
Abstract
Ultrasound imaging is a preferred modality for non-invasive liver steatosis screening, yet the inherent speckle noise and texture ambiguity 
hinder automated diagnostic precision. Existing convolutional neural networks (CNNs) primarily rely on intensity-based texture cues, 
overlooking phase-based structural continuity that remains stable under speckle corruption. This study proposes a Speckle-Robust 
Local Phase and Ternary Texture Encoding (SLaP-TEX) model that combines local phase symmetry descriptors with ternary pattern 
encoding to generate robust representations from liver ultrasound images. The proposed model enhances boundary localization and 
fine-grained tissue discrimination through a two-stage encoding pipeline comprising Local Phase Filtering (LPF) and Adaptive Ternary 
Encoding (ATE). The fused phase-texture maps are processed through a MobileNetV3-Small backbone, offering computational efficiency 
for real-time deployment. Experiments on the RGM-augmented ultrasound dataset demonstrate superior performance with 99.02 % 
accuracy, 0.998 AUC, and 0.018 loss, outperforming existing models while maintaining a 2.1 M parameter footprint. The SLaP-TEX model 
offers a compact, phase-aware, and speckle-resilient feature extractor for clinical ultrasound analytics.
Keywords: Local phase filtering, Ternary texture encoding, Speckle noise suppression, Lightweight CNN, Liver steatosis classification.
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Introduction
The prevalence of non-alcoholic fatty liver disease is 
increasing globally. Ultrasound continues to serve as 
the primary imaging modality for both screening and 
longitudinal assessment (Pozowski et al., 2025). The factors 
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such as speckle artifacts, gain adjustment, probe positioning, 
and patient body habits frequently affect the reliability of 
texture evaluation. Additional variability introduced by 
differences among scanners and imaging protocols further 
complicates consistency. Therefore, the establishment of 
uniform and interpretable imaging features is imperative 
for accurate triage and effective monitoring.

The increasing clinical demand necessitates robust and 
efficient analytical methods. While many deep learning 
models demonstrate high accuracy, they often require 
extensive datasets and close domain alignment. Conversely, 
classical texture descriptors offer interpretability but are 
notably sensitive to speckle artifacts. Currently, lightweight 
solutions appropriate for point-of-care applications remain 
scarce, and ensuring consistent performance across different 
sites and devices continues to be a significant challenge.

The primary issue involves achieving stable detection 
of hepatic steatosis using B-mode ultrasound across 
varying acquisition conditions. Essential capabilities 
include resilience to changes in speckle patterns, contrast 
variations, and moderate imaging artifacts. Furthermore, 
any proposed method should function effectively within 
modest computational and memory constraints to facilitate 
bedside deployment. The objectives of this research work 
are: 
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•	 To design a speckle-aware representation using local 
phase filtering 

•	 To implement adaptive ternary texture encoding to 
standardize intensity

•	 To preserve local polarity information by combining 
grayscale, phase symmetry, and adaptive ternary 
channels into a unified representation to train a 
MobileNetV3-Small classifier.

Traditional texture descriptors often fail to maintain 
consistency across different imaging conditions, while 
deep learning models require large, well-balanced datasets 
and lack interpretability. The proposed model introduces a 
balanced approach that combines feature extraction with 
data-driven learning. Through local phase filtering and 
adaptive ternary encoding, the model captures contrast-
invariant and speckle-resilient features, ensuring stability 
across heterogeneous acquisitions. The integration of 
these handcrafted phase-texture cues with a lightweight 
MobileNetV3 backbone enables high accuracy with reduced 
computational demand, supporting real-time inference on 
clinical and embedded devices. This design aligns with the 
current research trend toward explainable and resource-
efficient artificial intelligence in medical imaging.

Literature Review
Research on ultrasound-based assessment of hepatic 
steatosis spans hand-crafted texture descriptors, quantitative 
ultrasound (QUS) parameters, and deep learning pipelines, 
with growing interest in calibration, efficiency, and cross-
modality agreement.

Early texture analysis demonstrated clear diagnostic 
signal when acquisition settings were explicitly varied. A 
prospective study explored beamforming speed-of-sound 
sweeps from 1300–1540 m/s and extracted gray-level 
co-occurrence features, showing strong discrimination 
and high correlations with MRI-PDFF and biopsy grades; 
combined homogeneity across lobes reached AUC 0.94, 
indicating robust sensitivity of texture measures to speckle 
formation physics (Kibo Nam et al., 2023). 

Echo-envelope statistics and transfer learning further 
examined statistical representations, where fourth-order 
moment maps improved ROI classification from ~46% to 
~63%, underscoring the value of higher-order statistics but 
also revealing the ceiling of purely statistical cues without 
stronger priors or richer supervision (Isshiki et al., 2024). 
Efficiency considerations appeared in a preclinical setting 
that compared ChatGPT-4-assisted feature extraction 
with conventional IDL pipelines, reporting nine significant 
textural features, 76% accuracy, and a 40% reduction in 
analysis time, suggesting practical throughput gains even 
when sensitivity slightly trailed traditional software (Laith 
R. Sultan et al., 2024).

Parallel work advanced quantitative ultrasound 
surrogates of fat content. Ultrasound-derived fat fraction 

(UDFF) was shown feasible and significantly different across 
grades, reinforcing measurement stability under clinical 
conditions (Yun-Lin Huang et al., 2023). Agreement studies 
found good concordance between UDFF and MR-PDFF with 
ICC ≈ 0.79 but a modest positive bias for UDFF at higher 
steatosis levels, highlighting calibration needs across devices 
and operators (Reinhard Kubale et al., 2024). 

Additional evidence from MASLD cohorts reported UDFF 
AUC ≈ 0.98 for ≥5% MRI-PDFF, while CAP achieved AUC ≈ 
0.93, indicating competitive diagnostic performance for 
UDFF in threshold-based screening (Huiru Jin et al., 2025). 
Studies centered on attenuation imaging (ATI) also showed 
strong associations with histology and MRI-PDFF, AUROCs 
~0.91–0.97 across grades, and tight ATI–MRI relationships, 
suggesting ATI as an accessible proxy for MR in longitudinal 
monitoring and triage (Chileka Chiyanika et al., 2023; Alvaro 
Postigliatti et al., 2024). 

A prospective comparison against shear-wave 
elastography/dispersion confirmed ATI as the leading 
modality for steatosis grading within the examined 
protocol, with significant correlations to disease stage (Kun 
Wang et al., 2024). Multiparametric modeling combined 
AR, HR, and DV into the Steatoscore 2.0, reaching AUROC 
~0.96–0.98 for MR-defined thresholds, low RMSE, and 
strong reproducibility, illustrating the benefit of engineered, 
complementary ultrasound features with principled fusion 
(Laura De Rosa et al., 2024).

Deep learning contributed along two axes: organ 
delineation and end-to-end classification. Point-of-care 
ultrasound benefited from U-Net-based segmentation and 
DenseNet-121 classification, achieving AUC ~0.90 with high 
sensitivity on low-quality B-mode images, demonstrating 
resilience to portable acquisition constraints (Miriam Naim 
Ibrahim et al., 2023). Two-stage pipelines with dedicated 
segmentation and classification reported Dice ≈ 0.92 and 
AUC ≈ 0.84 on internal and external cohorts, reinforcing the 
utility of anatomy-aware preprocessing for generalization 
(Pedro Vianna et al., 2023). 

Stand-alone classifiers also showed strong performance; 
ultrasound and elastography images yielded F1 ≈ 0.995 
for the best neural model, and results were comparable to 
classical machine learning when feature engineering was 
carefully designed (Rodrigo Fernando Costa Marques et al., 
2024). Recent CAD systems with ConvNeXt-style backbones 
reached accuracy ≈ 82%, with balanced sensitivity/specificity 
near ~81–83%, indicating competitive baselines for clinical 
decision support (Shang-Yu Chiang et al., 2025). 

Methodological advances in risk control applied 
conformal prediction atop DL classifiers, achieving ~79% 
accuracy in a four-class setting and motivating explainable 
AI add-ons (LIME, SHAP) to support trustworthy deployment 
(Tso-Jung Yen et al., 2024). A systematic review and meta-
analysis estimated pooled AUCs of ~0.93 for any HS and 
~0.86 for moderate-to-severe HS across CNN studies, while 
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also identifying geographic concentration and clinical-
setting biases that limit population-level generalizability 
(Akshay Thimmappaiah Jagadeesh et al., 2025).

Across these strands, three recurring gaps appear. First, 
texture methods are sensitive to acquisition physics; speed-
of-sound sweeps and attenuation parameters affect speckle 
statistics, calling for phase-aware or speckle-invariant 
representations to stabilize features across scanners and 
presets. Second, DL pipelines benefit from anatomical 
context and calibration, yet performance varies with cohort 
composition and label standards; agreement with MR-PDFF 
or biopsy remains the reference for clinical translation. Third, 
quantitative proxies such as UDFF and ATI show strong 
correlations and screening utility but require harmonization 
across vendors, probes, and operators to curb bias at high 
fat fractions.

Proposed Methodology
The cumulative evidence motivates a hybrid strategy that 
couples physics-informed descriptors with compact CNN 
backbones. Local phase symmetry and monogenic phase 
features target contrast-invariant structures resilient to 
speckle, while adaptive ternary encodings preserve polarity 
under local normalization. Channel-level fusion of grayscale, 
phase symmetry, and ternary cues creates a speckle-robust 
tensor for lightweight classification, aligning with portability 
requirements in POCUS and community settings flagged 
by recent reviews. Within this context, the proposed SLaP-
TEX model directly addresses texture-physics sensitivity, 
leverages efficient backbones validated in prior work, and 
preserves compatibility with quantitative endpoints (UDFF/
ATI) for cross-modality audit and calibration.

Architecture Overview
The SLaP-TEX architecture works in three main stages to 
extract reliable features from ultrasound images affected 
by speckle noise. The overall workflow of these three stages 
is shown conceptually in Figure 1.

In the first stage, Local Phase Extraction (LPF) is performed. 
This process identifies structure and boundary details that 
remain stable even when noise is present. The local phase 

map highlights edges and tissue boundaries more clearly 
than the raw intensity image.

In the second stage, Adaptive Ternary Texture Encoding 
(ATE) converts local intensity variations into ternary patterns. 
Each pixel is represented by three possible states that 
describe positive, neutral, or negative contrast relative to its 
neighbors. This step helps the system remain stable when 
brightness or texture changes slightly.

In the third stage, Feature Fusion and Lightweight CNN 
Classification combines both the phase and ternary texture 
maps with the original grayscale image. The three channels 
are fused and passed into a lightweight MobileNetV3-Small 
network. This model learns deeper relationships between 
texture, phase, and structure, allowing accurate classification 
with low computational cost.

Local Phase Filtering
The local phase filtering stage extracts structure-related 
information that remains stable under speckle noise. Let 
( ),I x y  be an ultrasound image. The image is first processed 

using the Riesz transform (Fu et al., 2023), which decomposes 
it into orthogonal components. The horizontal and vertical 
responses are obtained as *=x xü  and *=y yü , where 

xh  and yh  are odd symmetric band-pass filters. These 
filters respond strongly to oriented features such as tissue 
boundaries and fine textures.
From these responses, two key quantities are calculated. The 
local amplitude ( ),A x y  represents the overall signal strength, 
while the local phase ( ),φ x y  captures the relative structure 
of the underlying pattern. They are defined as
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The local phase symmetry 
( ),S x y  is then computed using Kovesi’s phase congruency 

approach:
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Here, o  denotes the orientation index, φ  is the mean phase, 
and T  is a small noise threshold.

Figure 1: SLaP-TEX Architecture
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This process enhances the structural integrity of the image. 
The phase symmetry map emphasizes edges and ridges that 
remain consistent under illumination or speckle variations. 
It helps preserve diagnostically important tissue boundaries 
while reducing random granular noise.

Adaptive Ternary Texture Encoding (ATE)
The adaptive ternary texture encoding stage captures fine-
grained texture variations that are not easily represented 
by simple intensity values. After local phase filtering, the 
image still contains subtle contrast differences across liver 
tissue. These variations are useful for classification but can be 
affected by uneven illumination or small brightness changes.

To address this, each pixel is encoded based on its 
relation to the intensity statistics of its local neighborhood. 
The mean ì N  and standard deviation ó N  of the surrounding 
pixels are first computed. Then, the adaptive ternary code 

pT  for each pixel pI  is calculated as

1,

0,

1,

µ ασ

µ ασ

µ ασ

 − >
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where 
á  is a scaling constant empirically set to 0.8. This encoding 
divides pixel values into three distinct states: bright, neutral, 
and dark based on adaptive thresholds.

Unlike binary thresholding methods, which are highly 
sensitive to small changes, the ternary approach introduces 
a neutral zone that absorbs noise-driven fluctuations. 
As a result, the adaptive ternary texture map preserves 
meaningful texture contrast while suppressing unwanted 
intensity variations. This representation complements the 
local phase map by describing the micro-textural differences 
that phase information alone cannot capture.

Feature Fusion
The final stage combines the complementary representations 
obtained from the previous steps into a unified tensor 
suitable for deep learning. The normalized grayscale image 

( ),I x y , the phase symmetry map ( ),S x y  derived from 
the local phase filtering stage, and the ternary texture map 

( ),T x y  produced by adaptive ternary encoding are 
merged to form a three-channel input:

( ) ( ) ( ) ( ), , , , , , =  X x y I x y S x y T x y 	 (4)

This fused representation integrates information from 
different structural and statistical perspectives. The 
intensity channel preserves the overall spatial distribution 
of the tissue, the phase channel highlights boundary and 
shape cues that are robust to speckle, and the texture 

channel captures local contrast variations critical for lesion 
discrimination.

By combining these three sources, the resulting tensor 
becomes a speckle-robust descriptor that retains both 
global and local characteristics of the ultrasound image. 
This tensor is then used as the input to the lightweight 
convolutional neural network backbone, enabling effective 
learning of diagnostic features with reduced sensitivity to 
noise and illumination changes.

Lightweight Backbone Integration
The fused feature tensor is processed by a lightweight 
convolutional neural network to perform classification with 
high efficiency. A modified MobileNetV3-Small architecture 
is adopted as the backbone because of its strong balance 
between accuracy and computational cost. The network is 
fine-tuned for binary classification to distinguish normal and 
abnormal liver tissue patterns.

The model begins with depthwise separable 
convolutions, which factorize standard convolution 
operations to reduce parameters and memory usage while 
retaining feature richness. These layers compress redundant 
spatial information and emphasize discriminative structures 
learned from the fused tensor.

The intermediate layers include Squeeze-and-Excitation 
(SE) attention blocks, which adaptively recalibrate channel 
responses. This mechanism allows the model to focus on 
diagnostically relevant features such as coherent tissue 
boundaries or pathological textures, improving robustness 
against speckle noise and illumination shifts.

The extracted features are then aggregated using 
global average pooling, followed by a sigmoid activation 
to produce the final binary classification output.

The entire model contains approximately 2.1 million 
parameters, making it compact and suitable for real-time 
deployment on embedded or portable diagnostic systems 
without compromising accuracy.

Training Configuration
The SLaP-TEX model is trained using a balanced configuration 
designed to ensure convergence stability and performance 
consistency. The Adam optimizer with a learning rate of 

3ü −×  is used to adaptively adjust the learning dynamics 
during training. A batch size of 32 provides a suitable trade-
off between gradient stability and computational efficiency, 
while 25 epochs are sufficient for convergence under the 
proposed dataset.

The model is optimized using the binary cross-entropy 
loss function, which is well-suited for two-class medical 
image classification. Early stopping with a patience of six 
epochs is applied to prevent overfitting by monitoring 
validation accuracy. The evaluation metrics include 
accuracy, area under the ROC curve (AUC), and F1-score, 
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which collectively provide a comprehensive assessment of 
classification performance.

The training utilizes the RGM-augmented ultrasound 
dataset derived from Region-Guided Mixup Augmentation, 
ensuring consistency in data representation while enhancing 
diversity through augmentation (Sahaya Mercy and Sheela 
2025). The complete training setup is summarized in Table 1, 
which outlines all key parameters used for the optimization 
process.

3.7 SLaP-TEX Algorithm
The SLaP-TEX algorithm defines a structured computational 
pipeline that integrates phase-aware texture encoding 
with lightweight deep learning. Algorithm 1 presents the 
full workflow for both training and inference, ensuring 
reproducibility and computational efficiency. The procedure 
begins with preprocessing, where ultrasound images are 
resized to 224 × 224 pixels and normalized to the [0, 1] range. 
Each image is divided into mini-batches of 32 samples for 
stable gradient updates.

Algorithm – 1
Inputs:

•	 Ultrasound image 	
•	 ×∈ H WI R
•	 Hyperparameters: image size 
•	 ü=S , neighborhood 
•	 N  
•	  ( )( ) ( ). ., 5 5 , α 0.8× =e g , Adam ( )310−=LR , batch ( )32= , epochs 

( )25=
•	 Backbone: MobileNetV3-Small (binary head)
Outputs:

•	 Predicted label ˆ ü∈y
•	 Trained weights  *Θ
PROC SLaP_TEX_TRAIN(D_train, D_val, Θ_init)

    1:  # Preprocess and batching

    2:  for each (I, y) in D_train ∪ D_val do

    3:      I ← NormalizeTo[0,1]( Resize(I, S×S) )

    4:  end for

    5:  B_train ← CreateBatches(D_train, batch=32) ; B_val 
← CreateBatches(D_val, batch=32)

    6:  # Training loop

    7:  Θ ← Θ_init

    8:  best_score ← −∞

    9:  patience ← 0

   10:  for epoch = 1 … 25 do

   11:      for each batch (I_b, y_b) in B_train do

   12:       X_b ← BUILD_FUSED_TENSOR(I_b) # Sec. 3.2–3.4

   13:       ŷ_b ← CNN_FORWARD(X_b; Θ) # MobileNetV3-
Small

   14:          L  ← BCE(ŷ_b, y_b)

   15:          Θ   ← ADAM_UPDATE(Θ, ∇_Θ L, lr=1e−3)

   16:      end for

   17:      # Validation

   18:      score ← EVAL(B_val, Θ) # Accuracy/AUC/F1

   19:      if score > best_score then

   20:          best_score ← score ; Θ* ← Θ ; patience ← 0

   21:      else

   22:          patience ← patience + 1

   23:          if patience ≥ 6 then break end if # Early stopping

   24:      end if

   25:  end for

   26:  return Θ*

END PROC

Feature Construction
During feature construction, the LPF stage applies a 
Riesz transform using odd-symmetric band-pass filters 
to extract orientation-specific responses. From these 
responses, the local amplitude and phase maps are derived, 
followed by computation of phase symmetry to highlight 
structure-consistent edges and ridges. Parallelly, adaptive 
ternary texture encoding (ATE) is used to transform 
local intensity variations into three-state texture codes 
based on neighborhood statistics. These complementary 
representations are then concatenated with the grayscale 
input to form a three-channel tensor that captures 
amplitude, phase, and texture information simultaneously.

In the training loop, the fused tensors are 
passed through the MobileNetV3-Small backbone 
for forward propagation. The network output is 
compared with ground-truth labels using binary 
cross-entropy loss. Parameters are optimized 
using the Adam optimizer with a learning rate of 1 
× 10⁻³. Validation performance is monitored after 

Table 1: Training Configuration

Parameter Value

Optimizer Adam

Learning rate 3ü −×

Batch size 32

Epochs 25

Loss Binary cross-entropy

Early stopping Patience = 6
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each epoch using accuracy, AUC, and F1-score 
metrics. Early stopping with a patience of six 
epochs prevents overfitting and ensures optimal 
convergence.

FUNC BUILD_FUSED_TENSOR(I_batch)
    1:  # Local Phase Filtering (LPF) via Riesz + phase 
symmetry
    2:  (R_x, R_y) ← RIESZ_TRANSFORM(I_batch, h_x, 
h_y) # odd band-pass
    3:  A ← sqrt(I_batch^2 + R_x^2 + R_y^2)
    4:  φ ← atan2( sqrt(R_x^2 + R_y^2), clamp(I_batch, ε) )
    5:  S ← PHASE_SYMMETRY(A, φ, orientations=O, 
threshold=T, eps=ε)
    6:  # Adaptive Ternary Texture Encoding (ATE)
    7:  (μ_N, σ_N) ← LOCAL_STATS(I_batch, window=N)
    8:  T ← sign_thresh(I_batch − μ_N, α·σ_N)    # 1 if > 
α·σ, 0 if |·|≤α·σ, −1 if < −α·σ
    9:  T ← MAP_TERNARY_TO_FLOAT(T) # e.g., {−1,0,1} → 
{0,0.5,1}
   10:  # Channel fusion
   11:  X ← CONCAT_CHANNELS([I_batch, S, T])     # 
shape: (B, S, S, 3)
   12:  return X
END FUNC

Inference
The inference procedure follows the same transformation 
steps but uses the trained weights (Θ*) to generate 
predictions. Each test image undergoes the LPF and ATE 
stages, producing a fused tensor that is evaluated by the 
trained network. The model outputs a probability value, 
which is thresholded at 0.5 for binary classification.

PROC SLaP_TEX_INFER(I, Θ*)
    1:  I ← NormalizeTo[0,1]( Resize(I, S×S) )
    2:  X ← BUILD_FUSED_TENSOR(I)
    3:  p ← CNN_FORWARD(X; Θ*)
    4:  ŷ ← 1 if p ≥ 0.5 else 0
    5:  return ŷ, p
END PROC

Experimental Setup
All experiments were conducted in a controlled 
computational environment to ensure reproducibility and 
consistency of results. The proposed SLaP-TEX framework 
was implemented using TensorFlow 2.16 and Python 3.12 
on an Ubuntu 24.04 LTS operating system. The hardware 
configuration comprised an AMD Ryzen 9 7900 processor 
with 24 cores, 64 GB RAM, and an NVIDIA RTX 4070 Ti SUPER 
GPU, providing a balanced setup for both CPU and GPU-
based experiments.

The dataset consisted of RGM-augmented ultrasound 
liver images, containing 877 training and 220 validation 

samples, each resized to 224 × 224 pixels. All images were 
preprocessed using normalization and contrast preservation 
steps to maintain consistency with clinical-quality standards. 
For baseline performance evaluation, all models were 
first trained and validated using CPU-only execution to 
assess computational feasibility on non-GPU systems. 
Subsequently, CUDA acceleration was enabled to analyze 
inference speed improvements and confirm real-time 
diagnostic capability. The complete hardware and software 
specifications used for the experiments are summarized in 
Table 1.

Results and Discussion
The performance of the proposed SLaP-TEX framework was 
quantitatively evaluated and compared against conventional 
convolutional backbones and the previously developed 
RGM-Baseline. The evaluation used the RGM-augmented 
ultrasound dataset consisting of liver B-mode images 
labeled according to steatosis severity. The experiments 
followed the standardized configuration described in 
Section 3.6, with identical data splits and preprocessing to 
ensure fair comparison.

Quantitative Evaluation
The comparative performance results are summarized in 
Table 2, which includes accuracy, AUC, F1-score, total model 
parameters, and final loss values for each architecture. 
The proposed SLaP-TEX achieved a classification accuracy 
of 99.02%, an AUC of 0.998, and an F1-score of 0.982, 
outperforming both the RGM-Baseline and other 
conventional CNN architectures. When compared to the 
RGM-Baseline, the SLaP-TEX achieved a 0.09% gain in 
accuracy and a 0.004 improvement in AUC, while reducing 
the model size by approximately 32% (from 3.1 M to 2.1 
M parameters). These improvements demonstrate the 
enhanced representational efficiency of the proposed 
architecture.

The high AUC score reflects the model’s ability to 
effectively separate the steatosis and non-steatosis classes, 
indicating strong sensitivity and specificity. The minimal 
validation variance across epochs suggests consistent 

Table 2: Experimental setup for SLaP-TEX framework

Component Specification

Processor AMD Ryzen 9 7900 (24 cores)

Memory (RAM) 64 GB

GPU NVIDIA RTX 4070 Ti SUPER

Operating System Ubuntu 24.04 LTS

Software Libraries TensorFlow 2.16, Python 3.12

Dataset RGM-augmented ultrasound images

Data Split 877 training / 220 validation

Image Resolution 224 × 224 pixels
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generalization across different patient cases and imaging 
conditions. Furthermore, the reduction in cross-entropy 
loss (0.018) indicates better optimization stability and 
convergence behavior. Unlike deeper networks such as 
ResNet50 and EfficientNet-B0, which require substantial 
computational resources, the lightweight MobileNetV3-
based backbone integrated in SLaP-TEX enables faster 
training while maintaining high discriminative power.

Superior performance can be attributed to the 
combination of phase-aware and texture-based feature 
encoding. The LPF step ensures invariance to speckle and 
contrast fluctuations, while the adaptive ATE captures 
local structural polarity in intensity distributions. This 
combination allows the network to leverage stable, 
high-frequency texture features, which are typically lost 
in standard CNN feature hierarchies. Consequently, the 
proposed model shows smoother convergence with fewer 
oscillations in validation curves, confirming its enhanced 
robustness to ultrasound-specific noise patterns.

Compared to ResNet50 and EfficientNet-B0, which 
achieved AUC scores of 0.981 and 0.990 respectively, the 
proposed framework provides a clear performance margin 
(Figure 2). The gain, though modest in absolute terms, 
represents a meaningful improvement in clinical decision 
support scenarios where false positives and false negatives 
can directly impact diagnostic confidence. The lightweight 
nature of the model (2.1 M parameters) ensures scalability 
to embedded ultrasound systems and facilitates real-time 
inference (Figure 3).

The proposed model demonstrates 0.09 % improvement 
in accuracy and 0.004 AUC gain over the baseline while 
reducing parameters by ~32 %. The convergence is 
smoother with reduced validation variance, confirming 
enhanced speckle robustness.

The comparative loss analysis, illustrated in Figure 
3, demonstrates that the proposed SLaP-TEX model 
achieved the lowest loss value of 0.018, indicating 
superior convergence stability. Compared with traditional 
architectures such as ResNet50 and EfficientNet-B0, the 
SLaP-TEX framework exhibits reduced error propagation and 
improved optimization efficiency during training.

Ablation Analysis
An ablation study was conducted to examine the contribution 
of individual modules within the proposed SLaP-TEX 
pipeline. The results are presented in Table 3, highlighting 

Table 3: Comparative results of SLaP-TEX with existing models

Model Accuracy (%) AUC F1-score Params (M) Loss

ResNet50 95.12 0.981 0.94 25.6 0.054

EfficientNet-B0 96.32 0.990 0.95 5.3 0.043

RGM-Baseline (Contribution 1) 98.93 0.9978 0.978 3.1 0.022

SLaP-TEX (Proposed) 99.02 0.998 0.982 2.1 0.018
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the impact of excluding specific components such as the 
LPF or ATE. When the LPF component was removed, the 
accuracy dropped from 99.02% to 97.42%, and the AUC 
decreased from 0.998 to 0.986. This reduction emphasizes 
the role of phase symmetry in stabilizing texture features 
under variable speckle conditions.

Similarly, the exclusion of ATE led to a decrease in 
accuracy to 98.12% and an AUC of 0.992, indicating that the 
ternary encoding enhances local texture discrimination by 
adaptively normalizing regional contrast variations. The 
absence of both fusion and specialized encoders, using only 
grayscale input, resulted in the lowest accuracy of 96.34% 
and AUC of 0.978, reflecting the limitations of intensity-only 
descriptors in speckle-prone ultrasound data.

The complete SLaP-TEX configuration combining both 
LPF and ATE achieved the highest overall performance, 
confirming that the synergy between the two handcrafted 
feature extractors provides the most discriminative and 
invariant representation. The consistent gain in accuracy 
and AUC across configurations underscores that both 
modules contribute complementary information LPF 
offering structural stability and ATE enhancing textural 
polarity sensitivity.

This analysis validates the design motivation of 
integrating handcrafted phase-texture descriptors with 
lightweight CNN learning. The fused feature space not only 
improves classification accuracy but also ensures robustness 
against image artifacts caused by acquisition variability, such 
as probe angle, gain, and patient anatomy. The reduced 
model complexity further signifies its suitability for clinical 
integration, where resource constraints are a critical factor. 
Both LPF and ATE components significantly contribute to 
discriminative power. Their joint inclusion yields superior 
classification reliability.

The proposed SLaP-TEX framework also demonstrates 
remarkable computational efficiency during inference. The 
average inference latency measured on a CPU (AMD Ryzen 
9 7900) is approximately 19 ms per image, which supports 
real-time diagnostic deployment in clinical or portable 
ultrasound environments. When executed on a GPU, 
the latency further decreases to around 5 ms per image, 
making the model highly suitable for high-throughput 
screening and on-device medical imaging applications. This 
efficiency confirms that the combination of phase-texture 
fusion and a lightweight MobileNetV3 backbone not only 
enhances diagnostic accuracy but also ensures low-latency 

performance compatible with real-world ultrasound 
workflows.

Conclusion
The proposed SLaP-TEX model presents a novel, speckle-
robust, and computationally efficient framework for 
ultrasound-based liver steatosis analysis. By integrating local 
phase symmetry and adaptive ternary texture encoding, 
the method effectively captures complementary structural 
and textural information, achieving a fine balance between 
noise suppression and feature discriminability. The fusion 
of handcrafted phase-texture features with a MobileNetV3-
Small backbone enables the extraction of clinically 
relevant patterns while maintaining low computational 
cost, making it ideal for real-time and edge-level medical 
imaging systems. Comprehensive experiments confirm 
that the SLaP-TEX approach surpasses conventional 
deep networks in terms of accuracy, AUC, and stability, 
while maintaining fewer parameters and faster inference. 
The design demonstrates strong generalization under 
varying imaging conditions, validating its applicability to 
diverse clinical environments. Future work will extend this 
framework toward multi-disease ultrasound classification, 
exploring cross-domain generalization across modalities 
such as CT and MRI. Further integration of explainable AI 
(XAI) mechanisms will enhance interpretability, ensuring 
transparency and trust in clinical decision-making. Through 
this direction, SLaP-TEX represents a significant step toward 
deployable, interpretable, and speckle-resilient AI solutions 
in medical imaging.
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