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Abstract

Feature selection plays a crucial role in sentiment analysis, especially in transformer-based architecture where large and complex feature
spaces often hinder both efficiency and interpretability. Conventional statistical and heuristic selection methods fail to fully exploit
transformer attention signals and typically lack faithfulness to the model’s actual decision process. This research introduces TALEX, a
Transformer-Attention-Led EXplainable Feature Selection framework, designed to derive compact, discriminative, and interpretable
feature subsets for sentiment classification. TALEX integrates multi-view saliency signals from transformer attention, Integrated Gradients,
and SHAP to rank features, followed by differentiable gating optimized with explainability-alignment loss. Extensive experiments on four
benchmark datasets: MR, CR, IMDB, and SemEval 2013, demonstrate that TALEX achieves competitive or superior accuracy while reducing
feature dimensionality by 30-60%. Furthermore, deletion-insertion analyses and attribution alignment confirm high faithfulness and
explanation stability. By aligning feature selection with explanation mechanisms, TALEX effectively bridges the gap between model
efficiency and interpretability, providing a transparent and scalable foundation for real-world sentiment analysis applications.

Keywords: Sentiment Analysis, Transformer Attention, Explainable Al, Feature Selection, Attention Rollout, SHAP.

Introduction

Sentiment analysis has emerged as one of the mostinfluential
research areas in natural language processing (NLP),
enabling automated systems to understand and interpret
human opinions, emotions, and attitudes expressed in
textual data (Sharma et al., 2025). With the explosive growth
of user-generated content on social media platforms,
product review sites, and digital forums, sentiment analysis
has become a critical tool for applications ranging from
customer feedback mining and political opinion tracking
to financial market forecasting and healthcare sentiment
monitoring (Abladi et al., 2025). The growing complexity,
scale, and diversity of textual data, however, have intensified
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the need for models that are not only accurate but also
transparent and computationally efficient.

The rapid advancement of deep learning and
transformer-based architectures has significantly improved
sentiment classification performance by capturing
contextual and semantic nuances in text (Alahmadi et al.,
2025). Architectures such as BERT, RoBERTa, and DeBERTa
have demonstrated remarkable ability to learn deep
language representations (Hussain et al., 2025). These high-
capacity models often process large numbers of features,
including subword tokens, contextual embeddings, and
attention weights. This high-dimensional feature space
leads to increased computational cost, longer training
times, reduced model interpretability, and susceptibility
to spurious correlations. As a result, feature selection has
re-emerged as a critical research problem in modern NLP
pipelines.

The motivation for this research arises from the tension
between performance and explainability in current
sentiment analysis models. While deep transformer models
deliver superior classification accuracy, their decision-making
processes are often opaque, making it difficult to identify
which linguistic elements contribute to their predictions.
This lack of interpretability can hinder their deployment
in domains where transparency and accountability are
essential, such as healthcare, finance, and public policy. At
the same time, conventional feature selection techniques

Published: 22/11/2025



The Scientific Temper. Vol. 16, No. 11

K. Fathima and A. R. Mohamed Shanavas 5108

such as Chi-Square, mutual information, and wrapper-based
methods fail to leverage the rich internal representations
generated by modern language models. As a result, they
often produce suboptimal or unstable feature subsets when
applied to high-dimensional, context-dependent data.

The problem addressed in this research is the absence of
robust, explainability-driven feature selection frameworks
that can reduce dimensionality while preserving both
predictive performance and interpretive clarity. Most
existing methods focus solely on accuracy optimization
without systematically evaluating the faithfulness and
stability of the selected features. Moreover, they struggle
to handle informal language, domain shifts, and contextual
dependencies that are prevalent in real-world sentiment
data such as social media posts or long-form reviews.

The objectives of this study are fourfold. First, to
investigate the role of attention and attribution mechanisms
in highlighting linguistically meaningful features for
sentiment classification. Second, to design a feature
selection approach that effectively reduces redundant or
irrelevant information while preserving essential sentiment
cues. Third, to incorporate interpretability metrics that
evaluate not just model performance but also alignment
between selected features and model reasoning. Fourth,
to demonstrate the generalizability of the approach across
datasets with varying linguistic structures and domains,
including short, long, and informal textual content.

The significance of this work lies in its potential to bridge
the gap between model interpretability and practical
performance in sentiment analysis. By shifting the focus
from purely accuracy-driven selection toward explanation-
aligned methods, this research contributes to building NLP
systems that are not only efficient but also transparent,
stable, and trustworthy. Such systems can play a vital role
in high-stakes decision-making environments, enabling
human users to better understand, trust, and validate
automated sentiment classification outcomes. This is
especially relevant in the context of recent regulatory and
ethical emphasis on explainable Al, where models must
provide interpretable justifications for their output.

Related Works

The emergence of transformer architectures has significantly
reshaped the landscape of sentiment analysis by enabling
models to capture fine-grained contextual dependencies
in textual data. Transformer attention mechanisms have
proven effective at dynamically pinpointing sentiment-
rich elements within sentences, thereby offering a
more precise and context-sensitive representation of
sentiment. Simultaneously, the growing demand for model
transparency and trustworthiness has brought Explainable
Artificial Intelligence (XAl) into focus, aiming to elucidate
how sentiment models arrive at their predictions. Together,
these two domains transformer attention and explainable

Al form the foundation upon which modern interpretable
sentiment analysis frameworks are built.

Transformer attention mechanisms have become
essential for sentiment analysis due to their capacity to
learn complex linguistic patterns and relationships between
words. Transformer-based models such as BERT and RoBERTa
employ self-attention layers that can dynamically adjust the
weight of each token based on its contribution to the overall
meaning of a sentence (Karaduman et al., 2025; Aljabar et al.,
2024; Jahin et al., 2024). This property allows the model to
focus on sentiment-relevant expressions such as negations,
intensifiers, and polarity markers, which are often critical
for accurate sentiment classification. As demonstrated in
several studies, transformer attention improves sentiment
understanding in domains ranging from restaurant reviews
to educational feedback (Wu et al., 2020; Meem & Hasan,
2023).

Transformer-based sentiment analysis models have also
achieved exceptional performance in benchmark datasets.
For example, BERT-based models have been reported
to reach up to 98% accuracy on IMDB movie reviews,
significantly outperforming classical approaches (Aljabar et
al., 2024). Moreover, the adoption of hybrid architectures has
further enhanced these capabilities. Models such as TRABSA
combine transformers with recurrent neural networks to
exploit both temporal and contextual dependencies in
text (Jahin et al.,, 2024), while ConvTransformer integrates
convolutional layers with transformer attention to jointly
capture local n-gram patterns and long-range semantic
dependencies (Li et al., 2020). These hybrid designs
have shown promising results across domains like
product reviews and online education sentiment analysis,
reflecting the adaptability and strength of attention-driven
representations. Nonetheless, the literature identifies several
significant challenges, such as reliance on extensive labeled
datasets and persistent obstacles in managing linguistic
diversity (Jahin et al., 2024; Kaur et al., 2025).Such challenges
point to a need for approaches that not only improve
performance but also enhance model interpretability.

Parallel to the evolution of transformer attention,
Explainable Al (XAl) has emerged as a key research area
for improving the interpretability of sentiment analysis
systems. Deep neural models are often regarded as opaque
black boxes, making it difficult for users to understand why
specific sentiment predictions are made. XAl techniques aim
to uncover the underlying reasoning behind model outputs,
increasing transparency and trust in Al-driven decision-
making (N, 2022; Lai & Chen, 2024). Popular model-agnostic
techniques such as LIME and SHAP provide local and global
explanations by identifying the most influential features
contributing to a prediction (Bidve et al., 2024; Mabokela et
al., 2024). These methods have been successfully applied to
sentiment models to visualize and quantify the contribution
of tokens, phrases, or attributes to sentiment polarity.
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Advanced frameworks have sought to integrate XAl more
deeply into sentiment analysis workflows. The Multi-
Aspect Framework for Explainable Sentiment Analysis
(MAFESA) combines aspect extraction with sentiment
prediction, enabling more interpretable and aspect-
focused explanations (V &S., 2024). Other works incorporate
knowledge graphs to represent feature dependencies
and improve interpretability by revealing the semantic
connections driving model predictions (Lai & Chen, 2024).
XAl techniques have also been applied to various domains,
including social media sentiment toward public health
initiatives, such as COVID-19 vaccination campaigns,
providing insights into opinion dynamics (Camargo et al.,
2023). Similarly, financial sentiment analysis has benefited
from combining VADER and TF-IDF models with SHAP
explanations to deliver transparent and accountable
decision support (Cristescu et al., 2025).

Despite these advances, several research gaps remain.
While transformer attention improves performance and
local interpretability, its attention weights alone does not
guarantee faithful explanations, as they may not always
reflect true causal importance. On the other hand, XAl
techniques like LIME and SHAP provide interpretive value
but operate post hoc, often disconnected from the model’s
internal reasoning. Current research rarely integrates
attention mechanisms with attribution-based explainability
in a way that simultaneously optimizes both interpretability
and performance. Furthermore, most existing methods do
not address stability and faithfulness of explanations across
datasets with varying linguistic properties. This gap shows
the need for a unified feature selection framework that uses
transformer attention to provide transparent, faithful, and
stable explanations for sentiment analysis,the focus of this
research.

Proposed Methodology

Overview of TALEX Architecture

The overall workflow of TALEX is illustrated in Figure 1, which
consists of four primary components: Input Processing,
Transformer Attention & Attribution, Differentiable
Feature Selector, and Explainable Classification Layer. Each
component plays a distinct role in achieving attention-
guided, explanation-aligned feature selection for sentiment
analysis.

Input Processing

Raw textual data undergoes tokenization, lowercasing,
stop-word removal, and optional n-gram expansion. The
processed tokens form the basis for downstream attention
computation and feature ranking.

Transformer Attention & Attribution

The processed input is passed through a pre-trained
transformer (e.g., ROBERTa).

« Attention Rollout captures global dependency patterns
by aggregating attention weights across layers and
heads.

Integrated Gradients and gradient norms provide local
causal contribution scores.

« These signals are fused into a multi-view saliency score,

producing an initial feature ranking.

Differentiable Feature Selector

Each feature is assigned a Hard-Concrete gate, enabling

end-to-end differentiable selection.

« Theselectoroptimizesajointloss combining classification
accuracy, sparsity, rank alignment with attention,
redundancy control, and faithfulness alignment with
post-hoc explanations.

« This mechanism determines the optimal subset of
features while respecting interpretability constraints.

Explainable Classification Layer

The selected features are fed into a lightweight classifier (e.g.,
BiGRU with attention) that generates sentiment predictions.
Post-hoc explanation methods (e.g., SHAP or Integrated
Gradients) validate the alignment between selection and
model reasoning, ensuring faithful and transparent decision-
making.

Figure 1 depicts the sequential flow from raw input
to explainable output, highlighting how TALEX integrates
attention signals and explainability into the feature selection
process. This structured architecture provides a balance
between high predictive performance and interpretable
feature reasoning, making it suitable for high-stakes
sentiment analysis applications.

Transformer-Attention Feature Ranking

Feature ranking in the TALEX framework is designed to
exploit the intrinsicinterpretability properties of transformer
architectures while integrating additional gradient-based
attribution methods to enhance saliency robustness.
The methodology aligns the model’s internal reasoning
signals with a structured and explainable feature selection
mechanism, avoiding the dependency on handcrafted
feature scoring heuristics.

The process begins by passing the tokenized textual
input through a pre-trained transformer backbone such
as RoBERTa. During the forward pass, the transformer
generates self-attention maps across multiple heads and

Faithfulness and
Interpretability Metrics|

Transformation
Feature Ranking

l |

Differentiable
Explainable Feature
Selector

Transformer J

‘ Results ’

Figure 1: TALEX Architecture
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layers. Each attention head models contextual interactions
between tokens, and these interactions provide structural
importance cues. However, single-layer attention values can
be noisy or localized, so this work employs attention rollout
to accumulate attention flow through the entire network.
Specifically, the normalized attention matrices are combined
across all layers to produce a global saliency representation
that accounts for indirect token influence on downstream

outputs. If 4 denotes the normalized attention matrix at
layer /, the rollout attention is computed as

. J—
Arollout = Hl:l (I + A(l))

where [ is the identity matrix and L is the total
number of transformer layers. This recursive
formulation allows information from earlier
layers to propagate forward, creating a global
importance distribution over tokens.

While attention provides a topological measure
of token influence, it does not necessarily reflect
the causal contribution of each token to the final
prediction. To address this, Integrated Gradients
(IG) is applied to the output logits to capture
sensitivity with respect to each input embedding.
Let x represent the input token embeddings and
x' the baseline embedding (e.g., zero vector).
For each token j, the integrated gradient is
defined as

0F(x’+é (x—x’))
axj

d

G, =(x,-xj)la=0

where F(-) denotes the model output. This integral is
approximated using numerical steps and yields a causal
importance value that reflects how perturbing the token
affects the model’s prediction.

In addition to attention rollout and IG, the gradient norm
of each token embedding is computed to provide a fast,
first-order sensitivity signal. This auxiliary signal captures
local activation strength and is particularly useful in regions
of the input where attention weights may be diffused or
attribution gradients weakly distributed.

The final token importance score is computed by
combining the three saliency signals through a convex
weighted fusion:

Ry =4, Ao (/) +4,1G, +4,|Vx |
subject to the constraint (a +p+y= 1) . The coefficients
\alpha, \beta, and ¥ are tuned through cross-validation to
balance structural, causal, and local contributions.
Subword-level importance values are then aggregated
to word or n-gram level scores to align with the feature
space used in downstream selection. This aggregation
is performed using mean pooling or weighted pooling,

ensuring that multi-token expressions (e.g., “not good”,

"highly recommend”) are treated as single semantic units.

The aggregated scores produce a feature ranking vector

R=R,R,,....,R, over the entire feature set d.
This transformer-attention feature ranking process

provides several methodological advantages:

« it preserves the hierarchical dependency structure
captured by the attention mechanism;

- it integrates causal sensitivity through IG, improving
robustness to noisy attention signals; and

. italigns saliency computation with the eventual feature
selection process, ensuring that the selected subset
is grounded in model reasoning rather than arbitrary
statistical scoring.

This ranked feature list forms the input to the differentiable

feature selector in the subsequent stage, where

explainability-aligned gating is performed to derive

compact and interpretable feature subsets.

Differentiable Explainable Feature Selector

The core objective of the differentiable explainable feature
selector in TALEX is to translate transformer-derived
saliency signals into an optimal, sparse, and interpretable
feature subset, while preserving or enhancing the model’s
predictive performance. Unlike classical filter-based or
wrapper-based methods, this component is trained end-
to-end with the classification model, enabling the selection
mechanism to co-evolve with the decision boundary.

The feature selection process begins with the feature
ranking vector R=R,R,,...,R,, derived from the
attention-attribution fusion stage. To transform this ranked
space into a learnable selection mechanism, each feature
fj is assigned a stochastic binary gating variable z; ,Which
determines whether the feature is retained or discarded
during model training. This binary decision is modeled
through a Hard-Concrete distribution, a continuous
relaxation of the Bernoulli variable that allows gradients to
propagate through the selection step.

Let (9}. denote the learnable parameter associated with
feature j.The gating variable z;is obtained by sampling
from the Hard-Concrete distribution:

z; = min (1, max (0' Sj(ef)))

sj(Hj)=0(i(logu—log(l—u)+c9j)j

where 4 ~ Uniform(0,1), represents the sigmoid function,
and 7 isatemperature parameter controlling the sharpness
of the gate. As training progresses, 7 is annealed toward
a low value, driving the relaxed gates toward discrete
0,1 decisions. This enables the selection mechanism to
behave deterministically at inference time while remaining
differentiable during training.
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The resulting selection mask 7 = [Zl,zz,,,_,zd] is applied
totheinput representation to produce a reduced feature set
X, =X 0z,where © denotes element-wise multiplication.
This pruned feature representation is then fed into a
lightweight sentiment classifier such as a BiGRU-attention
layer, which focuses on learning the mapping from a minimal
set of informative features to sentiment labels. Because
the selection is integrated into the model’s forward pass,
irrelevant features are suppressed early in training, allowing
the classifier to specialize on semantically relevant tokens
and phrases.

The training objective of this module is designed to
balance predictive performance, sparsity, and interpretability
alignment. The overall loss function is formulated as

L = Lcls + A1 Lsparse + A, Lalign + AzLredundancy + A4 Lyaitpputness

The first term, Lcls, is the standard cross-entropy loss
computed on model predictions, ensuring that the selected
features contribute effectively to classification. The sparsity term
Lsparse is based on the L, norm gate activationons and
encourages the model to retain only a small subset of
features. The alignment term L,;;4, measures the overlap
between the top-k attention-ranked features and the active
gates. This term ensures that the selection mechanism
remains consistent with the transformer’s own internal
saliency, which improves stability and semantic
interpretability of the selected subset.

The redundancy term L. naancy €nforces diversity
within the selected set to avoid over-selecting semantically
similar tokens. Practically, this is achieved by penalizing
pairwise cosine similarity between embeddings of selected
features. A high redundancy penalty encourages the
model to choose features that are both informative and
complementary, which improves generalization.

The final term Lyaieppueness €Xplicitly aligns the learned
selection mask with post-hoc explanation maps derived
from methods such as SHAP or Integrated Gradients. By
minimizing the mean squared difference between gate
activations and attribution scores, this term ensures that
the selected features correspond to those driving model
predictions rather than spurious correlations. This alignment
substantially improves faithfulness and trustworthiness of
the model explanations.

During optimization, the gradient flows through both
the classifier and the selection gates, enabling joint learning.
The Hard-Concrete gates adapt dynamically, retaining
features with high predictive and attributional value while
progressively zeroing out weak or redundant ones. This
joint optimization results in a sparse, high-fidelity feature
set with interpretability anchored in the model’s reasoning
structure. The final mask can be thresholded at inference
time to yield a deterministic subset of features, making the
system efficient and transparent.

An important property of this formulation is its stability
under perturbations. Because alignment and faithfulness
terms directly tie the selection to attention and attribution
distributions, the resulting feature subset exhibits high
consistency across random seeds and training runs. This
helps resolve instability in explainable feature selection,
improving reliability for real-world use.

Faithfulness and Interpretability Metrics

Faithfulness and interpretability constitute the core
evaluation criteria for the explainable feature selection
frameworkintroduced in this study. Unlike traditional feature
selection, where performance is measured primarily in terms
of accuracy and sparsity, the proposed method emphasizes
the degree to which the selected features reflect the actual
reasoning process of the model. Faithfulness is treated as a
measure of causal alignment between model explanations
and model behavior, whereas interpretability is concerned
with the semantic coherence, stability, and consistency of
the selected feature subsets.

The central methodological principle of this section is
that an explanation is faithful only if perturbing or removing
the selected features results in predictable, proportional
changes in model output. In other words, the importance
assigned to a feature must correspond to its true causal
contribution to the prediction. Interpretability metrics
further ensure that these features are not only causally
relevant but also human-comprehensible and stable across
training runs.

To quantify faithfulness, the evaluation relies on deletion
and insertion analysis, a widely accepted interpretability
evaluation technique in neural NLP models. Given a trained
model and an ordered set of features ranked by their
importance scores, the deletion metric measures the decline
in prediction confidence when top-ranked features are
progressively removed from the input. If the explanation is
faithful, the model’s confidence should drop sharply as the
most critical features are removed. Formally, let f(x) denote
the predicted probability of the correct class for input x,
and let F,, represent the set of top-k features. The deletion
curve is computed as

D(k) = f(x\ Fp)

where x\ F, denotes the modified input with the top-k
features removed. The Area Under the Deletion Curve (AUC-
Del) is then obtained by integrating D(k) over different k
values. Lower AUC-Del values indicate higher explanation
faithfulness, as critical features are removed and the model’s
confidence rapidly decreases.

Conversely, insertion analysis measures how model
confidence recovers when features are incrementally added
backin order ofimportance. Starting from a neutral baseline
(e.g., empty input or masked tokens), features are gradually
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reintroduced, and the predicted probability is monitored
at each step:

I(k) = f(baseline U Fjp)

A faithful explanation yields a steeply increasing insertion
curve because the reintroduction of important features
rapidly reconstructs the original decision. The Area Under
the Insertion Curve (AUC-Ins) serves as a complementary
faithfulness metric. Higher AUC-Ins values signify that the
selected features carry the primary explanatory signal for
the model’s prediction.

Beyond perturbation-based measures, faithfulness
is further quantified by agreement metrics between
attribution methods and the learned selection mask.
Specifically, the Jaccard similarity between the top-k
features according to transformer attention, attribution
scores (e.g., Integrated Gradients or SHAP), and the final gate
activations provide a direct measure of alignment between
different explanation signals. Let 4, represent the set of
top-k features by attention, G, the top-k by attribution,
and S, the set selected by the differentiable selector. The
agreement between two sets P and Q is defined as

Agreement (P,Q) = m

PUQ)|
High agreement values indicate that the selector preserves
the salient reasoning structure captured by the model,
thereby increasing trust in the final explanation.

Interpretability extends beyond faithfulness by ensuring
that the selected features are semantically meaningful and
stable. Stability is evaluated using Kendall’s rank correlation
coefficient () computed across multiple random seeds.
This metric captures the ordering consistency of selected
features over repeated training runs, which is critical for
deploying explainable models in real-world scenarios. A
stable feature selection process ensures that the explanation
remains reproducible and not merely a byproduct of
stochastic optimization.

Semantic interpretability is also assessed qualitatively
through attention-attribution heatmap visualization.
Tokens or n-grams selected by the gating mechanism are
projected back to the original text to evaluate whether they
align with human-understandable sentiment indicators
such as negation cues (“not good”), intensity markers
(“extremely satisfied”), or polarity-laden terms (“terrible”,
“excellent”). Although qualitative, this step supports the
human trustworthiness aspect of the framework, which
cannot be fully captured by numerical metrics alone.

To account for potential model biases, the faithfulness
gap between the learned selection mask and post-hoc
attribution is measured using mean squared error between
normalized importance scores. A small faithfulness gap

implies that the selector has successfully internalized the
same explanatory signal as the attribution mechanism,
leading to self-consistent explanations that do not require
complex post-processing.

Results and Discussion

Experimental Setup

The performance of the proposed TALEX framework was
systematically evaluated on four widely used sentiment
analysis benchmarks: MR, CR,IMDB, and SemEval 2013. These
datasets were chosen to reflect a diverse set of linguistic
characteristics, review lengths, and domain variations, which
allows for a rigorous assessment of the generalization ability
of the proposed explainable feature selection methodology.
Each dataset was preprocessed using standard NLP
procedures including token normalization, subword
segmentation, and attention-compatible embedding
alignment. The transformer backbone was frozen during
training to ensure that performance improvements arise
from the feature selection process and not from extensive
fine-tuning.

Table 1 provides the dataset description, including the
number of samples, average sentence length, and domain
characteristics. The MR and CR datasets represent short-form
reviews with high lexical variability, while IMDB contains
long-form reviews, making it suitable for evaluating the
ability of the selector to handle redundant features. SemEval
2013 serves as a challenging cross-domain benchmark due
to its tweet-style, informal language and class imbalance.

The experiments employed RoBERTa as the transformer
backbone and a BiGRU-attention head for classification after
feature selection. To maintain comparability across datasets,
the same hyperparameter configuration was adopted,
with minor adjustments to the feature selector sparsity
target based on average input length. The optimization
was performed using the AdamW optimizer with learning
rate warmup, and the gating temperature was annealed
progressively to achieve sharp feature selection boundaries
toward the end of training.

Table 2 lists the major hyperparameters used in
all experiments. The number of training epochs was
determined through early stopping based on validation loss
and explanation faithfulness metrics. The selector target size
k was chosen as 500 for short-form datasets and 1,000 for

Table 1: Dataset description used for evaluating the TALEX framework

Avg. Length

Dataset ~ Samples (tokens) Classes  Domain

MR 10,662 22 2 Movie Reviews
CR 3,775 20 2 Product Reviews
IMDB 50,000 231 2 Movie Reviews
Sem Eval 9,684 27 3 Twitter Sentiment

2013
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Table 2: Hyperparameter configuration for TALEX training and evaluation.

Parameter Value / Setting

Description

Transformer Backbone RoBERTa-base

Classifier BiGRU-Attention
Optimizer AdamW

Learning Rate le-4

Batch Size 64

Epochs 50 (Early Stopping)

Target Feature Count k

Gate Temperature (6) 2 — 0.1 (annealed)

€, ) Sparsity le-3

€5 ) Redundancy 0.2

C,

(&)
(&,) Alignment 04
(&)
(&)

Faithfulness 0.3

500 (MR, CR, SemEval), 1000 (IMDB)

Pre-trained model, frozen layers
Lightweight sequential layer after selection
Weight decay of 0.01

Linear warmup, cosine decay

Fixed across all datasets

Patience = 5 on validation loss

Number of selected features

Controls Hard-Concrete sharpness

Controls feature count

Controls alignment with attention

Controls semantic diversity

Aligns selection with SHAP/IG attribution

long-form datasets (IMDB) to ensure sufficient coverage of
semantically meaningful features.

The training was performed on an NVIDIA RTX 3060
GPU with 16 GB memory, which allowed efficient parallel
processing of batched sequences and saliency computation.
All experiments were repeated over five random seeds, and
the reported results correspond to the mean performance
to ensure statistical robustness. Both classification and
explainability metrics were computed on the held-out test
splits to avoid any leakage between feature selection and
evaluation phases. The combination of diverse datasets,
controlled hyperparameters, and explainability-focused
evaluation criteria provides a rigorous foundation for
assessing the fidelity and efficiency of the proposed TALEX
framework.

MR Dataset

The evaluation on the MR dataset provides a strong baseline
for understanding how the proposed TALEX framework
performs on short-form sentiment data with high lexical
variability. MR is characterized by informal movie reviews
with short sentences and frequent use of sentiment-bearing
bigrams, making it particularly suitable for analyzing the
effectiveness of attention-guided explainable feature
selection.

The experimental results are compared against classical
feature selectors (Chi-Square, RFE), metaheuristic selectors
(PSO, GA, GWO, FFA), and deep learning baselines (CNN-
VAE, BiGRU-Attention, and ensemble architectures). TALEX
shows a substantial improvement in both classification
performance and explanation faithfulness. The attention

and attribution alignment mechanism allows TALEX
to identify semantically relevant tokens with minimal
redundancy, yielding high discriminative power.

Table 3 presents comparative accuracy across all models.
TALEX achieves 95.2% accuracy on MR, outperforming
both traditional selectors and metaheuristic methods.
This is consistent with the expectation that attention-
based selection improves classification while maintaining
interpretability. The accuracy exceeds SHAP-aligned classical
methods such as Chi-Square (88.1%) and RFE (89.2%),
and also slightly surpasses RoBERTa-based deep learning
baselines.

Table 3: Comparative results of classification accuracy on MR

dataset.

Model MR (Accuracy %)
CNN-VAE 91.24
BiGRU-Attention 91.92
Ensemble BiLSTM+GRU+CNN 92.1
Chi-Square 88.1
RFE 89.2
PSO 90.25
GA 90.8
GWO 90.1
FFA 90.6
PCOA 94.7
TALEX (Proposed) 95.2
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Table 4 shows the corresponding F1-scores, reflecting
balanced precision and recall. TALEX achieves an F1-score
of 95.0%, surpassing PCOA by 0.6% and outperforming
deep learning baselines by approximately 4-6%. This
demonstrates that explanation-guided feature selection
does not compromise model sensitivity or specificity but
rather enhances both by focusing on highly informative
tokens and phrases.

In terms of feature reduction, TALEX reduces the
dimensionality by 61.3%, slightly higher than PCOA (60%)
and considerably higher than conventional selectors. This
efficiency arises from the differentiable gating aligned
with attention saliency and SHAP attribution, allowing for
selective pruning of low-impact features.

The learning curve for the MR dataset is shown in Figure
2, where both training and validation accuracy converge
rapidly within the first 10 epochs. TALEX exhibits minimal
generalization gap, indicating stable training and effective
regularization through explainable feature selection. The
model avoids overfitting by constraining the input to highly
relevant feature subsets, which is evident from the near-
overlapping loss curves for training and validation.

To assess the faithfulness of explanations, deletion and
insertion analyses were performed using the top-k features
identified by TALEX. As shown in Figure 3, deletion of top
features leads to a sharp decline in model confidence, while
re-insertion of the same features quickly recovers prediction
probability. This indicates that the selected features have
high causal influence on model decisions, validating the
alignment between explanation and prediction behavior.

The explanation alignment between attention,
Integrated Gradients, and SHAP attributions is shown in
Figure 4, where top tokens such as “not good”, “loved”,
“boring”, “excellent” and “terrible” consistently appear across
all explanation sources. The alignment score between SHAP
and TALEX-selected features reached 0.82, and between

Table 4: Comparative results of F1-score on MR dataset.

Model MR (F1-Score %)
CNN-VAE 89.3
BiGRU-Attention 90.1
Ensemble BiLSTM+GRU+CNN 90.9
Chi-Square 86.1
RFE 87.2
PSO 88.9
GA 89.4
GWO 88.6
FFA 88.8
PCOA 94.4
TALEX (Proposed) 95.0
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Table 5: Feature reduction comparison on MR dataset
Model MR (Feature Reduction %)
Chi-Square 42
RFE 46
PSO 51
GA 50.5
GWO 48
FFA 49
PCOA 60
TALEX (Proposed) 61.3
1.0 F
>
@ 09
é(g 0.8 = Training Accuracy
—=— Validation Accuracy
—— Training Loss
0.6 —=— Validation Loss
§ 0.4
0.2 L 1 L L L I T T T ad
0 5 10 15 20 25 30 35 40 45 50
Epochs

Figure 2: Training and validation accuracy/loss curves for TALEX on
MR dataset
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Figure 3: Deletion and insertion faithfulness curves for TALEX on MR
dataset

Table 6: Comparative results of classification accuracy on CR dataset

Model CR (Accuracy %)
CNN-VAE 91.8
BiGRU-Attention 92.4
Ensemble BiLSTM+GRU+CNN 93.2
Chi-Square 89.4
RFE 90.2
PSO 91.1
GA 91.6
GWO 91.2
FFA 91.5
PCOA 95.5

TALEX (Proposed) 96.1
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Figure 4: XAl alignment visualization (Attention, IG, SHAP) on MR dataset.

attention rollout and TALEX 0.79, reflecting strong cross-
method interpretability coherence.

CR Dataset

The CR dataset provides a complementary evaluation
scenario to MR by introducing product review text with
moderate length and rich opinion-bearing expressions.
Unlike MR, CR sentences contain structured sentiment cues
such as comparative phrases (“better than”, “worth buying”),
intensifiers (“extremely good”, “very bad”), and mixed
polarity segments. This makes it a suitable benchmark for
evaluating whether TALEX can maintain high accuracy and
interpretability in moderately complex sentiment structures.

The results demonstrate that the attention-attribution
fusion mechanism in TALEX is particularly effective for
this dataset. Compared to statistical feature selection
methods and metaheuristic baselines, TALEX achieves both
higher predictive performance and stronger explanation
faithfulness. Table 6 summarizes the classification accuracy
achieved by various models. TALEX attains an accuracy
of 96.1%, outperforming traditional selectors such as Chi-
Square (89.4%) and RFE (90.2%), as well as metaheuristics
including GA and PSO. Moreover, TALEX slightly surpasses
the PCOA baseline, indicating that the explainability-driven
selection process is highly competitive even without
evolutionary search.

F1-score results, shown in Table 7, further reinforce these
findings. TALEX reaches an F1-score of 95.9%, demonstrating
improved balance between precision and recall. This
reflects the model’s ability to capture sentiment-bearing
features without overfitting to local patterns or discarding
minority sentiment expressions. The proposed selector
provides stable feature sets that remain interpretable and
discriminative across training runs.

A key strength of TALEX lies in its feature reduction
capability. For CR, the proposed method achieved a feature
reduction of 59.4%, higher than GA (51.2%) and PSO (50.7%),
while maintaining top-tier accuracy. This indicates that
the differentiable gating mechanism effectively removes

Table 7: Comparative results of F1-score on CR dataset.

Model CR (F1-Score %)
CNN-VAE 90.4
BiGRU-Attention 91.2
Ensemble BiLSTM+GRU+CNN 92.0
Chi-Square 87.8
RFE 88.5
PSO 89.9
GA 90.1
GWO 89.7
FFA 89.8
PCOA 95.3
TALEX (Proposed) 95.9

Table 8: Feature reduction comparison on CR dataset.

Model CR (Feature Reduction %)
Chi-Square 43

RFE 48

PSO 50.7

GA 51.2

GWO 49.5

FFA 50.1

PCOA 58

TALEX (Proposed) 59.4

redundant tokens, particularly product-specific modifiers
and neutral phrases that do not contribute to sentiment
polarity. The results are detailed in Table 8.

The training and validation accuracy and loss curves in
Figure 5 show fast and stable convergence, with minimal
overfitting across epochs. Unlike MR, where sentiment
cues are short and highly polarized, CR introduces more
context-dependent expressions. The model benefits from
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Figure 5: Training and validation accuracy/loss curves for TALEX on
CR dataset
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Figure 6: Deletion and insertion faithfulness curves for TALEX on CR
dataset

attention-aligned selection, which prioritizes semantically
critical phrases and reduces irrelevant modifiers. The close
tracking of validation accuracy with training accuracy
illustrates the robustness of the selected features.

Faithfulness analysis through deletion and insertion
curves further confirms the causal importance of the
selected features. As shown in Figure 6, deleting top-
ranked features leads to a sharp decline in prediction
confidence, while incremental insertion reconstructs the
model output efficiently. This behavior reflects that TALEX-
selected features capture the dominant sentiment signal
with minimal noise, unlike classical selectors where deletion
curves often show slower degradation.

Table 9: Comparative results of classification accuracy on IMDB

dataset
Model IMDB (Accuracy %)
CNN-VAE 93.1
BiGRU-Attention 93.8
Ensemble BiLSTM+GRU+CNN 94.5
Chi-Square 86.7
RFE 88.2
PSO 91.5
GA 92.1
GWO 91.7
FFA 91.9
PCOA 96.6
TALEX (Proposed) 97.1

The XAl alignment visualization in Figure 7 illustrates the
overlap between attention rollout, Integrated Gradients,
and SHAP feature attributions. The top-ranked features—
such as “excellent quality”, “not recommended”, “value for
money”, and “terrible service"—are consistently identified
across explanation methods, demonstrating high alignment
between explanation and feature selection. The alignment
scores reach 0.84 for SHAP-TALEX overlap and 0.80 for
Attention-TALEX overlap, indicating stable interpretability

performance.

IMDB Dataset

The IMDB dataset is particularly challenging due to its
long-form reviews, which often contain complex sentiment
structures, topic shifts, and a significant amount of lexical
redundancy. Unlike MR and CR, where sentiment can
be inferred from short, polarized phrases, IMDB reviews
require the model to identify distributed sentiment cues
scattered throughout lengthy text. This makes it an ideal
benchmark for evaluating the scalability and robustness
of the TALEX framework, especially its ability to perform
explainable feature selection under high-dimensional
input conditions.

XAl Alignment Visualization (Attention, IG, SHAP) on CR Dataset
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Figure 7: XAl alignment visualization (Attention, IG, SHAP) on CR dataset
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The results in Table 9 show that TALEX achieves an
accuracy of 97.1%, outperforming all classical feature
selection baselines and matching or slightly surpassing
the performance of RoBERTa with full fine-tuning, despite
using less than half the features. Traditional methods like
Chi-Square and RFE perform poorly in this setting, primarily
due to their inability to model contextual interactions in
long reviews. Metaheuristic methods provide moderate
improvements but remain less competitive than TALEX in
terms of both accuracy and efficiency.

In terms of F1-score, shown in Table 10, TALEX
demonstrates strong precision and recall, achieving an F1 of
96.9%, which is a 6-9% improvement over classical selectors
and about 2-3% higher than conventional deep learning
baselines. This improvement is particularly meaningful for
IMDB because sentiment cues often appear in the middle
and tail of the text, and selecting the most informative and
non-redundant features plays a critical role in avoiding
sentiment drift.

TALEX also achieved 52.4% feature reduction on IMDB,
as presented in Table 11, which is significant given the
length of the documents. Unlike filter methods, which
often eliminate features indiscriminately, the differentiable
selection mechanism in TALEX aligns feature gating with

Table 10: Comparative results of F1-score on IMDB dataset.

Model IMDB (F1-Score %)
CNN-VAE 91.2
BiGRU-Attention 924
Ensemble BiLSTM+GRU+CNN 93.1
Chi-Square 85.4
RFE 86.3
PSO 90.0
GA 90.8
GWO 90.1
FFA 90.5
PCOA 96.2
TALEX (Proposed) 96.9

Table 11: Feature reduction comparison on IMDB dataset

Model IMDB (Feature Reduction %)
Chi-Square 37

RFE 41

PSO 455

GA 46.1

GWO 44.8

FFA 45.0

PCOA 51.0

TALEX (Proposed) 524

transformer attention and attribution, ensuring that even
distributed sentiment cues are preserved.

The training curves in Figure 8 reveal that TALEX
stabilizes after 15-18 epochs, compared to over 30 epochs
required by the deep learning baselines. The reduction
in input dimensionality accelerates convergence while
preserving performance. This is particularly beneficial for
large-scale applications where training cost is a critical factor.

Faithfulness evaluation using deletion and insertion

analysis shows highly consistent results. Figure 9
demonstrates that removing the top-ranked features
leads to a rapid drop in confidence, while inserting them
reconstructs the original decision boundary efficiently. This
confirms that TALEX prioritizes causally meaningful features,
even in long documents, where distributed sentiment is
difficult to capture with classical approaches.
The XAl alignment visualization in Figure 10 reveals
strong consistency between TALEX-selected features and
attention/attribution signals. Sentiment-bearing phrases
such as “highly recommended”, “worst experience ever”,
“absolutely fantastic”, and “waste of time” consistently
appeared across SHAP, Integrated Gradients, and attention
rollout explanations. The alignment scores were 0.87 (SHAP-
TALEX) and 0.83 (Attention-TALEX), which are the highest
among all datasets evaluated, indicating that the model is
able to stably identify and retain salient phrases even when
they are distributed throughout long sequences.
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Figure 8: Training and validation accuracy/loss curves for TALEX on
IMDB dataset.

Deletion and Insertion Faithfulness Curves for TALEX on IMDB Dataset
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Figure 9: Deletion and insertion faithfulness curves for TALEX on
IMDB dataset.
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Figure 10: XAl alignment visualization (Attention, IG, SHAP) on IMDB dataset.

SemEval 2013 Dataset

The SemEval 2013 dataset presents a more complex
evaluation setting compared to MR, CR, and IMDB due to its
informal language, code-switching, and classimbalance. This
dataset consists primarily of short, Twitter-style messages,
where sentiment cues are often embedded in slang,
abbreviations, emojis, and irregular linguistic structures.

Table 12: Comparative results of classification accuracy on SemeEval
2013 dataset

Model SemEval 2013 (Accuracy %)
CNN-VAE 89.5
BiGRU-Attention 90.2
Ensemble BiLSTM+GRU+CNN 91.1
Chi-Square 82.6
RFE 84.4
PSO 88.5
GA 88.9
GWO 883
FFA 88.7
PCOA 93.4
TALEX (Proposed) 94.2

Table 13: Comparative results of F1-score on SemEval 2013 dataset

Model SemEval 2013 (F1-Score %)
CNN-VAE 87.4
BiGRU-Attention 88.1
Ensemble BiLSTM+GRU+CNN 89.0
Chi-Square 81.3
RFE 83.0
PSO 86.4
GA 87.0
GWO 86.2
FFA 86.6
PCOA 93.1
TALEX (Proposed) 93.9

This type of noisy, real-world data poses a significant
challenge for traditional feature selection methods, which
typically rely on well-structured lexical patterns. Evaluating
TALEX on this dataset highlights its capacity to generalize
to non-canonical linguistic environments while preserving
explanation fidelity.

Table 12 summarizes the classification accuracy across
different methods. TALEX achieved an accuracy of 94.2%,
surpassing classical and metaheuristic selectors by a
wide margin and closely approaching its performance
on more structured datasets. Chi-Square and RFE show a
clear performance drop on this dataset, indicating their
limited ability to capture informal linguistic expressions.
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Figure 11: Training and validation accuracy/loss curves for TALEX on
SemEval 2013 dataset

Deletion and Insertion Faithfulness Curves for TALEX on SemEval 2013 Dataset
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Figure 12: Deletion and insertion faithfulness curves for TALEX on
SemEval 2013 dataset.
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XAl Alignment Visualization (Attention, |G, SHAP) on SemEval 2013 Dataset
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Figure 13: XAl alignment visualization (Attention, IG, SHAP) on SemEval 2013 dataset

Table 14: Feature reduction comparison on SemEval 2013 dataset

Model SemEval 2013 (Feature Reduction %)
Chi-Square 41

RFE 44

PSO 49

GA 51

GWO 48

FFA 50

PCOA 59

TALEX (Proposed) 60.2

Metaheuristic approaches such as PSO and GA offer some
improvements, but they remain inferior to the attention-
attribution alignment strategy used in TALEX.

Table 13 shows the F1-score results, which better reflect
model behavior under class imbalance. TALEX achieved an
F1-score of 93.9%, improving upon Chi-Square by over 10%
and slightly surpassing the evolutionary PCOA baseline. This
result highlights the robustness of transformer attention
combined with attribution signals, which can prioritize
sentiment-relevant patterns even when they appear in
non-standard formats.

As shown in Table 14, TALEX achieved a feature
reduction of 60.2%, outperforming Chi-Square (41%) and
metaheuristics (45-52%). This reduction is particularly
meaningful for SemEval, where many tokens are either
neutral, context-irrelevant, or stylistic (e.g., “lol”, “-)", “idk”).
By aligning the selection with both attention and attribution,
TALEX effectively filters out noise tokens while retaining
sentiment-rich patterns such as “not cool”, “super happy”,
and “worst ever”.

The learning curves in Figure 11 show that TALEX
converges steadily with minimal overfitting, despite the
noisy input. The early stabilization of validation accuracy is
indicative of the selector’s ability to focus on discriminative
features early in training, avoiding overfitting to irrelevant
tokens such as hashtags or neutral filler words.

Faithfulness analysis, visualized in Figure 12, reveals that
deleting the top-ranked features results in a sharp drop in
model confidence, while reinserting them rapidly restores
the original prediction probability. This demonstrates that
the selected features contribute directly to the model’s
decision, even in informal language settings.

The XAl alignment visualization in Figure 13 illustrates
how attention rollout, Integrated Gradients, and SHAP
attributions align with TALEX's selected feature subsets. Top
tokens such as “worst”, “amazing”, “not good”, “love this”, and
“hate it” are consistently identified across all explanation
methods. The alignment scores were 0.81 for SHAP-TALEX
and 0.77 for Attention-TALEX, which indicates high
explanation consistency despite the linguistic irregularities
in the dataset.

Conclusion and Future Directions

This study introduced TALEX, a Transformer-Attention-Led
EXplainable Feature Selection framework for sentiment
analysis that integrates multi-view attention attribution,
differentiable gating, and faithfulness-aligned explanation
objectives. Unlike conventional feature selection techniques,
TALEX leverages the intrinsic interpretability signals
of transformer architectures to identify a compact yet
semantically rich subset of features. By combining attention
rollout, Integrated Gradients, and SHAP-based faithfulness
alignment, the framework achieves both state-of-the-art
classification performance and robust interpretability across
datasets with different linguistic characteristics.

The experimental results on four benchmark datasets:
MR, CR, IMDB, and SemEval 2013, confirm the efficacy and
adaptability of TALEX. On short-form datasets (MR and
CR), the method effectively captured polarized sentiment
expressions with high precision. On IMDB, which contains
long and lexically redundant reviews, TALEX demonstrated
scalability, achieving over 50% feature reduction without
compromising accuracy. On the SemEval 2013 dataset,
characterized by informal and noisy language, TALEX
maintained stable performance, illustrating its robustness
in non-canonical linguistic contexts. Across all datasets,
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the framework consistently outperformed statistical
and metaheuristic selectors in accuracy, F1-score, and
explanation alignment.

Looking forward, this work opens several promising
research directions. First, future studies may extend TALEX
to multilingual and code-mixed datasets, where attention
attribution must capture cross-lingual sentiment cues.
Second, incorporating online and streaming variants of
the selection mechanism can enable real-time explainable
sentiment analysis in dynamic environments such as
social media monitoring. Third, integrating human-
in-the-loop explanation refinement may strengthen
interpretability and improve the alignment between
automated explanations and human perception. Finally,
exploring hybrid interpretability metrics that combine
faithfulness with human comprehensibility can further
enhance the trustworthiness of sentiment models in
practical deployments.

References

Sharma, N. A,, Ali, A. S., & Kabir, M. A. (2025). A review of
sentiment analysis: tasks, applications, and deep learning
techniques. International journal of data science and
analytics, 19(3), 351-388.

Albladi, A., Islam, M., & Seals, C. (2025). Sentiment analysis of twitter
data using NLP models:a comprehensive review. IEEE Access.

Alahmadi, K., Alharbi, S., Chen, J., & Wang, X. (2025). Generalizing
sentiment analysis: a review of progress, challenges,
and emerging directions. Social Network Analysis and
Mining, 15(1), 1-28.

Hussain, N., Qasim, A., Mehak, G., Zain, M., Sidorov, G., Gelbukh,
A., & Kolesnikova, O. (2025). Multi-Level depression severity
detection with deep Transformers and enhanced machine
learning techniques. Al, 6(7), 157.

Karaduman, M., Baydemir, M. B., & Yildirim, M. (2025). Performance
of Transformer-Based Methods on Restaurant Reviews
Analysis.Firat University Journal of Experimental and
Computational Engineering. https://doi.org/10.62520/
fujece.1632266

Aljabar, A., Ali, I., & Karomah, B. M. (2024). Sentiment Analysis Using
Transformer Method.Journal of Informatics, Information
System, Software Engineering and Applications. https://doi.

org/10.20895/inista.v6i2.1383

Jahin, M. A., Shovon, M. S. H., Mridha, M. F., Islam, Md. R., &
Watanobe, Y. (2024). A hybrid transformer and attention
based recurrent neural network for robust and interpretable
sentiment analysis of tweets.Dental Science Reports. https://
doi.org/10.1038/541598-024-76079-5

Wu, Z., Nguyen, T.-S., & Ong, D. C. (2020). Structured Self-
AttentionWeights Encode Semantics in Sentiment Analysis.
Empirical Methods in Natural Language Processing. https://doi.
org/10.18653/V1/2020.BLACKBOXNLP-1.24

Meem, R. F.,, & Hasan, K. T. (2023).Improving Sentiment Analysis in
Online Course Reviews with BERT and Transformer Attention
Mechanism. https://doi.org/10.21203/rs.3.rs-3741963/v1

Li, P., Zhong, P., Zhang, J., & Mao, K. (2020). Convolutional
Transformer with Sentiment-aware Attention for Sentiment
Analysis.International Joint Conference on Neural Network.
https://doi.org/10.1109/IJCNN48605.2020.9206796

Kaur, I, Kumar, S., & Singhal, K. (2025).Multilingual sentiment analysis
using transfer learning and transformer architecture: A survey.
https://doi.org/10.1201/9781003593034-47

N, P.(2022). Explainable Al for Sentiment Analysis.Smart Innovation,
Systems and Technologies. https://doi.org/10.1007/978-981-
19-3571-8_41

Lai, Y.-W., & Chen, M. (2024).Using Explainable Artificial Intelligence
and Knowledge Graph to Explain Sentiment Analysis of
COVID-19 Post on the Twitter. https://doi.org/10.1007/978-3-
031-52787-6_4

Bidve, V. S., Shafi, P. M., Sarasu, P., Pavate, A., Shaikh, A., Borde,
S., SinghV. B. P, & Raut, R. (2024). Use of explainable Al to
interpret the results of NLP models for sentimental analysis.
Indonesian Journal of Electrical Engineering and Computer
Science. https://doi.org/10.11591/ijeecs.v35.i1.pp511-519

Mabokela, K. R., Primus, M., & Celik, T. (2024). Explainable Pre-
Trained Language Models for Sentiment Analysis in Low-
Resourced Languages.Big Data and Cognitive Computing.
https://doi.org/10.3390/bdcc8110160

V, J., &S., A. (2024). A multi-aspect framework for explainable
sentiment analysis.Pattern Recognition Letters. https://doi.
org/10.1016/j.patrec.2024.01.001

Camargo, L.F.de, Feitosa, J.da C., &Brega, J. R.F. (2023).eXplainable
Artificial Intelligence - A Study of Sentiments About Vaccination
in Brazil. https://doi.org/10.1007/978-3-031-36805-9_40

Cristescu, M. P., Brandas, C., Mara, D. A., & Petrea, I. (2025).
Explainable Al for Financial-News Sentiment Mining. https://
doi.org/10.20944/preprints202507.1609.v1



