. . Independent features 
are compared for making the prediction of thermal comfort 
using temperature and humidity of the environment.

Maximum number of features that are examined for the 
splitting for each node is computed in the proposed research 
work. Max feature size regularization parameter is used to 
restrict the over fitting in tree generation in the proposed 
thermal comfort prediction model.

Data Preprocessing is carried out to eliminate the string 
values and retain the categorical values for processing the 
data. Eliminate the column values which hold null values. 
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Removed null values are replaced with average values and 
data cleaning is handled with removing not available values. 
Data is encoded after data cleaning. 

Thermal comfort model is created with encoded data. 
Training data 80% and Test data with 20% of data for training 
the data for the proposed model.

This work uses bagging ensemble. Bootstrap aggregation 
or bagging is a type of ensemble meta-algorithm designed 
to improve the stability and accuracy of machine learning 
algorithms. It also reduces variance and helps to avoid over 
fitting. Multiple data subsets are created for the bagging 
process. This work uses Decision Tree as the base learner. 

The base learner is fit on the given data subsets. The 
samples are independent and identically distributed.

Assuming that we have n bootstrap 
samples, each of size p

{ }1 1 1
1 1 2, ,= … psample s s s

{ }1 2, ,= …n n n
n psample s s s

we can fit nbase learners to each of these samples

( )1 1=L DT sample

( )=n nL DT sample

Acronyms used in Algorithm
x is a dataset
x_train is a predicted variables
x_test is a predicted values
y_train is a resposne variable
y_test is a response values
Algorthm-1 Thermal Comfort Level Assessment (TCLA)
Initialize the base class libraries
Initialize the dataset
〖s={x_i,y_i}〗_(1=1)^m

Input Parameters:x,x_train,x_test, y_train, y_test
Output Parameters: CM, ACC, RC, PRE
Call Data Preprocessing (del_x_rws, del_xobj_data, del_
xuni,sel_x_rws)
For i:1to n
   del_x_rows=NULL
  del_xobj_data=’OBJECT’
 del_xuni=del_x_columns(‘UNIQUE’)
end
sel_x_rows=∑(!del_x_rows+del_xobj_data+!del_xuni)
Encode(fil_x_col)
	
( ) ( )nn i n i

i 0
fil _ x _ col sel _ x _ rows x a −

=
=∑

Train_x[fil_x-col]=Encode[fil_x_col] as type[int]
#Split the dataset for training and testing
Test_x=x(frac=0.2)
# In the concept of random forest we need two variables 
x and y where x is predicted variable and y is a response 
variable
Train_x=⌐(TC,x =1).values
Test_x=Train(∑[TC].values])
Train_y=⌐(TC,x =1).values
Test_y=Train(∑[TC].values])
For i:1to n
RF=∑(DT(Train_x)+BAG(Train_x)+FBAG(Train_)+AGG 
(Train_x)
End
rf.fit(X_train, y_train)
pred=rf.predict(X_test)
Compute CM(Test_y,pred)
Compute ACC(Test_y,pred)
Compute RC(Test_y,pred,avg=’w’)
Compute PRE(Test_y,pred,avg=’w’)
Return CM

Algorithm-1 explains the base class libraries are included 
in the program. It is followed by importing the bench mark 
dataset collected from (Miller and Ton,2022) which consists 
of 1 lakh values for the thermal comfort assessment with 
various parameters. Machine Learning process is started 
to clean the data followed by training and testing the data. 
Random forest bagging technique is used to obtain the 
predicted data results. The performance of the classification 
technique is tested using the confusion matrix metrics.
Table 1 show the parameters and description of the 
parameters used for the proposed work.
Acronyms used in Table-2
E-Existing
P-Proposed
DC-Discomfort
NDC-NO Discomfort
MDC-Moderate Discomfort
SDC-Strong Discomfort
VSDC- Very Strong Discomfort
VVSDC – Very Very Strong Discomfort

Figure 1: Proposed Block Diagram of Thermal Comfort Assessment
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Table 1: Parameters used for predicting the Thermal Comfort.

Parameters Description

Season Spring, Summer, Autumn, Winter

 Building type Classroom, Multifamily housing, Office, Senior Center, Others

 Cooling startegy_building level Air Conditioned = can be air, radiant, etc. and no operable windows. Naturally Ventilated = no 
mechanical.  cooling, but with operable windows. Mixed Mode = mechanical

 Sex Male, Female, Undefined

 Thermal preference cooler, no changes, warmer

 Air movement preference less, no change, more

 Year Year when the field study was conducted

 Thermal sensation ASHRAE thermal sensation vote, from -3 (cold) to +3 (hot)

 Thermal sensation acceptability 0 = unacceptable, 1 = acceptable

 PMV Predicted Mean Vote

 PPD Predicted Percentage of Dissatisfied

 SET Standard Effective Temperature in Celsius degree

 Clo Intrinsic clothing ensemble insulation of the subject (clo)

 Met Average metabolic rate of the subject (Met)

 Air temperature (íC) Air temperature measured in the occupied zone in Celsius degree

 Air temperature (íF) Air temperature measured in the occupied zone in Fahrenheit degree

 Ta_h (íC) Air temperature at 1.1 m above the floor in Celsius degree

 Ta_h (íF) Air temperature at 1.1 m above the floor in Fahrenheit degree

 Tg_h (íC) Globe temperature at 1.1 m above the floor in Celsius degree

 Tg_h (íF) Globe temperature at 1.1 m above the floor in Fahrenheit degree

 Relative humidity (%) Relative humidity (%)

 Air velocity (m/s) Air speed in meter per second

 Air velocity (fpm) Air speed in feet per minute

 Velocity_h (m/s) Air speed at 1.1 m above the floor in meter per second

 Velocity_h (fpm) Air speed at 1.1 m above the floor in feet per minute

 Outdoor monthly air temperature (íC) Outdoor monthly average temperature when the field study was done in Celsius degree

 Outdoor monthly air temperature (íF) Outdoor monthly average temperature when the field study was done in Fahrenheit degree

Implementation

Experimental Setup
Proposed Algorithm is implemented using Intel Pentium 
CPU Processor with installed memory of 6 GB RAM using 
64 bit Windows 7 Operating System as hardware. Python 
software is used for assessment of this proposed approach.

Results and Discussion

Confusion Matrix
In the Confusion Matrix, the rows correspond to the class 
predicted (output Class) and the column represent the 
true class (target Class). Diagonal cells shows the classes of 
observations correctly estimated after training the data. It 

depicts the match between the actual and predicted class. It 
also show the difference between the actual and predicted 
class.  It is used to check the performance per class. It also 
helps to identify the poor performance of the classifier. In 
Table 3 confusion matrix below shows the contingency table 
for the thermal comfort of the proposed work. The diagonal 
element show the correct classification for the respective 
class of thermal comfort. Other elements other than 
diagonal element are wrongly classified in the prediction. 
From this the performance accuracy of the prediction can 
be evaluated. 

In the proposed thermal comfort prediction model the 
thermal comfort is measured on 6 point scale From 1 (very 
uncomfortable) to 6 (very comfortable) using Decision Tree 



5227	 THE SCIENTIFIC TEMPER, December 2025

Classifier. Thus the above confusion matrix in table 1 shows 
the predicted and actual value of the thermal comfort. In 
the table above first row and first column value 68 indicates 
the predicted value of the thermal comfort scale 1 and 
actual value of the thermal comfort scale 1 is 69. Number 
of correctly classified instance is the sum of the diagonals in 
the confusion matrix all the others are incorrectly classified. 
Based on the above confusion matrix values the accuracy 
of the model is 95%. Thus out of 100 records 95 records are 
correctly predicted  by the proposed model. 

Performance Evaluation Metrics:
Performance is evaluated using three standard metrics 
such as Precision, Recall and F1 score. These performance 
evaluation parameters are defined below. 

Precision
Precision is a proportion of the samples which truly have 
the class X among all those which were classified as class X 
divided by the sum over the relevant column

Precision =                  	 (1) 

In the above Table 4 Precision is calculated using true 
positive divided by true positive plus false positive. Here 
68 from confusion matrix table in column 1 first row is true 
positive divided by 68 true positive in column 1 first row 
plus 1 in second row is false positive ie 68/(68+1) = 0.985507 
ie 0.99.Thus precision for all the class is computed as given 
in equation 1. 

Figure-2 below show the class based analysis for 
precision measure of performance metrics for the proposed 
model. It range between 0 to 0.99 for class 1 and between 
0.93 to 0.98 for other class.

Recall
Recall is measurement is True Positive divided by true 
positive plus false negative.

Recall =  
True Positive

True Positive False Negative+
 		        (2)

In the above Table 5 Recall  is computed using True Positive 
divided by True Positive plus False Negative.  Here 68 from 
confusion matrix table in column in 1 first row is true positive 
divided by 68 from column 1 first row  plus remaining column 
value in first row which is 4 ie 68/(68+1+1+2) = 0.94444  ie 

Table 2: Measurement of comfort Level

Measurement of Existing and Proposed Comfort Level

Sensor
<20 >=20 &<=29 >=30 &<35 >=35 &<40 >=40 >50

E P E P E P E P E P E P

Temperature   - DC - NDC DC MDC - SDC - VSDC - VVSDC

Humidity - DC - NDC - MDC - SDC - VSDC DC VVSDC

Table 3: Confusion Matrix Actual 

Actual 

P 1 2 3 4 5 6

R 1 68 1 0 1 2 0

E 2 1 160 2 5 1 1

D 3 0 0 350 7 12 4

I 4 0 2 7 762 63 3

C 5 0 0 2 22 1311 23

T 6 0 0 2 3 26 820

Table 4: Precision Measure

Precision Measure

Comfort Level Precision

1 0.99

2 0.98

3 0.96

4 0.95

5 0.93

6 0.96

Figure 2: Class Based Analysis -Precision

0.94. Thus recall measure for all the class is computed using 
the equation 2 defined above. 

Figure 3 below shows the recall measure of performance 
of the proposed model.It ranges between 0.91 to 0.97 for 
the classes which is shown graphically.

Precision Recall Curve
Table 6 shows the Precision and recall measure performance 
of the classifer for the proposed model.
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Figure 4 shows the Precision Recall Curve for the proposed 
model.

F1 Score
F1 score  is a combined measure for precision and recall. It is 
a measure that takes both false positives and false negatives 
into account to strike a balance between precision and recall.

F1 score  =  2* *
+

Precision Recall
Precision Recall

		  (3)

From the above Table 7 F1 score is computed  using Twice  
Precision and Recall value divided by Precision plus Recall. 
From the precision table column1 row 1 0.99 and Recall 
table column 1 and row 1 0.94 F1 score is computed as  
2*0.99*0.94/(0.98+0.94)  which is 0.96. Thus F1 score measure 
for all the classes is computed using equation 3 defined 
above.

These measures described above are used for comparing 
the classifiers.

Figure 5 show the class based analysis for F1 score which 
is the combined measure of performance metric for the 
proposed prediction model. It range between 0.93 to 0.96 
for the respective classes which is shown below.

Table 5: Recall Measure

Recall Measure

Comfort Level Recall

1 0.94

2 0.94

3 0.94

4 0.91

5 0.97

6 0.96

1 0.94

2 0.94

Figure 3: Class Based Analysis - Recall

Table 6: Precision & Recall Measure

Precision & Recall Measure

Recall Precision

1 0

1 0.94 0.99

0 1

2 0.94 0.98

1 0

3 0.94 0.96

0 1

 4 0.91 0.95

1 0

5 0.97 0.93

0 1

6 0.96 0.96

1 0

Figure 4: Precision-Recall curve

Table 7: F1 Score Measure

F1-Score

Comfort Level F1 Score

1 0.96

2 0.96

3 0.95

4 0.93

5 0.95

6 0.96

Comparison of Thermal Comfort Model Accuracy with 
existing work is shown Table 8. 

The Proposed Thermal Comfort Level Assessment 
(TCLA) Model demonstrates superior performance over 
existing approaches due to its strategic integration of 
decision tree classifiers with bagging ensemble techniques, 
which collectively enhance prediction accuracy and 
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Figure 5: Class Based Analysis F1-Score

Table 8: Comparison of proposed model with other models

Model / Study Accuracy Precision Recall F1 Score

Ahmed & Rahimi (2025) – SVM + RF 92% 0.94 0.91 0.92

Chen & Li (2025) – Interpretable ML 90% 0.91 0.89 0.90

Iqbal & Mirzabeigi (2025) – BIM-IoT 88% 0.89 0.87 0.88

Zhang et al. (2024) – ML Building Model 85% 0.88 0.85 0.86

Proposed TCLA Model – DT + Bagging 95% 0.96 0.94 0.95

reduce overfitting. Achieving a notable 95% accuracy, the 
model outperforms others by maintaining high precision, 
recall, and F1 scores across all comfort levels. Unlike deep 
learning models that demand extensive computational 
resources, TCLA is lightweight and scalable, making it 
suitable for deployment in smart classrooms and low-
resource environments. Its design incorporates robust 
preprocessing, effective handling of missing and categorical 
data, and a comprehensive feature set drawn from over 
100,000 samples, including environmental and physiological 
parameters such as PMV, SET, Clo, and Met. The model’s 
performance is validated through confusion matrix analysis 
and class-based metrics, confirming its reliability and 
consistency. By balancing algorithmic rigor with practical 
feasibility, the TCLA model offers a compelling solution for 
real-time thermal comfort prediction in intelligent learning 
environments.

Conclusion
The proposed assessment algorithm supports the thermal 
comfort level environment as well as living environment. 
Even though the comfort level may vary for various 
environment, the performance and accuracy of the 
classifiers remains the same. Nearly 18 parameters are used 
to train and test the data results. One lakh samples are taken 
from bench mark data set and machine learning techniques 
are applied to predict the result. The experimental results 
justifies the performance accuracy of the proposed model 
using confusion matrix metrics.
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