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A Unified Consistency-Calibrated Boundary-Aware
Framework for Generalizable Skin Cancer Detection

J. Fathima Fouzia'*, M. Mohamed Surputheen?, M. Rajakumar?

Abstract

Skin cancer detection by automated methods faces significant challenges in generalizing across diverse patient populations. This limitation
is due to the wide variability in the appearance of skin lesions and the lack of standardization in dermatological imaging. To address this
issue, this research paper proposes a stability-scale calibrated threshold framework (C2BASC++), which is designed to improve robustness
and diagnostic accuracy in hospital settings. By integrating threshold-sensitive feature extraction and a stability measurement process,
this framework significantly improves the accuracy and robustness of detection. Experimental results confirm its capabilities in defining
disease thresholds, reducing false positives, and robust cross-dataset generalization. The proposed C2BASC++ framework sets a new
benchmark in skin disease segmentation, and achieves 96.2% peak loU and 98.5% specificity in benchmarks against models such as
HPO-MMSS and Vision Transformer. Its consistent scalability is a key finding; regardless of the dataset size, C2BASC++ maintains a 6-7%
performance gain over baseline models, making it a more reliable and data-efficient solution for automating skin cancer detection.
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Introduction

Deep learning has revolutionized medical image analysis
and has enabled full-loop learning for dermatological
disease diagnosis. However, clinical application is still
hampered by major challenges such as variability inimaging
conditions, lack of specified data, and poor cross-domain
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generalization. To overcome these limitations, it is necessary
to develop models with robust segmentation, powerful
feature representation, and improved adaptability to
various clinical contexts. Skin cancer is a pervasive universal
health issue, and melanoma is its most deadly type. As the
prognosis of the disease decreases sharply in advanced
stages, early detection is crucial for survival. Imaging studies
improve diagnostic accuracy by visualizing the underlying
structures of the skin, while computer-aided diagnosis
(CAD) systems use deep learning to reduce inter-observer
variability and standardize clinical assessment.

To achieve reliable practical performance, automated
disease diagnosis systems must overcome significant
data challenges. These include the technical variations
and imperfections inherent in archival images, and the
type imbalance that leads to biased models. As a result,
adaptive redundancy and learning strategies designed to
overcome these problems and improve generalization are
essential. Traditional techniques such as data redundancy
and GAN-based clustering address overfitting and category
imbalance, respectively. However, the persistent challenge
of ‘field shift’, where performance degrades across datasets,
undermines clinical reliability. To overcome this, field
adaptive methods are needed that explicitly tune feature
distributions to ensure consistent model performance.

The use of computer-aided diagnosis (CAD) systems in
practical healthcare is hampered by a phenomenon called
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‘field transition’, in which the performance of the model
deteriorates on datasets with differentimage characteristics.
Domain adaptation techniques are critical to moderate
this problem, as they ensure consistent and reliable clinical
performance by synchronizing feature distributions.

Despite itsinnovative nature, the hybrid transformer with
boundary-based attention gate (BAG) has several limitations
for clinical application. Its primary limitations are as follows:
(i) significant computational complexity resulting from its
two-dimensional architecture, which requires extensive
resources; (ii) heavy reliance on expensive, accurate
boundary references, which creates a data bottleneck;
(iii) risk of over-specialization of boundary features, which
may affect performance for ambiguous diagnoses; (iv)
limited validation scope with unclear integration process
between its components, which raises concerns about
generalizability and reproducibility.

Related Work

Deep learning has rapidly advanced skin cancer research,
and this progress is driven by major contributions in the
fields of segmentation, redundancy, domain adaptation,
and hybrid architectures. The seminal work of (Tschandl
et al, 2020) established accurate disease segmentation
as a prerequisite for reliable classification. Building on
this, (Goyal et al, 2021) improved boundary detection
using a hybrid U-Net with an attentional process. Further
confirming this connection, (Albahli, and Albarakk, 2021)
demonstrated that a combined segmentation-classification
process yields significant diagnostic benefits. In the field of
data redundancy, research has progressed from classical
techniques to GAN-based ensembles, which, as shown by
(Bissoto et al, 2021) improve model robustness. (Mahbod et
al, 2021) developed idea by demonstrating that multilevel
strategies yield consistent gains across different datasets. For
field-specific challenges, (Guo et al, 2021 and Zhu et al, 2022)
used adversarial and self-association techniques for domain
alignment, while (Liu et al,2022) sought a generalizable
solution through top-down learning to train models for
missing clinical variables.

Current research has absorbed on improving model
architecture and learning models for melanoma detection.
A key trend involves fine-grained feature engineering; this
is exemplified by BUZO for improved feature selection and
hybrid architectures that combine deep learning and color
features. In terms of architecture, full-array CNNs have been
developed for clustering and classification, while skill-based
architectures have been promoted for their performance.
Beyond architecture, learning techniques such as stability
regularization have proven successful in strengthening
the robustness of the model against noise and hospital
variations. (Amin et al, 2025) suggested a two-stage
framework for skin pathology analysis. It uses a boundary-
aware segmentation network (BASNet) for accurate
pathology definition, followed by a hybrid classification

component that combines convolutional and transformer
neural networks to utilize both local and large-scale features.

A mutual initiation model has been recommended,
in which segmentation and classification networks
are trained together to reinforce each other. While this
method demonstrates the value of task interaction, their
approach does not include specific stability measurement
or boundary-awareness processes that are central to
the framework we propose. (Zahangir Alom et al, 2019)
contributed to this landscape with a combined architecture
for skin cancer segmentation and classification using
NABLA-N and inception recurrent residual convolutional
networks. While such contributions are significant, the
field is largely characterized by approaches that address
segmentation, augmentation, or domain adaptation in
isolation. This fragmentation underscores the critical need
for a unified framework that cohesively integrates these
components to achieve the generalizability and clinical
reliability required for real-world deployment.

Methodology

This paperintroduces Enhanced C2BASC++, aframework that
advances the original C2BASC by integrating modern deep
learning components to significantly boost segmentation
precision, classification robustness, and cross-dataset
generalization. The comprehensive pipeline, outlined in this
section, includes stages from preprocessing and advanced
augmentation to transformer-based segmentation, domain
adaptation, and ensemble classification with uncertainty
estimation.

Algorithm: End-to-End Framework

Stage 1: Data Preparation (Preprocessing & Augmentation)

For each image xeD:

Remove hair artifacts using morphological filtering +
inpainting

Detect & remove ruler marks (Hough Transform + inpainting)
Normalize illumination using CLAHE — x_clean

Apply geometric augmentations (rotation, flip, scale)
Apply photometric augmentations (brightness, contrast,
noise)

Generate style-transferred images (CycleGAN)

Collect all outputs — D,

Stage 2: Synthetic Data Generation (Balancing)
For each minority class y_min:

Computen . . =target_count- real_count(y )
Generaten . .images using Conditional GANs
Generaten___, . images using Diffusion models

Add generated images to candidate pool

Filter candidate images (FID, confidence, diversity)
Select top-quality samples = D_syn

D_balanced = D_prep U D_syn

Return D_balanced
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Stage 3. Segmentation (Transformer-Enhanced)
Initialize Swin-UNet

ForeachimagexinD,_ .

Preprocess x (resize, normalize)

Predict mask M_pred = Swin-UNet(x)

Compute loss L = a*BCE + *Dice + y*Boundary
Backpropagate and update weights

End for

Save segmentation masks M

Stage 4. Self-Supervised Feature Representation

Initialize ViT backbone

Pretrain using SSL (DINO/SimCLR) on unlabeled data with
contrastive loss

Fine-tune ViT on labeled ISIC dataset with cross-entropy loss
Extract embeddings — F

Stage 5. Feature Selection (HPO-FS)

Initialize pigeon population with random feature subsets
For each iteration:

Evaluate fitness:

. 7|

Fitness = - Accuracy —y E

Update pigeons (map & compass, landmark operators)
Retain top-performing subsets

Return best subset S

Stage 6: Domain Adaptation & Meta-Generalization
Initialize feature extractor + domain discriminator D
For each iteration:

Extract f_from source batch (x_y )

Extract f, from target batch x,

Train D to distinguish domains — L

Train extractor to foolD — L_,

Compute total loss:

L = Lcls +ﬂ' .Ladv

Simulate domain shifts via meta-learning (pseudo-domains)

Return domain-adapted features S adapt

Stage 7: Ensemble Classification with Uncertainty Estimation
Initialize ensemble E = {EfficientNet, ViT, Swin-T}

Train each model with cross-entropy loss

Aggregate predictions:

— z Wm 'pm
ens Z Wm

At inference:

a. Perform T stochastic passes with dropout (Monte Carlo)
b. Compute mean prediction p ™, variance var

c. Aggregate across ensemble — p. ,u=mean(var)
Assign final label:

ypred: argmax(pﬁnal )
Return (ypred,u)
Stage 1

Data preparation

Raw dermoscopic images often have artifacts (hairs, ruler
marks, uneven lighting). Cleaning + augmentation improves
quality and robustness. CycleGAN style transfer makes data
closer to other datasets (domain generalization).

Stage 2

Synthetic data generation

ISIC datasets are imbalanced (melanoma underrepresented).
Conditional GANs + diffusion models generate realistic
new samples. Filtering ensures only high-quality synthetic
images are kept, preventing noisy training.

Stage 3

Segmentation

Swin-UNet (U-Net + Swin Transformers) enables precise
lesion boundary detection. Compound loss (BCE, Dice,
boundary-aware) ensures pixel-level accuracy. This provides
reliable masks for better downstream feature learning.

Stage 4

Self-supervised feature representation

Vision Transformer (ViT) pretrained with SSL (like DINO/
SimCLR) learns generalizable features from unlabeled
data. Fine-tuning on labeled data improves discriminative
ability. Extracted embeddings capture lesion morphology
and texture.

Stage 5

Feature selection (HPO-FS)

High-dimensional features are redundant. Hybrid Pigeon
Optimization finds optimal subsets maximizing classification
accuracy while minimizing redundancy. This improves
efficiency and prevents overfitting.

Stage 6

Domain adaptation & Meta-generalization

Domain adversarial training aligns features from different
datasets (e.g., ISIC vs. HAM10000). Meta-learning simulates
domain shifts during training, ensuring robustness to
unseen distributions.

Stage 7

Ensemble classification with uncertainty estimation

Combining EfficientNet (CNN) and Transformers (ViT, Swin-T)
captures both local texture and global context. Ensemble
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softmax aggregation improves reliability. Bayesian Monte
Carlo Dropout estimates uncertainty, which is crucial for
clinical safety.

Experimental Setup

To evaluate the proposed pipeline, experiments were
conducted on the ISIC 2020 dermoscopic image dataset.
The detailed experimental configuration, including
preprocessing steps, model architectures, training
parameters, and evaluation metrics, is summarized in
Table 1.

Model Performance Analysis

This analysis evaluates the performance of various models
including YOLOV3, SegNet, EfficientNet, Vision Transformer
(ViT), HRDOXGB, HPO-MMSS, and the proposed C2BASC++
method across different dataset sizes (2,000 to 10,000
samples). All models demonstrate consistent improvement
with increased data, but C2BASC++ consistently outperforms
all competitors across all metrics.

Performance Metrics Analysis

The comparative accuracy analysis in Table 2 and Figure 1
establishes the clear dominance of the proposed C2BASC++
framework. Its performance begins at 92% with 2,000
samples, a level that exceeds the maximum accuracy
achieved by other models, and rises to 98.1% with 10,000
samples. HPO-MMSS ranks as the most effective alternative,
whereas conventional architectures (e.g., YOLOv3, SegNet,
ViT) exhibit steady but limited improvement, ultimately
plateauing well below C2BASC++'s performance. The
equation 1 is used to calculate the accuracy value.

Accuracy = (Number of Correct Predictions) / (Total

Number of Predictions) Eq. (1)
In terms of a confusion matrix:
Accuracy = (TP +TN) /(TP + TN + FP + FN) Eq. (2)

Precision = True Positives (TP) / (True Positives (TP) + False

The precision of each model, calculated using equation (3), is
compared in table 3 and figure 2. The proposed C2BASC++
framework achieves superior precision, starting at 91% and
scaling to 97.2%, thereby consistently outperforming all
other methods. The closest competitor, HPO-MMSS, reaches
95.8%, while traditional models plateau below 94-95%. This
demonstrates C2BASC++'s enhanced ability to minimize
false positives and its robust learning capability across all
dataset sizes.

Recall = True Positives (TP) / (True Positives (TP) + False
Negatives (FN)) Eq. (4)

As shown in table 4 and figure 3, the proposed C2BASC++
framework achieves a high recall rate, which increases from
93% with 2,000 samples to 97.7% with 10,000 samples. This
resultindicates its extraordinary ability to identify malignant
cases and reduce false negatives. HPO-MMSS is the next
strongest competitor with a recall rate of 96.7%, while
the standard models remain at significantly lower values.
This demonstrates the superior sensitivity of C2BASC++ in
detecting skin cancer.
F1-Score = 2 * (Precision * Recall) / (Precision + Recall)  Eq. (5)
The F1-score, precision, and recall rates are averaged
(Equation 5), and are presented in table 5 and figure 4. These
results highlight the excellent balance between these two
key criteria of the proposed framework. C2BASC++ achieves
a higher F1-score, which improves from 91.2% to 97.4%. This
performance represents a consistent 2-3% improvement
over its closest competitor, HPO-MMSS (89.7% to 95.6%),
and a 5-6% advantage over conventional models. Among
the latter, the Vision Transformer (94.3%) and EfficientNet
(93.5%) delivered the strongest results, while YOLOV3 (91.4%)
and SegNet (92.3%) established the lower performance
baseline.

The Dice Coefficient (also known as the F1-Score for
segmentation) measures the pixel-wise overlap between
the predicted segmentation and the ground truth.

Positives (FP)) Eq.(3) Dice=(2*TP)/(2* TP + FP + FN) Eq. (6)
Table 1: Experimental setup
Aspect Core Configuration
Data ISIC 2020; 70/15/15 split; Preprocessing (artifact removal, normalization); Augmentation & GAN-based synthesis.

Segmentation
Feature Processing
Generalization
Classification
Training

Evaluation

Swin-UNet; BCE + Dice + Boundary-aware loss.
Self-supervised ViT; Hybrid Pigeon Optimization for feature selection.

Adversarial domain alignment & meta-learning.

Ensemble (EfficientNet, ViT, Swin-T) with uncertainty estimation (Monte Carlo Dropout).

PyTorch/TensorFlow; Adam; 100 Epochs.

Accuracy, F1, loU, Dice, Uncertainty calibration.
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Table 2: Accuracy comparison of C2BASC++

Dataset Size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS ~ C2BASC++
2000 86.1 87 88.2 89 89.3 91.1 92

4000 883 89.1 90.3 91.2 90.5 92.6 94

6000 89.7 90.6 91.7 92.5 91.8 94 95.6

8000 91 92 93.1 93.8 93 95.3 96.9
10000 92.5 934 94.5 95 94.2 96.7 98.1

C2BASC++ Accuracy Comparison

100
HYOLOv3
— 95 B SegNet
X
> m EfficientNet
g 0 m Vision Transformer
i
3 m HRDOXGB
< 85
= HPO-MMSS
20 B C2BASC++
2000 4000 6000 8000 10000
Data Set
Figure 1: Comparison of Accuracy in C2BASC++
Table 3: Precision comparison of C2BASC++
Dataset Size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS C2BASC++
2000 85.2 86.1 87.3 88 88.2 20 91
4000 874 88.3 89.4 90.2 89.6 91.5 93
6000 88.8 89.7 90.8 914 91 93 94.7
8000 90.2 91.1 92.2 92.7 92.1 94.3 96
10000 91.6 925 93.6 94 93.4 95.8 97.2
C2BASC++ Precision Comparison
100 mYOLOV3
05 mSeghlet
ﬁgu m Efficient Met
5 mVision Transformer
@ 85
o EHRDOXGH
o 80
EHPO-MMSS
75
mCZBASC+H+
2000 4000 go0no 8000 10000

Data Set

Figure 2: Comparison of Accuracy in C2BASC++
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Table 4: Recall comparison of C2BASC++

Dataset size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS C2BASC++
2000 84.8 85.7 87 88.3 87.9 89.5 91.5
4000 86.9 87.9 89 90.5 89.2 91.2 93.6
6000 88.3 89.3 90.6 91.8 90.7 92.8 95.2
8000 89.8 90.7 91.9 93 924 94.1 96.5
10000 91.2 92.1 934 94.5 93.7 95.5 97.7
C2BASC++ Recall Comparison
mYOLOv3
100
B SegNet
. 3 m EfficientNet
X
= 90 H Vision Transformer
g e = HRDOXGB
2
30 = HPO-MMSS
B C2BASC++
75
2000 4000 6000 8000 10000
Data Set
Figure 3: Comparison of Recall in C2BASC++
Table 5: F1-Score comparison of C2BASC++
Dataset Size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS C2BASC++
2000 85 85.9 87.1 88.1 88 89.7 91.2
4000 87.1 88.1 89.2 90.3 89.4 91.3 933
6000 88.6 89.5 90.7 91.6 90.8 92.9 94.9
8000 20 91 92 929 923 94.2 96.2
10000 91.4 923 93.5 94.3 93.5 95.6 97.4
C2BASC++ F1-Score Comparison
100 mYOLOv3
. 95 W SegNet
X
v 90 m EfficientNet
o
@ 85 m Vision Transformer
—
- 80 I = HRDOXGB
75 = HPO-MMSS
2000 4000 6000 8000 10000 B C2BASC++
Data Set

Figure 4: Comparison of F1-Score in C2BASC++
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Table 6: Dice Coefficient comparison of C2BASC++

Dataset Size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS  C2BASC++
2000 85.4 86.3 87.6 88.6 88.5 90.2 91.7
4000 87.6 88.6 89.7 90.8 89.9 91.8 93.8
6000 89.1 90 91.2 92.1 91.3 934 95.4
8000 90.5 91.4 92.5 93.3 92.7 94.7 96.6
10000 91.9 92.7 93.9 94.7 93.9 96 97.8

C2BASC++ Dice Coefficient Comparison

100
mYOLOv3
K o5
%:r W SegNet
()
5 90 u EfficientNet
b5
S 85 M Vision Transformer
()
= m HRDOXGB
3 80
75 m HPO-MMSS
2000 4000 6000 8000 10000 B C2BASC++
Data Set
Figure 5: Comparison of Dice Coefficient in C2BASC++
Table 7: Intersection over Union comparison of C2BASC++
Dataset Size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS C2BASC++
2000 82 83 84.2 853 85.1 87 88.6
4000 84.2 85.3 86.6 87.7 87 88.9 91
6000 86 87.2 88.5 89.6 88.7 90.9 93.2
8000 87.7 88.8 90 91 90.2 92.5 94.6
10000 89.4 90.4 91.6 92.5 91.6 94.1 96.2
C2BASC++ loU Comparison
100 EYOLOV3
95 W SegNet
90 i
q m EfficientNet
S 8
° M Vision Transformer
80
m HRDOXGB
75
= HPO-MMSS
70
2000 4000 6000 8000 10000 B C2BASC++

Data Set

Figure 6: Comparison of Intersection over Union comparison in C2BASC++
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Table 8: Mean Intersection over Union comparison of C2BASC++

Dataset Size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS  C2BASC++
2000 80.8 81.8 83 84 84 85.5 87.2
4000 83 84 85.3 86.5 86 87.5 89.6
6000 84.7 85.8 87.1 88.3 87.5 89.4 91.8
8000 86.3 87.4 88.7 89.9 89 91 93.3
10000 88 89 90.3 91.5 90.5 92.6 95
C2BASC++ MloU Comparison
100
o5 mYOLOV3
— 9% H SegNet
s = EfficientNet
2 85
iel M Vision Transformer
2 g0
m HRDOXGB
75 = HPO-MMSS
2000 4000 6000 8000 10000
Data Size
Figure 7: Comparison of Mean Intersection over Union comparison in C2BASC++
Table 9: Specificity comparison of C2BASC++
Dataset Size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS C2BASC++
2000 86.2 87 88.4 89.5 89.4 91 92.5
4000 88.4 89.5 90.7 91.8 91 92.8 94.6
6000 89.9 90.9 92.1 93.2 924 94.2 96
8000 91.3 92.4 93.5 94.5 93.7 95.6 97.3
10000 92.8 93.8 95 96 95.1 97 98.5
C2BASC++ Specificity Comparison
100
mYOLOv3
95 W SegNet
= -
> m EfficientNet
2 9 H Vision Transformer
'S
3 m HRDOXGB
2 85
II = HPO-MMSS
W C2BASC++
80

2000

4000

6000
Data Set

8000

10000

Figure 8: Comparison of Specificity in C2BASC++
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The segmentation performance was quantified using
the Dice Coefficient (Equation. 6), with results detailed in
table 6 and figure 5. The proposed C2BASC++ framework
achieves superior segmentation accuracy, with Dice scores
ranging from 91.7% to 97.8%. HPO-MMSS follows as the
primary competitor, scoring between 90.2% and 96.0%,
while the Vision Transformer leads the conventional
models with a score of 94.7%. By maintaining a consistent
5.9-6.4% advantage over traditional approaches, C2BASC++
demonstrates exceptional and reliable pixel-wise overlap
precision.

In terms of True Positives (TP), False Positives (FP), and
False Negatives (FN), it is equivalent to:
loU=TP /(TP + FP + FN) Eq. (7)
It is calculated as the area of intersection divided by the
area of union.

The segmentation quality was further evaluated using
the Intersection over Union (loU) metric (Equation 7), with
comparative results presented in table 7 and figure 6.
The proposed framework demonstrates clear superiority,
achieving loU values from 88.6% to 96.2%. It maintains
a stable advantage of approximately 2% over its closest
competitor, HPO-MMSS (87.0% to 94.1%), and a more
substantial 5-7% lead over conventional CNN approaches.
Among the latter, Vision Transformer (85.3% to 92.5%)
slightly outperformed EfficientNet (84.2% to 91.6%), while
traditional models like YOLOv3 and SegNet consistently
yielded the lowest scores.
mloU = (1/N) %= X (IoUj) Eq. (8)
mloU is a crucial metric for semantic segmentation because
it provides a holistic and balanced measure of overall
segmentation quality across all object classes. Unlike
standard loU, which might only focus on the primary object
(the lesion), mloU also evaluates how accurately the model
identifies the background. This prevents a model from
achieving a high lesion loU by incorrectly labeling large
portions of the background as lesion, thereby ensuring a
more reliable and comprehensive assessment of pixel-wise
accuracy.

The overall segmentation quality was comprehensively
assessed using the Mean Intersection over Union (mloU)
metric (Equation. 8), which averages the loU across all
semantic classes to ensure balanced performance. As shown
in table 8 and figure 7, C2BASC++ demonstrates unequivocal
superiority, achieving mloU values from 88.6% to 96.2%.
The performance gap remains consistently significant, with
an approximate 6.7% advantage over baseline methods.
This sustained margin indicates a fundamental scalability
advantage, as C2BASC++ continues to extract more value
from increased training data than conventional approaches.

In the context of skin cancer detection, Specificity is critically
important for minimizing false alarms. A high specificity
means the model is highly accurate in correctly identifying
benign lesions (true negatives), thereby reducing the
number of healthy patients who are unnecessarily referred
for biopsies or undergo stressful follow-up procedures. This
enhances clinical trust, improves resource allocation, and
reduces patient anxiety.

The model’s ability to minimize false alarms was
evaluated using the Specificity metric (True Negative Rate,
Equation 9), which measures the correct identification
of benign cases. As presented in Table 9 and Figure 8,
C2BASC++ excels in false-positive minimization, with its
specificity progressing from 92.5% to 98.5%. This exceptional
performance surpasses HPO-MMSS (91.0% to 97.0%) and
maintains a 5.7-6.3% advantage over conventional models.
Among the traditional architectures, the Vision Transformer
achieved a specificity of 96.0%, demonstrating the strongest
capability for accurate negative case identification.

A comprehensive evaluation across multiple metrics
(F1-Score, loU, Specificity) establishes a consistent and clear
performance hierarchy among the models. The proposed
C2BASC++ framework is the undisputed top performer,
achieving the highest scores at every dataset size. For
instance, it reached a peak loU of 96.2 and a Specificity
of 98.5 with 10,000 samples, demonstrating exceptional
accuracy and robustness against false positives. This analysis
exposes important insights into how the models use data.
Leading frameworks such as C2BASC++ and HPO-MMSS
show remarkably steep learning curves. Allmodelsimproved
with larger data sets, but these two extracted significantly
more value from each additional data point. For example,
the performance gap between C2BASC++ and YOLOvV3
was approximately 6-7% across dataset sizes (from 2,000 to
10,000 samples). This indicates that C2BASC++ not only has
a high starting point, but also has the scalability to fit at least
simple models, allowing it to continue its lead.

Conclusion

The demonstrated superiority of C2BASC++ underscores
the significant impact of its architectural innovation. Its
design principles—which likely integrate advanced feature
extraction, optimized hyper parameters, and effective
ensemble techniques—deliver measurable improvements
across all evaluation criteria. The combination of top-tier
baseline performance, consistent scalability, and exceptional
robustness makes C2BASC++ the optimal and most reliable
choice for real-world applications requiring high-precision
segmentation, where both initial accuracy and the ability to
improve with growing data are paramount.
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