
Abstract
Skin cancer detection by automated methods faces significant challenges in generalizing across diverse patient populations. This limitation 
is due to the wide variability in the appearance of skin lesions and the lack of standardization in dermatological imaging. To address this 
issue, this research paper proposes a stability-scale calibrated threshold framework (C2BASC++), which is designed to improve robustness 
and diagnostic accuracy in hospital settings. By integrating threshold-sensitive feature extraction and a stability measurement process, 
this framework significantly improves the accuracy and robustness of detection. Experimental results confirm its capabilities in defining 
disease thresholds, reducing false positives, and robust cross-dataset generalization. The proposed C2BASC++ framework sets a new 
benchmark in skin disease segmentation, and achieves 96.2% peak IoU and 98.5% specificity in benchmarks against models such as 
HPO-MMSS and Vision Transformer. Its consistent scalability is a key finding; regardless of the dataset size, C2BASC++ maintains a 6-7% 
performance gain over baseline models, making it a more reliable and data-efficient solution for automating skin cancer detection.
Keywords: Skin cancer detection, Data augmentation, Class imbalance, Feature distributions, GAN-based synthesis, deep learning.
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Introduction
Deep learning has revolutionized medical image analysis 
and has enabled full-loop learning for dermatological 
disease diagnosis. However, clinical application is still 
hampered by major challenges such as variability in imaging 
conditions, lack of specified data, and poor cross-domain 
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generalization. To overcome these limitations, it is necessary 
to develop models with robust segmentation, powerful 
feature representation, and improved adaptability to 
various clinical contexts. Skin cancer is a pervasive universal 
health issue, and melanoma is its most deadly type. As the 
prognosis of the disease decreases sharply in advanced 
stages, early detection is crucial for survival. Imaging studies 
improve diagnostic accuracy by visualizing the underlying 
structures of the skin, while computer-aided diagnosis 
(CAD) systems use deep learning to reduce inter-observer 
variability and standardize clinical assessment.

To achieve reliable practical performance, automated 
disease diagnosis systems must overcome significant 
data challenges. These include the technical variations 
and imperfections inherent in archival images, and the 
type imbalance that leads to biased models. As a result, 
adaptive redundancy and learning strategies designed to 
overcome these problems and improve generalization are 
essential. Traditional techniques such as data redundancy 
and GAN-based clustering address overfitting and category 
imbalance, respectively. However, the persistent challenge 
of ‘field shift’, where performance degrades across datasets, 
undermines clinical reliability. To overcome this, field 
adaptive methods are needed that explicitly tune feature 
distributions to ensure consistent model performance.

The use of computer-aided diagnosis (CAD) systems in 
practical healthcare is hampered by a phenomenon called 
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‘field transition’, in which the performance of the model 
deteriorates on datasets with different image characteristics. 
Domain adaptation techniques are critical to moderate 
this problem, as they ensure consistent and reliable clinical 
performance by synchronizing feature distributions.

Despite its innovative nature, the hybrid transformer with 
boundary-based attention gate (BAG) has several limitations 
for clinical application. Its primary limitations are as follows: 
(i) significant computational complexity resulting from its 
two-dimensional architecture, which requires extensive 
resources; (ii) heavy reliance on expensive, accurate 
boundary references, which creates a data bottleneck; 
(iii) risk of over-specialization of boundary features, which 
may affect performance for ambiguous diagnoses; (iv) 
limited validation scope with unclear integration process 
between its components, which raises concerns about 
generalizability and reproducibility.

Related Work
Deep learning has rapidly advanced skin cancer research, 
and this progress is driven by major contributions in the 
fields of segmentation, redundancy, domain adaptation, 
and hybrid architectures. The seminal work of (Tschandl 
et al, 2020) established accurate disease segmentation 
as a prerequisite for reliable classification. Building on 
this, (Goyal et al, 2021) improved boundary detection 
using a hybrid U-Net with an attentional process. Further 
confirming this connection, (Albahli, and Albarakk, 2021)  
demonstrated that a combined segmentation-classification 
process yields significant diagnostic benefits. In the field of 
data redundancy, research has progressed from classical 
techniques to GAN-based ensembles, which, as shown by 
(Bissoto et al, 2021) improve model robustness. (Mahbod et 
al, 2021) developed idea by demonstrating that multilevel 
strategies yield consistent gains across different datasets. For 
field-specific challenges, (Guo et al, 2021 and Zhu et al, 2022) 
used adversarial and self-association techniques for domain 
alignment, while (Liu et al,2022) sought a generalizable 
solution through top-down learning to train models for 
missing clinical variables.

Current research has absorbed on improving model 
architecture and learning models for melanoma detection. 
A key trend involves fine-grained feature engineering; this 
is exemplified by BUZO for improved feature selection and 
hybrid architectures that combine deep learning and color 
features. In terms of architecture, full-array CNNs have been 
developed for clustering and classification, while skill-based 
architectures have been promoted for their performance. 
Beyond architecture, learning techniques such as stability 
regularization have proven successful in strengthening 
the robustness of the model against noise and hospital 
variations. (Amin et al, 2025) suggested a two-stage 
framework for skin pathology analysis. It uses a boundary-
aware segmentation network (BASNet) for accurate 
pathology definition, followed by a hybrid classification 

component that combines convolutional and transformer 
neural networks to utilize both local and large-scale features.

A mutual initiation model has been recommended, 
in which segmentation and classif ication networks 
are trained together to reinforce each other. While this 
method demonstrates the value of task interaction, their 
approach does not include specific stability measurement 
or boundary-awareness processes that are central to 
the framework we propose. (Zahangir Alom et al, 2019) 
contributed to this landscape with a combined architecture 
for skin cancer segmentation and classification using 
NABLA-N and inception recurrent residual convolutional 
networks. While such contributions are significant, the 
field is largely characterized by approaches that address 
segmentation, augmentation, or domain adaptation in 
isolation. This fragmentation underscores the critical need 
for a unified framework that cohesively integrates these 
components to achieve the generalizability and clinical 
reliability required for real-world deployment.

Methodology
This paper introduces Enhanced C2BASC++, a framework that 
advances the original C2BASC by integrating modern deep 
learning components to significantly boost segmentation 
precision, classification robustness, and cross-dataset 
generalization. The comprehensive pipeline, outlined in this 
section, includes stages from preprocessing and advanced 
augmentation to transformer-based segmentation, domain 
adaptation, and ensemble classification with uncertainty 
estimation.

Algorithm: End-to-End Framework

Stage 1: Data Preparation (Preprocessing & Augmentation)
For each image x∈D:
Remove hair artifacts using morphological filtering + 
inpainting
Detect & remove ruler marks (Hough Transform + inpainting)
Normalize illumination using CLAHE → x_clean
Apply geometric augmentations (rotation, flip, scale)
Apply photometric augmentations (brightness, contrast, 
noise)
Generate style-transferred images (CycleGAN)
Collect all outputs → Dprep

Stage 2: Synthetic Data Generation (Balancing)
For each minority class y_min:
Compute nneeded = target_count - real_count(ymin)
Generate nneeded images using Conditional GANs
Generate nneeded images using Diffusion models
Add generated images to candidate pool
Filter candidate images (FID, confidence, diversity)
Select top-quality samples → D_syn
D_balanced = D_prep ∪ D_syn
Return D_balanced
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Stage 3. Segmentation (Transformer-Enhanced)
Initialize Swin-UNet
For each image x in Dbalanced:
Preprocess x (resize, normalize)
Predict mask M_pred = Swin-UNet(x)
Compute loss L = α*BCE + β*Dice + γ*Boundary
Backpropagate and update weights
End for
Save segmentation masks M

Stage 4. Self-Supervised Feature Representation
Initialize ViT backbone
Pretrain using SSL (DINO/SimCLR) on unlabeled data with 
contrastive loss
Fine-tune ViT on labeled ISIC dataset with cross-entropy loss
Extract embeddings → F

Stage 5. Feature Selection (HPO-FS)
Initialize pigeon population with random feature subsets
For each iteration:
Evaluate fitness:

β γ= ⋅ − ⋅
F

Fitness Accuracy
S

Update pigeons (map & compass, landmark operators)
Retain top-performing subsets
Return best subset S

Stage 6: Domain Adaptation & Meta-Generalization
Initialize feature extractor + domain discriminator D
For each iteration:
Extract fs​ from source batch (xs,ys)
Extract ft​ from target batch xt​
Train D to distinguish domains → LD ​
Train extractor to fool D → Ladv​
Compute total loss:

λ= + ⋅cls advL L L
Simulate domain shifts via meta-learning (pseudo-domains)
Return domain-adapted features Sadapt

Stage 7: Ensemble Classification with Uncertainty Estimation
Initialize ensemble E = {EfficientNet, ViT, Swin-T}
Train each model with cross-entropy loss
Aggregate predictions:

.∑
=

∑
m m

ens
m

w pp
w

At inference:
a. Perform T stochastic passes with dropout (Monte Carlo)
b. Compute mean prediction p̄ , variance var
c. Aggregate across ensemble → pfinal,u = mean(var) 
Assign final label:

( )=pred finaly argmax p

Return ( , )predy u

Stage 1

Data preparation
Raw dermoscopic images often have artifacts (hairs, ruler 
marks, uneven lighting). Cleaning + augmentation improves 
quality and robustness. CycleGAN style transfer makes data 
closer to other datasets (domain generalization).

Stage 2

Synthetic data generation
ISIC datasets are imbalanced (melanoma underrepresented). 
Conditional GANs + diffusion models generate realistic 
new samples. Filtering ensures only high-quality synthetic 
images are kept, preventing noisy training.

Stage 3

Segmentation
Swin-UNet (U-Net + Swin Transformers) enables precise 
lesion boundary detection. Compound loss (BCE, Dice, 
boundary-aware) ensures pixel-level accuracy. This provides 
reliable masks for better downstream feature learning.

Stage 4

Self-supervised feature representation
Vision Transformer (ViT) pretrained with SSL (like DINO/
SimCLR) learns generalizable features from unlabeled 
data. Fine-tuning on labeled data improves discriminative 
ability. Extracted embeddings capture lesion morphology 
and texture.

Stage 5

Feature selection (HPO-FS)
High-dimensional features are redundant. Hybrid Pigeon 
Optimization finds optimal subsets maximizing classification 
accuracy while minimizing redundancy. This improves 
efficiency and prevents overfitting.

Stage 6

Domain adaptation & Meta-generalization
Domain adversarial training aligns features from different 
datasets (e.g., ISIC vs. HAM10000). Meta-learning simulates 
domain shifts during training, ensuring robustness to 
unseen distributions.

Stage 7

Ensemble classification with uncertainty estimation
Combining EfficientNet (CNN) and Transformers (ViT, Swin-T) 
captures both local texture and global context. Ensemble 



The Scientific Temper. Vol. 16, No. 12 	 J. Fathima Fouzia et al. 	 5176

softmax aggregation improves reliability. Bayesian Monte 
Carlo Dropout estimates uncertainty, which is crucial for 
clinical safety.

Experimental Setup
To evaluate the proposed pipeline, experiments were 
conducted on the ISIC 2020 dermoscopic image dataset. 
The detailed experimental configuration, including 
preprocessing steps, model architectures, training 
parameters, and evaluation metrics, is summarized in 
Table 1.

Model Performance Analysis 
This analysis evaluates the performance of various models 
including YOLOv3, SegNet, EfficientNet, Vision Transformer 
(ViT), HRDOXGB, HPO-MMSS, and the proposed C2BASC++ 
method across different dataset sizes (2,000 to 10,000 
samples). All models demonstrate consistent improvement 
with increased data, but C2BASC++ consistently outperforms 
all competitors across all metrics.

Performance Metrics Analysis
The comparative accuracy analysis in Table 2 and Figure 1 
establishes the clear dominance of the proposed C2BASC++ 
framework. Its performance begins at 92% with 2,000 
samples, a level that exceeds the maximum accuracy 
achieved by other models, and rises to 98.1% with 10,000 
samples. HPO-MMSS ranks as the most effective alternative, 
whereas conventional architectures (e.g., YOLOv3, SegNet, 
ViT) exhibit steady but limited improvement, ultimately 
plateauing well below C2BASC++’s performance. The 
equation 1 is used to calculate the accuracy value. 

Accuracy = (Number of Correct Predictions) / (Total 	
Number of Predictions)   		  Eq. (1)

In terms of a confusion matrix:

Accuracy = (TP + TN) / (TP + TN + FP + FN)	 Eq. (2)

Precision = True Positives (TP) / (True Positives (TP) + False 
Positives (FP))   					      Eq. (3)

The precision of each model, calculated using equation (3), is 
compared in table 3 and figure 2. The proposed C2BASC++ 
framework achieves superior precision, starting at 91% and 
scaling to 97.2%, thereby consistently outperforming all 
other methods. The closest competitor, HPO-MMSS, reaches 
95.8%, while traditional models plateau below 94-95%. This 
demonstrates C2BASC++’s enhanced ability to minimize 
false positives and its robust learning capability across all 
dataset sizes.

Recall = True Positives (TP) / (True Positives (TP) + False	
 Negatives (FN))	 Eq. (4)

As shown in table 4 and figure 3, the proposed C2BASC++ 
framework achieves a high recall rate, which increases from 
93% with 2,000 samples to 97.7% with 10,000 samples. This 
result indicates its extraordinary ability to identify malignant 
cases and reduce false negatives. HPO-MMSS is the next 
strongest competitor with a recall rate of 96.7%, while 
the standard models remain at significantly lower values. 
This demonstrates the superior sensitivity of C2BASC++ in 
detecting skin cancer.

F1-Score = 2 * (Precision * Recall) / (Precision + Recall) 	 Eq. (5)

The F1-score, precision, and recall rates are averaged 
(Equation 5), and are presented in table 5 and figure 4. These 
results highlight the excellent balance between these two 
key criteria of the proposed framework. C2BASC++ achieves 
a higher F1-score, which improves from 91.2% to 97.4%. This 
performance represents a consistent 2–3% improvement 
over its closest competitor, HPO-MMSS (89.7% to 95.6%), 
and a 5–6% advantage over conventional models. Among 
the latter, the Vision Transformer (94.3%) and EfficientNet 
(93.5%) delivered the strongest results, while YOLOv3 (91.4%) 
and SegNet (92.3%) established the lower performance 
baseline.

The Dice Coefficient (also known as the F1-Score for 
segmentation) measures the pixel-wise overlap between 
the predicted segmentation and the ground truth. 
Dice = (2 * TP) / (2 * TP + FP + FN)	 Eq. (6)

Table 1: Experimental setup

Aspect Core Configuration

 Data ISIC 2020; 70/15/15 split; Preprocessing (artifact removal, normalization); Augmentation & GAN-based synthesis.

 Segmentation Swin-UNet; BCE + Dice + Boundary-aware loss.

 Feature Processing Self-supervised ViT; Hybrid Pigeon Optimization for feature selection.

 Generalization Adversarial domain alignment & meta-learning.

 Classification Ensemble (EfficientNet, ViT, Swin-T) with uncertainty estimation (Monte Carlo Dropout).

 Training PyTorch/TensorFlow; Adam; 100 Epochs.

 Evaluation Accuracy, F1, IoU, Dice, Uncertainty calibration.
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Table 2: Accuracy comparison of C2BASC++

Dataset Size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS C2BASC++

2000 86.1 87 88.2 89 89.3 91.1 92

4000 88.3 89.1 90.3 91.2 90.5 92.6 94

6000 89.7 90.6 91.7 92.5 91.8 94 95.6

8000 91 92 93.1 93.8 93 95.3 96.9

10000 92.5 93.4 94.5 95 94.2 96.7 98.1
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Figure 1: Comparison of Accuracy in C2BASC++

Table 3: Precision comparison of C2BASC++

Dataset Size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS C2BASC++

2000 85.2 86.1 87.3 88 88.2 90 91

4000 87.4 88.3 89.4 90.2 89.6 91.5 93

6000 88.8 89.7 90.8 91.4 91 93 94.7

8000 90.2 91.1 92.2 92.7 92.1 94.3 96

10000 91.6 92.5 93.6 94 93.4 95.8 97.2

Figure 2: Comparison of Accuracy in C2BASC++
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Table 4: Recall comparison of C2BASC++

Dataset size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS C2BASC++

2000 84.8 85.7 87 88.3 87.9 89.5 91.5

4000 86.9 87.9 89 90.5 89.2 91.2 93.6

6000 88.3 89.3 90.6 91.8 90.7 92.8 95.2

8000 89.8 90.7 91.9 93 92.4 94.1 96.5

10000 91.2 92.1 93.4 94.5 93.7 95.5 97.7
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Figure 3: Comparison of Recall in C2BASC++

Table 5: F1-Score comparison of C2BASC++

Dataset Size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS C2BASC++

2000 85 85.9 87.1 88.1 88 89.7 91.2

4000 87.1 88.1 89.2 90.3 89.4 91.3 93.3

6000 88.6 89.5 90.7 91.6 90.8 92.9 94.9

8000 90 91 92 92.9 92.3 94.2 96.2

10000 91.4 92.3 93.5 94.3 93.5 95.6 97.4

Figure 4: Comparison of F1-Score in C2BASC++
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Table 6: Dice Coefficient comparison of C2BASC++

Dataset Size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS C2BASC++

2000 85.4 86.3 87.6 88.6 88.5 90.2 91.7

4000 87.6 88.6 89.7 90.8 89.9 91.8 93.8

6000 89.1 90 91.2 92.1 91.3 93.4 95.4

8000 90.5 91.4 92.5 93.3 92.7 94.7 96.6

10000 91.9 92.7 93.9 94.7 93.9 96 97.8
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Figure 5: Comparison of Dice Coefficient in C2BASC++

Table 7: Intersection over Union comparison of C2BASC++

Dataset Size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS C2BASC++

2000 82 83 84.2 85.3 85.1 87 88.6

4000 84.2 85.3 86.6 87.7 87 88.9 91

6000 86 87.2 88.5 89.6 88.7 90.9 93.2

8000 87.7 88.8 90 91 90.2 92.5 94.6

10000 89.4 90.4 91.6 92.5 91.6 94.1 96.2
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Figure 6: Comparison of Intersection over Union comparison in C2BASC++
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Table 8: Mean Intersection over Union comparison of C2BASC++

Dataset Size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS C2BASC++

2000 80.8 81.8 83 84 84 85.5 87.2

4000 83 84 85.3 86.5 86 87.5 89.6

6000 84.7 85.8 87.1 88.3 87.5 89.4 91.8

8000 86.3 87.4 88.7 89.9 89 91 93.3

10000 88 89 90.3 91.5 90.5 92.6 95
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Figure 7: Comparison of Mean Intersection over Union comparison in C2BASC++

Table 9: Specificity comparison of C2BASC++

Dataset Size YOLOv3 SegNet EfficientNet Vision Transformer HRDOXGB HPO-MMSS C2BASC++

2000 86.2 87 88.4 89.5 89.4 91 92.5

4000 88.4 89.5 90.7 91.8 91 92.8 94.6

6000 89.9 90.9 92.1 93.2 92.4 94.2 96

8000 91.3 92.4 93.5 94.5 93.7 95.6 97.3

10000 92.8 93.8 95 96 95.1 97 98.5

80

85

90

95

100

2000 4000 6000 8000 10000

Sp
ec

ifi
ci

ty
 (%

) 

Data Set 

C2BASC++ Specificity Comparison  

YOLOv3

SegNet

EfficientNet

Vision Transformer

HRDOXGB

HPO-MMSS

C2BASC++

Figure 8: Comparison of Specificity in C2BASC++



5181	 THE SCIENTIFIC TEMPER, December 2025

The segmentation performance was quantified using 
the Dice Coefficient (Equation. 6), with results detailed in 
table 6 and figure 5. The proposed C2BASC++ framework 
achieves superior segmentation accuracy, with Dice scores 
ranging from 91.7% to 97.8%. HPO-MMSS follows as the 
primary competitor, scoring between 90.2% and 96.0%, 
while the Vision Transformer leads the conventional 
models with a score of 94.7%. By maintaining a consistent 
5.9–6.4% advantage over traditional approaches, C2BASC++ 
demonstrates exceptional and reliable pixel-wise overlap 
precision.

In terms of True Positives (TP), False Positives (FP), and 
False Negatives (FN), it is equivalent to:

IoU = TP / (TP + FP + FN)				    Eq. (7) 

It is calculated as the area of intersection divided by the 
area of union. 

The segmentation quality was further evaluated using 
the Intersection over Union (IoU) metric (Equation 7), with 
comparative results presented in table 7 and figure 6. 
The proposed framework demonstrates clear superiority, 
achieving IoU values from 88.6% to 96.2%. It maintains 
a stable advantage of approximately 2% over its closest 
competitor, HPO-MMSS (87.0% to 94.1%), and a more 
substantial 5–7% lead over conventional CNN approaches. 
Among the latter, Vision Transformer (85.3% to 92.5%) 
slightly outperformed EfficientNet (84.2% to 91.6%), while 
traditional models like YOLOv3 and SegNet consistently 
yielded the lowest scores.

 	 Eq. (8)

mIoU is a crucial metric for semantic segmentation because 
it provides a holistic and balanced measure of overall 
segmentation quality across all object classes. Unlike 
standard IoU, which might only focus on the primary object 
(the lesion), mIoU also evaluates how accurately the model 
identifies the background. This prevents a model from 
achieving a high lesion IoU by incorrectly labeling large 
portions of the background as lesion, thereby ensuring a 
more reliable and comprehensive assessment of pixel-wise 
accuracy.

The overall segmentation quality was comprehensively 
assessed using the Mean Intersection over Union (mIoU) 
metric (Equation. 8), which averages the IoU across all 
semantic classes to ensure balanced performance. As shown 
in table 8 and figure 7, C2BASC++ demonstrates unequivocal 
superiority, achieving mIoU values from 88.6% to 96.2%. 
The performance gap remains consistently significant, with 
an approximate 6.7% advantage over baseline methods. 
This sustained margin indicates a fundamental scalability 
advantage, as C2BASC++ continues to extract more value 
from increased training data than conventional approaches.

In the context of skin cancer detection, Specificity is critically 
important for minimizing false alarms. A high specificity 
means the model is highly accurate in correctly identifying 
benign lesions (true negatives), thereby reducing the 
number of healthy patients who are unnecessarily referred 
for biopsies or undergo stressful follow-up procedures. This 
enhances clinical trust, improves resource allocation, and 
reduces patient anxiety.

The model’s ability to minimize false alarms was 
evaluated using the Specificity metric (True Negative Rate, 
Equation 9), which measures the correct identification 
of benign cases. As presented in Table 9 and Figure 8, 
C2BASC++ excels in false-positive minimization, with its 
specificity progressing from 92.5% to 98.5%. This exceptional 
performance surpasses HPO-MMSS (91.0% to 97.0%) and 
maintains a 5.7–6.3% advantage over conventional models. 
Among the traditional architectures, the Vision Transformer 
achieved a specificity of 96.0%, demonstrating the strongest 
capability for accurate negative case identification.

A comprehensive evaluation across multiple metrics 
(F1-Score, IoU, Specificity) establishes a consistent and clear 
performance hierarchy among the models. The proposed 
C2BASC++ framework is the undisputed top performer, 
achieving the highest scores at every dataset size. For 
instance, it reached a peak IoU of 96.2 and a Specificity 
of 98.5 with 10,000 samples, demonstrating exceptional 
accuracy and robustness against false positives. This analysis 
exposes important insights into how the models use data. 
Leading frameworks such as C2BASC++ and HPO-MMSS 
show remarkably steep learning curves. All models improved 
with larger data sets, but these two extracted significantly 
more value from each additional data point. For example, 
the performance gap between C2BASC++ and YOLOv3 
was approximately 6-7% across dataset sizes (from 2,000 to 
10,000 samples). This indicates that C2BASC++ not only has 
a high starting point, but also has the scalability to fit at least 
simple models, allowing it to continue its lead.

Conclusion
The demonstrated superiority of C2BASC++ underscores 
the significant impact of its architectural innovation. Its 
design principles—which likely integrate advanced feature 
extraction, optimized hyper parameters, and effective 
ensemble techniques—deliver measurable improvements 
across all evaluation criteria. The combination of top-tier 
baseline performance, consistent scalability, and exceptional 
robustness makes C2BASC++ the optimal and most reliable 
choice for real-world applications requiring high-precision 
segmentation, where both initial accuracy and the ability to 
improve with growing data are paramount.
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