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(SLaP-TEX) based Feature Extraction for Liver Steatosis
Classification in Ultrasound Imaging
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Abstract

Ultrasound imaging is a preferred modality for non-invasive liver steatosis screening, yet the inherent speckle noise and texture ambiguity
hinder automated diagnostic precision. Existing convolutional neural networks (CNNs) primarily rely on intensity-based texture cues,
overlooking phase-based structural continuity that remains stable under speckle corruption. This study proposes a Speckle-Robust
Local Phase and Ternary Texture Encoding (SLaP-TEX) model that combines local phase symmetry descriptors with ternary pattern
encoding to generate robust representations from liver ultrasound images. The proposed model enhances boundary localization and
fine-grained tissue discrimination through a two-stage encoding pipeline comprising Local Phase Filtering (LPF) and Adaptive Ternary
Encoding (ATE).The fused phase-texture maps are processed through a MobileNetV3-Small backbone, offering computational efficiency
for real-time deployment. Experiments on the RGM-augmented ultrasound dataset demonstrate superior performance with 99.02 %
accuracy, 0.998 AUC, and 0.018 loss, outperforming existing models while maintaining a 2.1 M parameter footprint. The SLaP-TEX model
offers a compact, phase-aware, and speckle-resilient feature extractor for clinical ultrasound analytics.

Keywords: Local phase filtering, Ternary texture encoding, Speckle noise suppression, Lightweight CNN, Liver steatosis classification.

Introduction

The prevalence of non-alcoholic fatty liver disease is
increasing globally. Ultrasound continues to serve as
the primary imaging modality for both screening and
longitudinal assessment (Pozowski et al., 2025). The factors
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such as speckle artifacts, gain adjustment, probe positioning,
and patient body habits frequently affect the reliability of
texture evaluation. Additional variability introduced by
differences among scanners and imaging protocols further
complicates consistency. Therefore, the establishment of
uniform and interpretable imaging features is imperative
for accurate triage and effective monitoring.

The increasing clinical demand necessitates robust and
efficient analytical methods. While many deep learning
models demonstrate high accuracy, they often require
extensive datasets and close domain alignment. Conversely,
classical texture descriptors offer interpretability but are
notably sensitive to speckle artifacts. Currently, lightweight
solutions appropriate for point-of-care applications remain
scarce, and ensuring consistent performance across different
sites and devices continues to be a significant challenge.

The primary issue involves achieving stable detection
of hepatic steatosis using B-mode ultrasound across
varying acquisition conditions. Essential capabilities
include resilience to changes in speckle patterns, contrast
variations, and moderate imaging artifacts. Furthermore,
any proposed method should function effectively within
modest computational and memory constraints to facilitate
bedside deployment. The objectives of this research work
are:

Published: 25/12/2025
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« To design a speckle-aware representation using local
phase filtering
« To implement adaptive ternary texture encoding to
standardize intensity
« To preserve local polarity information by combining
grayscale, phase symmetry, and adaptive ternary
channels into a unified representation to train a
MobileNetV3-Small classifier.
Traditional texture descriptors often fail to maintain
consistency across different imaging conditions, while
deep learning models require large, well-balanced datasets
and lack interpretability. The proposed model introduces a
balanced approach that combines feature extraction with
data-driven learning. Through local phase filtering and
adaptive ternary encoding, the model captures contrast-
invariant and speckle-resilient features, ensuring stability
across heterogeneous acquisitions. The integration of
these handcrafted phase-texture cues with a lightweight
MobileNetV3 backbone enables high accuracy with reduced
computational demand, supporting real-time inference on
clinical and embedded devices. This design aligns with the
current research trend toward explainable and resource-
efficient artificial intelligence in medical imaging.

Literature Review

Research on ultrasound-based assessment of hepatic
steatosis spans hand-crafted texture descriptors, quantitative
ultrasound (QUS) parameters, and deep learning pipelines,
with growing interest in calibration, efficiency, and cross-
modality agreement.

Early texture analysis demonstrated clear diagnostic
signal when acquisition settings were explicitly varied. A
prospective study explored beamforming speed-of-sound
sweeps from 1300-1540 m/s and extracted gray-level
co-occurrence features, showing strong discrimination
and high correlations with MRI-PDFF and biopsy grades;
combined homogeneity across lobes reached AUC 0.94,
indicating robust sensitivity of texture measures to speckle
formation physics (Kibo Nam et al., 2023).

Echo-envelope statistics and transfer learning further
examined statistical representations, where fourth-order
moment maps improved ROI classification from ~46% to
~63%, underscoring the value of higher-order statistics but
also revealing the ceiling of purely statistical cues without
stronger priors or richer supervision (Isshiki et al., 2024).
Efficiency considerations appeared in a preclinical setting
that compared ChatGPT-4-assisted feature extraction
with conventional IDL pipelines, reporting nine significant
textural features, 76% accuracy, and a 40% reduction in
analysis time, suggesting practical throughput gains even
when sensitivity slightly trailed traditional software (Laith
R. Sultan et al., 2024).

Parallel work advanced quantitative ultrasound
surrogates of fat content. Ultrasound-derived fat fraction

(UDFF) was shown feasible and significantly different across
grades, reinforcing measurement stability under clinical
conditions (Yun-Lin Huang et al., 2023). Agreement studies
found good concordance between UDFF and MR-PDFF with
ICC = 0.79 but a modest positive bias for UDFF at higher
steatosis levels, highlighting calibration needs across devices
and operators (Reinhard Kubale et al., 2024).

Additional evidence from MASLD cohorts reported UDFF
AUC = 0.98 for =5% MRI-PDFF, while CAP achieved AUC =
0.93, indicating competitive diagnostic performance for
UDFF in threshold-based screening (Huiru Jin et al., 2025).
Studies centered on attenuation imaging (ATI) also showed
strong associations with histology and MRI-PDFF, AUROCs
~0.91-0.97 across grades, and tight ATI-MRI relationships,
suggesting ATl as an accessible proxy for MR in longitudinal
monitoring and triage (Chileka Chiyanika et al., 2023; Alvaro
Postigliatti et al., 2024).

A prospective comparison against shear-wave
elastography/dispersion confirmed ATI as the leading
modality for steatosis grading within the examined
protocol, with significant correlations to disease stage (Kun
Wang et al., 2024). Multiparametric modeling combined
AR, HR, and DV into the Steatoscore 2.0, reaching AUROC
~0.96-0.98 for MR-defined thresholds, low RMSE, and
strong reproducibility, illustrating the benefit of engineered,
complementary ultrasound features with principled fusion
(Laura De Rosa et al., 2024).

Deep learning contributed along two axes: organ
delineation and end-to-end classification. Point-of-care
ultrasound benefited from U-Net-based segmentation and
DenseNet-121 classification, achieving AUC ~0.90 with high
sensitivity on low-quality B-mode images, demonstrating
resilience to portable acquisition constraints (Miriam Naim
Ibrahim et al., 2023). Two-stage pipelines with dedicated
segmentation and classification reported Dice = 0.92 and
AUC=0.84 oninternal and external cohorts, reinforcing the
utility of anatomy-aware preprocessing for generalization
(Pedro Vianna et al., 2023).

Stand-alone classifiers also showed strong performance;
ultrasound and elastography images yielded F1 = 0.995
for the best neural model, and results were comparable to
classical machine learning when feature engineering was
carefully designed (Rodrigo Fernando Costa Marques et al.,
2024). Recent CAD systems with ConvNeXt-style backbones
reached accuracy =82%, with balanced sensitivity/specificity
near ~81-83%, indicating competitive baselines for clinical
decision support (Shang-Yu Chiang et al., 2025).

Methodological advances in risk control applied
conformal prediction atop DL classifiers, achieving ~79%
accuracy in a four-class setting and motivating explainable
Aladd-ons (LIME, SHAP) to support trustworthy deployment
(Tso-Jung Yen et al., 2024). A systematic review and meta-
analysis estimated pooled AUCs of ~0.93 for any HS and
~0.86 for moderate-to-severe HS across CNN studies, while
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also identifying geographic concentration and clinical-
setting biases that limit population-level generalizability
(Akshay Thimmappaiah Jagadeesh et al., 2025).

Across these strands, three recurring gaps appear. First,
texture methods are sensitive to acquisition physics; speed-
of-sound sweeps and attenuation parameters affect speckle
statistics, calling for phase-aware or speckle-invariant
representations to stabilize features across scanners and
presets. Second, DL pipelines benefit from anatomical
context and calibration, yet performance varies with cohort
composition and label standards; agreement with MR-PDFF
or biopsy remains the reference for clinical translation. Third,
quantitative proxies such as UDFF and ATl show strong
correlations and screening utility but require harmonization
across vendors, probes, and operators to curb bias at high
fat fractions.

Proposed Methodology

The cumulative evidence motivates a hybrid strategy that
couples physics-informed descriptors with compact CNN
backbones. Local phase symmetry and monogenic phase
features target contrast-invariant structures resilient to
speckle, while adaptive ternary encodings preserve polarity
under local normalization. Channel-level fusion of grayscale,
phase symmetry, and ternary cues creates a speckle-robust
tensor for lightweight classification, aligning with portability
requirements in POCUS and community settings flagged
by recent reviews. Within this context, the proposed SLaP-
TEX model directly addresses texture-physics sensitivity,
leverages efficient backbones validated in prior work, and
preserves compatibility with quantitative endpoints (UDFF/
ATI) for cross-modality audit and calibration.

Architecture Overview
The SLaP-TEX architecture works in three main stages to
extract reliable features from ultrasound images affected
by speckle noise. The overall workflow of these three stages
is shown conceptually in Figure 1.

Inthe first stage, Local Phase Extraction (LPF) is performed.
This process identifies structure and boundary details that
remain stable even when noise is present. The local phase

map highlights edges and tissue boundaries more clearly
than the raw intensity image.

In the second stage, Adaptive Ternary Texture Encoding
(ATE) converts local intensity variations into ternary patterns.
Each pixel is represented by three possible states that
describe positive, neutral, or negative contrast relative to its
neighbors. This step helps the system remain stable when
brightness or texture changes slightly.

In the third stage, Feature Fusion and Lightweight CNN
Classification combines both the phase and ternary texture
maps with the original grayscale image. The three channels
are fused and passed into a lightweight MobileNetV3-Small
network. This model learns deeper relationships between
texture, phase, and structure, allowing accurate classification
with low computational cost.

Local Phase Filtering

The local phase filtering stage extracts structure-related
information that remains stable under speckle noise. Let
I(x,y) bean ultrasound image. The image is first processed
using the Riesz transform (Fu et al., 2023), which decomposes
itinto orthogonal components. The horizontal and vertical
responses are obtained as i_= * _ and i,= * ,, where
h, and h, are odd symmetric band-pass filters. These
filters respond strongly to oriented features such as tissue
boundaries and fine textures.

From these responses, two key quantities are calculated. The
localamplitude 4(x,y) represents the overall signal strength,
while the local phase ¢(x, y) captures the relative structure
of the underlying pattern. They are defined as

R+ R?
A(xey)=T+R+ R | ¢(x,y)tan‘[\'*;"]

The local phase symmetry
S(x,y) is then computed using Kovesi's phase congruency
approach:

zamax(Ao cos(¢n —q?)—T,O)
ZnAo +e

Here, 0 denotes the orientation index, ¢ isthe mean phase,

and T is a small noise threshold.
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Figure 1: SLaP-TEX Architecture
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This process enhances the structural integrity of the image.
The phase symmetry map emphasizes edges and ridges that
remain consistent under illumination or speckle variations.
It helps preserve diagnostically important tissue boundaries
while reducing random granular noise.

Adaptive Ternary Texture Encoding (ATE)
The adaptive ternary texture encoding stage captures fine-
grained texture variations that are not easily represented
by simple intensity values. After local phase filtering, the
image still contains subtle contrast differences across liver
tissue. These variations are useful for classification but can be
affected by uneven illumination or small brightness changes.
To address this, each pixel is encoded based on its
relation to the intensity statistics of its local neighborhood.
Themean i , and standard deviation ¢, of the surrounding
pixels are first computed. Then, the adaptive ternary code
T, for each pixel 7, is calculated as

L1, —uy>aoy
T,=40,

Ip—,uN‘SOKO'N

—LI,—py <-aoy
where
4 is a scaling constant empirically set to 0.8. This encoding
divides pixel values into three distinct states: bright, neutral,
and dark based on adaptive thresholds.

Unlike binary thresholding methods, which are highly
sensitive to small changes, the ternary approach introduces
a neutral zone that absorbs noise-driven fluctuations.
As a result, the adaptive ternary texture map preserves
meaningful texture contrast while suppressing unwanted
intensity variations. This representation complements the
local phase map by describing the micro-textural differences
that phase information alone cannot capture.

Feature Fusion

Thefinal stage combines the complementary representations

obtained from the previous steps into a unified tensor

suitable for deep learning. The normalized grayscale image
I(x,y), the phase symmetry map s(xy) derived from

the local phase filtering stage, and the ternary texture map
7(x,y) produced by adaptive ternary encoding are

merged to form a three-channel input:

X(x,y):[I(x,y),S(x,y),T(x,y)} )

This fused representation integrates information from
different structural and statistical perspectives. The
intensity channel preserves the overall spatial distribution
of the tissue, the phase channel highlights boundary and
shape cues that are robust to speckle, and the texture

channel captures local contrast variations critical for lesion
discrimination.

By combining these three sources, the resulting tensor
becomes a speckle-robust descriptor that retains both
global and local characteristics of the ultrasound image.
This tensor is then used as the input to the lightweight
convolutional neural network backbone, enabling effective
learning of diagnostic features with reduced sensitivity to
noise and illumination changes.

Lightweight Backbone Integration

The fused feature tensor is processed by a lightweight
convolutional neural network to perform classification with
high efficiency. A modified MobileNetV3-Small architecture
is adopted as the backbone because of its strong balance
between accuracy and computational cost. The network is
fine-tuned for binary classification to distinguish normal and
abnormal liver tissue patterns.

The model begins with depthwise separable
convolutions, which factorize standard convolution
operations to reduce parameters and memory usage while
retaining feature richness. These layers compress redundant
spatial information and emphasize discriminative structures
learned from the fused tensor.

The intermediate layers include Squeeze-and-Excitation
(SE) attention blocks, which adaptively recalibrate channel
responses. This mechanism allows the model to focus on
diagnostically relevant features such as coherent tissue
boundaries or pathological textures, improving robustness
against speckle noise and illumination shifts.

The extracted features are then aggregated using
global average pooling, followed by a sigmoid activation
to produce the final binary classification output.

The entire model contains approximately 2.1 million
parameters, making it compact and suitable for real-time
deployment on embedded or portable diagnostic systems
without compromising accuracy.

Training Configuration

The SLaP-TEX model is trained using a balanced configuration
designed to ensure convergence stability and performance
consistency. The Adam optimizer with a learning rate of

iix ~isusedtoadaptively adjust the learning dynamics
during training. A batch size of 32 provides a suitable trade-
off between gradient stability and computational efficiency,
while 25 epochs are sufficient for convergence under the
proposed dataset.

The model is optimized using the binary cross-entropy
loss function, which is well-suited for two-class medical
image classification. Early stopping with a patience of six
epochs is applied to prevent overfitting by monitoring
validation accuracy. The evaluation metrics include
accuracy, area under the ROC curve (AUC), and F1-score,
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Table 1: Training Configuration

Parameter Value

Optimizer Adam

Learning rate ix

Batch size 32

Epochs 25

Loss Binary cross-entropy

Early stopping Patience =6

which collectively provide a comprehensive assessment of
classification performance.

The training utilizes the RGM-augmented ultrasound
dataset derived from Region-Guided Mixup Augmentation,
ensuring consistency in data representation while enhancing
diversity through augmentation (Sahaya Mercy and Sheela
2025). The complete training setup is summarized in Table 1,
which outlines all key parameters used for the optimization
process.

3.7 SLaP-TEX Algorithm

The SLaP-TEX algorithm defines a structured computational
pipeline that integrates phase-aware texture encoding
with lightweight deep learning. Algorithm 1 presents the
full workflow for both training and inference, ensuring
reproducibility and computational efficiency. The procedure
begins with preprocessing, where ultrasound images are
resized to 224 x 224 pixels and normalized to the [0, 1] range.
Each image is divided into mini-batches of 32 samples for
stable gradient updates.

Algorithm - 1
Inputs:

« Ultrasound image

. [ c RHXW

« Hyperparameters: image size
S=i ,neighborhood
N

(e.g.(5%5)).(2=0.8), Adam LR(= 1073), batch (=32), epochs

(=25)
« Backbone: MobileNetV3-Small (binary head)
Outputs:

« Predicted label y i
« Trained weights @"
PROC SLaP_TEX_TRAIN(D_train, D_val, ©_init)

1: # Preprocess and batching
2: foreach (I, y) in D_train U D_val do
3: |« NormalizeTo[0,1]( Resize(l, SxS) )

4: end for

5: B_train < CreateBatches(D_train, batch=32) ; B_val
« CreateBatches(D_val, batch=32)

6: # Training loop

7: © « O_init

8: best_score « —

9: patience <0

10: forepoch=1...25do

11:  foreach batch (I_b, y_b) in B_train do

12:  X_b « BUILD_FUSED_TENSOR(I_b) # Sec. 3.2-3.4

13:  y_b <« CNN_FORWARD(X_b; ©) # MobileNetV3-
Small

14: L <« BCE(y_b,y_b)

15: © <« ADAM_UPDATE(Q,V_OL, Ir=1e-3)

16: endfor

17:  #Validation

18:  score < EVAL(B_val, ©) # Accuracy/AUC/F1

19: if score > best_score then

20: best_score « score ; ©* « O ; patience < 0
21:  else
22: patience « patience + 1

23: if patience = 6 then break end if # Early stopping
24:  endif
25: end for

26: return ©*

END PROC

Feature Construction
During feature construction, the LPF stage applies a
Riesz transform using odd-symmetric band-pass filters
to extract orientation-specific responses. From these
responses, the local amplitude and phase maps are derived,
followed by computation of phase symmetry to highlight
structure-consistent edges and ridges. Parallelly, adaptive
ternary texture encoding (ATE) is used to transform
local intensity variations into three-state texture codes
based on neighborhood statistics. These complementary
representations are then concatenated with the grayscale
input to form a three-channel tensor that captures
amplitude, phase, and texture information simultaneously.
In the training loop, the fused tensors are
passed through the MobileNetV3-Small backbone
for forward propagation. The network output is
compared with ground-truth labels using binary
cross-entropy loss. Parameters are optimized
using the Adam optimizer with a learning rate of 1
x 1073, Validation performance is monitored after
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each epoch using accuracy, AUC, and Fl-score
metrics. Early stopping with a patience of six
epochs prevents overfitting and ensures optimal
convergence.

FUNC BUILD_FUSED_TENSOR(I_batch)

1. # Local Phase Filtering (LPF) via Riesz + phase
symmetry

2: (R_x, R_y) «— RIESZ_TRANSFORM(I_batch, h_x,
h_y) # odd band-pass

3: A —sqrt(l_batchA2 + R_xA2 + R_y/\2)

4: @ <« atan2(sqrt(R_xA2 + R_yA2), clamp(l_batch, ) )

5: S« PHASE_SYMMETRY(A, o, orientations=0,
threshold=T, eps=¢)

6: # Adaptive Ternary Texture Encoding (ATE)

7: (U_N, 0_N) < LOCAL_STATS(I_batch, window=N)

8: T« sign_thresh(I_batch — u_N, a-:0_N) #1if >
a-o, 0if |-|<a-0, -1 if < —a-0

9: T« MAP_TERNARY_TO_FLOAT(T) # e.g., {-1,0,1} —
{0,0.5,1}

10: # Channel fusion

11: X < CONCAT_CHANNELS([I_batch, S, T]) #
shape: (B, S, S, 3)

12: return X
END FUNC

Inference

The inference procedure follows the same transformation
steps but uses the trained weights (0*) to generate
predictions. Each test image undergoes the LPF and ATE
stages, producing a fused tensor that is evaluated by the
trained network. The model outputs a probability value,
which is thresholded at 0.5 for binary classification.

PROC SLaP_TEX_INFER(l, ©%*)
1: |« NormalizeTo[0,1]( Resize(l, SxS) )
2: X« BUILD_FUSED_TENSOR(l)
3: p < CNN_FORWARD(X; ©%)
4:y—1ifp=0.5else0
5: returny, p

END PROC

Experimental Setup
All experiments were conducted in a controlled
computational environment to ensure reproducibility and
consistency of results. The proposed SLaP-TEX framework
was implemented using TensorFlow 2.16 and Python 3.12
on an Ubuntu 24.04 LTS operating system. The hardware
configuration comprised an AMD Ryzen 9 7900 processor
with 24 cores, 64 GB RAM, and an NVIDIA RTX 4070 Ti SUPER
GPU, providing a balanced setup for both CPU and GPU-
based experiments.

The dataset consisted of RGM-augmented ultrasound
liver images, containing 877 training and 220 validation

samples, each resized to 224 x 224 pixels. All images were
preprocessed using normalization and contrast preservation
steps to maintain consistency with clinical-quality standards.
For baseline performance evaluation, all models were
first trained and validated using CPU-only execution to
assess computational feasibility on non-GPU systems.
Subsequently, CUDA acceleration was enabled to analyze
inference speed improvements and confirm real-time
diagnostic capability. The complete hardware and software
specifications used for the experiments are summarized in
Table 1.

Results and Discussion

The performance of the proposed SLaP-TEX framework was
quantitatively evaluated and compared against conventional
convolutional backbones and the previously developed
RGM-Baseline. The evaluation used the RGM-augmented
ultrasound dataset consisting of liver B-mode images
labeled according to steatosis severity. The experiments
followed the standardized configuration described in
Section 3.6, with identical data splits and preprocessing to
ensure fair comparison.

Quantitative Evaluation

The comparative performance results are summarized in
Table 2, which includes accuracy, AUC, F1-score, total model
parameters, and final loss values for each architecture.
The proposed SLaP-TEX achieved a classification accuracy
of 99.02%, an AUC of 0.998, and an F1-score of 0.982,
outperforming both the RGM-Baseline and other
conventional CNN architectures. When compared to the
RGM-Baseline, the SLaP-TEX achieved a 0.09% gain in
accuracy and a 0.004 improvement in AUC, while reducing
the model size by approximately 32% (from 3.1 M to 2.1
M parameters). These improvements demonstrate the
enhanced representational efficiency of the proposed
architecture.

The high AUC score reflects the model’s ability to
effectively separate the steatosis and non-steatosis classes,
indicating strong sensitivity and specificity. The minimal
validation variance across epochs suggests consistent

Table 2: Experimental setup for SLaP-TEX framework

Component Specification

Processor AMD Ryzen 9 7900 (24 cores)
Memory (RAM) 64 GB

GPU NVIDIA RTX 4070 Ti SUPER
Operating System Ubuntu 24.04 LTS

Software Libraries TensorFlow 2.16, Python 3.12
Dataset

Data Split

RGM-augmented ultrasound images
877 training / 220 validation

Image Resolution 224 x 224 pixels
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generalization across different patient cases and imaging
conditions. Furthermore, the reduction in cross-entropy
loss (0.018) indicates better optimization stability and
convergence behavior. Unlike deeper networks such as
ResNet50 and EfficientNet-B0, which require substantial
computational resources, the lightweight MobileNetV3-
based backbone integrated in SLaP-TEX enables faster
training while maintaining high discriminative power.

Superior performance can be attributed to the
combination of phase-aware and texture-based feature
encoding. The LPF step ensures invariance to speckle and
contrast fluctuations, while the adaptive ATE captures
local structural polarity in intensity distributions. This
combination allows the network to leverage stable,
high-frequency texture features, which are typically lost
in standard CNN feature hierarchies. Consequently, the
proposed model shows smoother convergence with fewer
oscillations in validation curves, confirming its enhanced
robustness to ultrasound-specific noise patterns.

Compared to ResNet50 and EfficientNet-B0, which
achieved AUC scores of 0.981 and 0.990 respectively, the
proposed framework provides a clear performance margin
(Figure 2). The gain, though modest in absolute terms,
represents a meaningful improvement in clinical decision
support scenarios where false positives and false negatives
can directly impact diagnostic confidence. The lightweight
nature of the model (2.1 M parameters) ensures scalability
to embedded ultrasound systems and facilitates real-time
inference (Figure 3).

The proposed model demonstrates 0.09 % improvement
in accuracy and 0.004 AUC gain over the baseline while
reducing parameters by ~32 %. The convergence is
smoother with reduced validation variance, confirming
enhanced speckle robustness.

The comparative loss analysis, illustrated in Figure
3, demonstrates that the proposed SLaP-TEX model
achieved the lowest loss value of 0.018, indicating
superior convergence stability. Compared with traditional
architectures such as ResNet50 and EfficientNet-B0, the
SLaP-TEX framework exhibits reduced error propagation and
improved optimization efficiency during training.

Ablation Analysis
Anablation study was conducted to examine the contribution
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of individual modules within the proposed SLaP-TEX methods
pipeline. The results are presented in Table 3, highlighting
Table 3: Comparative results of SLaP-TEX with existing models

Model Accuracy (%) AUC F1-score Params (M) Loss
ResNet50 95.12 0.981 0.94 25.6 0.054
EfficientNet-BO 96.32 0.990 0.95 53 0.043
RGM-Baseline (Contribution 1) 98.93 0.9978 0.978 3.1 0.022
SLaP-TEX (Proposed) 99.02 0.998 0.982 2.1 0.018
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the impact of excluding specific components such as the
LPF or ATE. When the LPF component was removed, the
accuracy dropped from 99.02% to 97.42%, and the AUC
decreased from 0.998 to 0.986. This reduction emphasizes
the role of phase symmetry in stabilizing texture features
under variable speckle conditions.

Similarly, the exclusion of ATE led to a decrease in
accuracy to 98.12% and an AUC of 0.992, indicating that the
ternary encoding enhances local texture discrimination by
adaptively normalizing regional contrast variations. The
absence of both fusion and specialized encoders, using only
grayscale input, resulted in the lowest accuracy of 96.34%
and AUC of 0.978, reflecting the limitations of intensity-only
descriptors in speckle-prone ultrasound data.

The complete SLaP-TEX configuration combining both
LPF and ATE achieved the highest overall performance,
confirming that the synergy between the two handcrafted
feature extractors provides the most discriminative and
invariant representation. The consistent gain in accuracy
and AUC across configurations underscores that both
modules contribute complementary information LPF
offering structural stability and ATE enhancing textural
polarity sensitivity.

This analysis validates the design motivation of
integrating handcrafted phase-texture descriptors with
lightweight CNN learning. The fused feature space not only
improves classification accuracy but also ensures robustness
againstimage artifacts caused by acquisition variability, such
as probe angle, gain, and patient anatomy. The reduced
model complexity further signifies its suitability for clinical
integration, where resource constraints are a critical factor.
Both LPF and ATE components significantly contribute to
discriminative power. Their joint inclusion yields superior
classification reliability.

The proposed SLaP-TEX framework also demonstrates
remarkable computational efficiency during inference. The
average inference latency measured on a CPU (AMD Ryzen
9 7900) is approximately 19 ms per image, which supports
real-time diagnostic deployment in clinical or portable
ultrasound environments. When executed on a GPU,
the latency further decreases to around 5 ms per image,
making the model highly suitable for high-throughput
screening and on-device medical imaging applications. This
efficiency confirms that the combination of phase-texture
fusion and a lightweight MobileNetV3 backbone not only
enhances diagnostic accuracy but also ensures low-latency

Table 4: Ablation study of proposed work

Configuration Accuracy (%) AUC

Without Local Phase 97.42 0.986
Without Ternary Encoding 98.12 0.992
Without Fusion (Grayscale only) 96.34 0.978
Full SLaP-TEX 99.02 0.998

performance compatible with real-world ultrasound
workflows.

Conclusion

The proposed SLaP-TEX model presents a novel, speckle-
robust, and computationally efficient framework for
ultrasound-based liver steatosis analysis. By integrating local
phase symmetry and adaptive ternary texture encoding,
the method effectively captures complementary structural
and textural information, achieving a fine balance between
noise suppression and feature discriminability. The fusion
of handcrafted phase-texture features with a MobileNetV3-
Small backbone enables the extraction of clinically
relevant patterns while maintaining low computational
cost, making it ideal for real-time and edge-level medical
imaging systems. Comprehensive experiments confirm
that the SLaP-TEX approach surpasses conventional
deep networks in terms of accuracy, AUC, and stability,
while maintaining fewer parameters and faster inference.
The design demonstrates strong generalization under
varying imaging conditions, validating its applicability to
diverse clinical environments. Future work will extend this
framework toward multi-disease ultrasound classification,
exploring cross-domain generalization across modalities
such as CT and MRI. Further integration of explainable Al
(XAI) mechanisms will enhance interpretability, ensuring
transparency and trust in clinical decision-making. Through
this direction, SLaP-TEX represents a significant step toward
deployable, interpretable, and speckle-resilient Al solutions
in medical imaging.
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