
Abstract
Feature selection plays a crucial role in sentiment analysis, especially in transformer-based architecture where large and complex feature 
spaces often hinder both efficiency and interpretability. Conventional statistical and heuristic selection methods fail to fully exploit 
transformer attention signals and typically lack faithfulness to the model’s actual decision process. This research introduces TALEX, a 
Transformer-Attention-Led EXplainable Feature Selection framework, designed to derive compact, discriminative, and interpretable 
feature subsets for sentiment classification. TALEX integrates multi-view saliency signals from transformer attention, Integrated Gradients, 
and SHAP to rank features, followed by differentiable gating optimized with explainability-alignment loss. Extensive experiments on four 
benchmark datasets: MR, CR, IMDB, and SemEval 2013, demonstrate that TALEX achieves competitive or superior accuracy while reducing 
feature dimensionality by 30–60%. Furthermore, deletion–insertion analyses and attribution alignment confirm high faithfulness and 
explanation stability. By aligning feature selection with explanation mechanisms, TALEX effectively bridges the gap between model 
efficiency and interpretability, providing a transparent and scalable foundation for real-world sentiment analysis applications.
Keywords: Sentiment Analysis, Transformer Attention, Explainable AI, Feature Selection, Attention Rollout, SHAP.
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Introduction
Sentiment analysis has emerged as one of the most influential 
research areas in natural language processing (NLP), 
enabling automated systems to understand and interpret 
human opinions, emotions, and attitudes expressed in 
textual data (Sharma et al., 2025). With the explosive growth 
of user-generated content on social media platforms, 
product review sites, and digital forums, sentiment analysis 
has become a critical tool for applications ranging from 
customer feedback mining and political opinion tracking 
to financial market forecasting and healthcare sentiment 
monitoring (Abladi et al., 2025). The growing complexity, 
scale, and diversity of textual data, however, have intensified 

the need for models that are not only accurate but also 
transparent and computationally efficient.

The rapid advancement of deep learning and 
transformer-based architectures has significantly improved 
sentiment classif ication performance by capturing 
contextual and semantic nuances in text (Alahmadi et al., 
2025). Architectures such as BERT, RoBERTa, and DeBERTa 
have demonstrated remarkable ability to learn deep 
language representations (Hussain et al., 2025). These high-
capacity models often process large numbers of features, 
including subword tokens, contextual embeddings, and 
attention weights. This high-dimensional feature space 
leads to increased computational cost, longer training 
times, reduced model interpretability, and susceptibility 
to spurious correlations. As a result, feature selection has 
re-emerged as a critical research problem in modern NLP 
pipelines.

The motivation for this research arises from the tension 
between performance and explainability in current 
sentiment analysis models. While deep transformer models 
deliver superior classification accuracy, their decision-making 
processes are often opaque, making it difficult to identify 
which linguistic elements contribute to their predictions. 
This lack of interpretability can hinder their deployment 
in domains where transparency and accountability are 
essential, such as healthcare, finance, and public policy. At 
the same time, conventional feature selection techniques 
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such as Chi-Square, mutual information, and wrapper-based 
methods fail to leverage the rich internal representations 
generated by modern language models. As a result, they 
often produce suboptimal or unstable feature subsets when 
applied to high-dimensional, context-dependent data.

The problem addressed in this research is the absence of 
robust, explainability-driven feature selection frameworks 
that can reduce dimensionality while preserving both 
predictive performance and interpretive clarity. Most 
existing methods focus solely on accuracy optimization 
without systematically evaluating the faithfulness and 
stability of the selected features. Moreover, they struggle 
to handle informal language, domain shifts, and contextual 
dependencies that are prevalent in real-world sentiment 
data such as social media posts or long-form reviews.

The objectives of this study are fourfold. First, to 
investigate the role of attention and attribution mechanisms 
in highlighting linguistically meaningful features for 
sentiment classification. Second, to design a feature 
selection approach that effectively reduces redundant or 
irrelevant information while preserving essential sentiment 
cues. Third, to incorporate interpretability metrics that 
evaluate not just model performance but also alignment 
between selected features and model reasoning. Fourth, 
to demonstrate the generalizability of the approach across 
datasets with varying linguistic structures and domains, 
including short, long, and informal textual content.

The significance of this work lies in its potential to bridge 
the gap between model interpretability and practical 
performance in sentiment analysis. By shifting the focus 
from purely accuracy-driven selection toward explanation-
aligned methods, this research contributes to building NLP 
systems that are not only efficient but also transparent, 
stable, and trustworthy. Such systems can play a vital role 
in high-stakes decision-making environments, enabling 
human users to better understand, trust, and validate 
automated sentiment classification outcomes. This is 
especially relevant in the context of recent regulatory and 
ethical emphasis on explainable AI, where models must 
provide interpretable justifications for their output.

Related Works
The emergence of transformer architectures has significantly 
reshaped the landscape of sentiment analysis by enabling 
models to capture fine-grained contextual dependencies 
in textual data. Transformer attention mechanisms have 
proven effective at dynamically pinpointing sentiment-
rich elements within sentences, thereby offering a 
more precise and context-sensitive representation of 
sentiment. Simultaneously, the growing demand for model 
transparency and trustworthiness has brought Explainable 
Artificial Intelligence (XAI) into focus, aiming to elucidate 
how sentiment models arrive at their predictions. Together, 
these two domains transformer attention and explainable 

AI form the foundation upon which modern interpretable 
sentiment analysis frameworks are built.

Transformer attention mechanisms have become 
essential for sentiment analysis due to their capacity to 
learn complex linguistic patterns and relationships between 
words. Transformer-based models such as BERT and RoBERTa 
employ self-attention layers that can dynamically adjust the 
weight of each token based on its contribution to the overall 
meaning of a sentence (Karaduman et al., 2025; Aljabar et al., 
2024; Jahin et al., 2024). This property allows the model to 
focus on sentiment-relevant expressions such as negations, 
intensifiers, and polarity markers, which are often critical 
for accurate sentiment classification. As demonstrated in 
several studies, transformer attention improves sentiment 
understanding in domains ranging from restaurant reviews 
to educational feedback (Wu et al., 2020; Meem & Hasan, 
2023).

Transformer-based sentiment analysis models have also 
achieved exceptional performance in benchmark datasets. 
For example, BERT-based models have been reported 
to reach up to 98% accuracy on IMDB movie reviews, 
significantly outperforming classical approaches (Aljabar et 
al., 2024). Moreover, the adoption of hybrid architectures has 
further enhanced these capabilities. Models such as TRABSA 
combine transformers with recurrent neural networks to 
exploit both temporal and contextual dependencies in 
text (Jahin et al., 2024), while ConvTransformer integrates 
convolutional layers with transformer attention to jointly 
capture local n-gram patterns and long-range semantic 
dependencies (Li et al., 2020). These hybrid designs 
have shown promising results across domains like 
product reviews and online education sentiment analysis, 
reflecting the adaptability and strength of attention-driven 
representations. Nonetheless, the literature identifies several 
significant challenges, such as reliance on extensive labeled 
datasets and persistent obstacles in managing linguistic 
diversity (Jahin et al., 2024; Kaur et al., 2025).Such challenges 
point to a need for approaches that not only improve 
performance but also enhance model interpretability.

Parallel to the evolution of transformer attention, 
Explainable AI (XAI) has emerged as a key research area 
for improving the interpretability of sentiment analysis 
systems. Deep neural models are often regarded as opaque 
black boxes, making it difficult for users to understand why 
specific sentiment predictions are made. XAI techniques aim 
to uncover the underlying reasoning behind model outputs, 
increasing transparency and trust in AI-driven decision-
making (N, 2022; Lai & Chen, 2024). Popular model-agnostic 
techniques such as LIME and SHAP provide local and global 
explanations by identifying the most influential features 
contributing to a prediction (Bidve et al., 2024; Mabokela et 
al., 2024). These methods have been successfully applied to 
sentiment models to visualize and quantify the contribution 
of tokens, phrases, or attributes to sentiment polarity.
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Advanced frameworks have sought to integrate XAI more 
deeply into sentiment analysis workflows. The Multi-
Aspect Framework for Explainable Sentiment Analysis 
(MAFESA) combines aspect extraction with sentiment 
prediction, enabling more interpretable and aspect-
focused explanations (V & S., 2024). Other works incorporate 
knowledge graphs to represent feature dependencies 
and improve interpretability by revealing the semantic 
connections driving model predictions (Lai & Chen, 2024). 
XAI techniques have also been applied to various domains, 
including social media sentiment toward public health 
initiatives, such as COVID-19 vaccination campaigns, 
providing insights into opinion dynamics (Camargo et al., 
2023). Similarly, financial sentiment analysis has benefited 
from combining VADER and TF-IDF models with SHAP 
explanations to deliver transparent and accountable 
decision support (Cristescu et al., 2025).

Despite these advances, several research gaps remain. 
While transformer attention improves performance and 
local interpretability, its attention weights alone does not 
guarantee faithful explanations, as they may not always 
reflect true causal importance. On the other hand, XAI 
techniques like LIME and SHAP provide interpretive value 
but operate post hoc, often disconnected from the model’s 
internal reasoning. Current research rarely integrates 
attention mechanisms with attribution-based explainability 
in a way that simultaneously optimizes both interpretability 
and performance. Furthermore, most existing methods do 
not address stability and faithfulness of explanations across 
datasets with varying linguistic properties. This gap shows 
the need for a unified feature selection framework that uses 
transformer attention to provide transparent, faithful, and 
stable explanations for sentiment analysis,the focus of this 
research.

Proposed Methodology

Overview of TALEX Architecture
The overall workflow of TALEX is illustrated in Figure 1, which 
consists of four primary components: Input Processing, 
Transformer Attention & Attribution, Differentiable 
Feature Selector, and Explainable Classification Layer. Each 
component plays a distinct role in achieving attention-
guided, explanation-aligned feature selection for sentiment 
analysis.

Input Processing
Raw textual data undergoes tokenization, lowercasing, 
stop-word removal, and optional n-gram expansion. The 
processed tokens form the basis for downstream attention 
computation and feature ranking.

Transformer Attention & Attribution
The processed input is passed through a pre-trained 
transformer (e.g., RoBERTa).

•	 Attention Rollout captures global dependency patterns 
by aggregating attention weights across layers and 
heads.

•	 Integrated Gradients and gradient norms provide local 
causal contribution scores.

•	 These signals are fused into a multi-view saliency score, 
producing an initial feature ranking.

Differentiable Feature Selector
Each feature is assigned a Hard-Concrete gate, enabling 
end-to-end differentiable selection.
•	 The selector optimizes a joint loss combining classification 

accuracy, sparsity, rank alignment with attention, 
redundancy control, and faithfulness alignment with 
post-hoc explanations.

•	 This mechanism determines the optimal subset of 
features while respecting interpretability constraints.

Explainable Classification Layer
The selected features are fed into a lightweight classifier (e.g., 
BiGRU with attention) that generates sentiment predictions. 
Post-hoc explanation methods (e.g., SHAP or Integrated 
Gradients) validate the alignment between selection and 
model reasoning, ensuring faithful and transparent decision-
making.

Figure 1 depicts the sequential flow from raw input 
to explainable output, highlighting how TALEX integrates 
attention signals and explainability into the feature selection 
process. This structured architecture provides a balance 
between high predictive performance and interpretable 
feature reasoning, making it suitable for high-stakes 
sentiment analysis applications.

Transformer-Attention Feature Ranking
Feature ranking in the TALEX framework is designed to 
exploit the intrinsic interpretability properties of transformer 
architectures while integrating additional gradient-based 
attribution methods to enhance saliency robustness. 
The methodology aligns the model’s internal reasoning 
signals with a structured and explainable feature selection 
mechanism, avoiding the dependency on handcrafted 
feature scoring heuristics.

The process begins by passing the tokenized textual 
input through a pre-trained transformer backbone such 
as RoBERTa. During the forward pass, the transformer 
generates self-attention maps across multiple heads and 

Figure 1: TALEX Architecture
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layers. Each attention head models contextual interactions 
between tokens, and these interactions provide structural 
importance cues. However, single-layer attention values can 
be noisy or localized, so this work employs attention rollout 
to accumulate attention flow through the entire network. 
Specifically, the normalized attention matrices are combined 
across all layers to produce a global saliency representation 
that accounts for indirect token influence on downstream 
outputs. If ( )lA  denotes the normalized attention matrix at 
layer l , the rollout attention is computed as

( )( )rollout 1=
= +∏L l

l
A I A

where I  is the identity matrix and L is the total 
number of transformer layers. This recursive 
formulation allows information from earlier 
layers to propagate forward, creating a global 
importance distribution over tokens.

While attention provides a topological measure 
of token influence, it does not necessarily reflect 
the causal contribution of each token to the final 
prediction. To address this, Integrated Gradients 
(IG) is applied to the output logits to capture 
sensitivity with respect to each input embedding. 
Let x  represent the input token embeddings and 
′x  the baseline embedding (e.g., zero vector). 

For each token j , the integrated gradient is 
defined as

( ) ( )( )1 á
á 0

∂ + −
=

′ ′
′− ∫ =

∂j j
j

F x x x
IG x x j d

x

where ( )⋅F  denotes the model output. This integral is 
approximated using numerical steps and yields a causal 
importance value that reflects how perturbing the token 
affects the model’s prediction.

In addition to attention rollout and IG, the gradient norm 
of each token embedding is computed to provide a fast, 
first-order sensitivity signal. This auxiliary signal captures 
local activation strength and is particularly useful in regions 
of the input where attention weights may be diffused or 
attribution gradients weakly distributed.

The final token importance score is computed by 
combining the three saliency signals through a convex 
weighted fusion:

( )rolloutá , â, ã,= + + ∇j j jR A j IG x
subject to the constraint ( )1α β γ+ + = . The coefficients 
\alpha, \beta, and γ  are tuned through cross-validation to 
balance structural, causal, and local contributions.

Subword-level importance values are then aggregated 
to word or n-gram level scores to align with the feature 
space used in downstream selection. This aggregation 
is performed using mean pooling or weighted pooling, 

ensuring that multi-token expressions (e.g., “not good”, 
“highly recommend”) are treated as single semantic units. 
The aggregated scores produce a feature ranking vector 

1 2, , ,= … dR R R R  over the entire feature set d.
This transformer-attention feature ranking process 

provides several methodological advantages:
•	 it preserves the hierarchical dependency structure 

captured by the attention mechanism;
•	 it integrates causal sensitivity through IG, improving 

robustness to noisy attention signals; and
•	 it aligns saliency computation with the eventual feature 

selection process, ensuring that the selected subset 
is grounded in model reasoning rather than arbitrary 
statistical scoring.

This ranked feature list forms the input to the differentiable 
feature selector in the subsequent stage, where 
explainability-aligned gating is performed to derive 
compact and interpretable feature subsets.

Differentiable Explainable Feature Selector
The core objective of the differentiable explainable feature 
selector in TALEX is to translate transformer-derived 
saliency signals into an optimal, sparse, and interpretable 
feature subset, while preserving or enhancing the model’s 
predictive performance. Unlike classical filter-based or 
wrapper-based methods, this component is trained end-
to-end with the classification model, enabling the selection 
mechanism to co-evolve with the decision boundary.

The feature selection process begins with the feature 
ranking vector 1 2, , ,= … dR R R R , derived from the 
attention–attribution fusion stage. To transform this ranked 
space into a learnable selection mechanism, each feature 

jf  is assigned a stochastic binary gating variable jz , which 
determines whether the feature is retained or discarded 
during model training. This binary decision is modeled 
through a Hard-Concrete distribution, a continuous 
relaxation of the Bernoulli variable that allows gradients to 
propagate through the selection step.

Let θ j  denote the learnable parameter associated with 
feature j . The gating variable jz  is obtained by sampling 
from the Hard-Concrete distribution:

  

( ) ( )( )1 log log 1θ σ θ
τ
 = − − + 
 

j j js u u

where ( )Uniform 0,1 ,∼u  represents the sigmoid function, 
and τ  is a temperature parameter controlling the sharpness 
of the gate. As training progresses, τ  is annealed toward 
a low value, driving the relaxed gates toward discrete 
0,1  decisions. This enables the selection mechanism to 
behave deterministically at inference time while remaining 
differentiable during training.
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The resulting selection mask [ ]1 2, , ,= … dz z z z  is applied 
to the input representation to produce a reduced feature set 

= zX X z , where 


 denotes element-wise multiplication. 
This pruned feature representation is then fed into a 
lightweight sentiment classifier such as a BiGRU-attention 
layer, which focuses on learning the mapping from a minimal 
set of informative features to sentiment labels. Because 
the selection is integrated into the model’s forward pass, 
irrelevant features are suppressed early in training, allowing 
the classifier to specialize on semantically relevant tokens 
and phrases.

The training objective of this module is designed to 
balance predictive performance, sparsity, and interpretability 
alignment. The overall loss function is formulated as

 	

The first term, cls , is the standard cross-entropy loss 
computed on model predictions, ensuring that the selected 
features contribute effectively to classification. The sparsity term 

sparse  is based on the 1L  norm gate activationons and 
encourages the model to retain only a small subset of 
features. The alignment term   measures the overlap 
between the top-k attention-ranked features and the active 
gates. This term ensures that the selection mechanism 
remains consistent with the transformer’s own internal 
salienc y, which improves stabilit y and semantic 
interpretability of the selected subset.

The redundancy term   enforces diversity 
within the selected set to avoid over-selecting semantically 
similar tokens. Practically, this is achieved by penalizing 
pairwise cosine similarity between embeddings of selected 
features. A high redundancy penalty encourages the 
model to choose features that are both informative and 
complementary, which improves generalization.

The final term   explicitly aligns the learned 
selection mask with post-hoc explanation maps derived 
from methods such as SHAP or Integrated Gradients. By 
minimizing the mean squared difference between gate 
activations and attribution scores, this term ensures that 
the selected features correspond to those driving model 
predictions rather than spurious correlations. This alignment 
substantially improves faithfulness and trustworthiness of 
the model explanations.

During optimization, the gradient flows through both 
the classifier and the selection gates, enabling joint learning. 
The Hard-Concrete gates adapt dynamically, retaining 
features with high predictive and attributional value while 
progressively zeroing out weak or redundant ones. This 
joint optimization results in a sparse, high-fidelity feature 
set with interpretability anchored in the model’s reasoning 
structure. The final mask can be thresholded at inference 
time to yield a deterministic subset of features, making the 
system efficient and transparent.

An important property of this formulation is its stability 
under perturbations. Because alignment and faithfulness 
terms directly tie the selection to attention and attribution 
distributions, the resulting feature subset exhibits high 
consistency across random seeds and training runs. This 
helps resolve instability in explainable feature selection, 
improving reliability for real-world use.

Faithfulness and Interpretability Metrics
Faithfulness and interpretability constitute the core 
evaluation criteria for the explainable feature selection 
framework introduced in this study. Unlike traditional feature 
selection, where performance is measured primarily in terms 
of accuracy and sparsity, the proposed method emphasizes 
the degree to which the selected features reflect the actual 
reasoning process of the model. Faithfulness is treated as a 
measure of causal alignment between model explanations 
and model behavior, whereas interpretability is concerned 
with the semantic coherence, stability, and consistency of 
the selected feature subsets.

The central methodological principle of this section is 
that an explanation is faithful only if perturbing or removing 
the selected features results in predictable, proportional 
changes in model output. In other words, the importance 
assigned to a feature must correspond to its true causal 
contribution to the prediction. Interpretability metrics 
further ensure that these features are not only causally 
relevant but also human-comprehensible and stable across 
training runs.

To quantify faithfulness, the evaluation relies on deletion 
and insertion analysis, a widely accepted interpretability 
evaluation technique in neural NLP models. Given a trained 
model and an ordered set of features ranked by their 
importance scores, the deletion metric measures the decline 
in prediction confidence when top-ranked features are 
progressively removed from the input. If the explanation is 
faithful, the model’s confidence should drop sharply as the 
most critical features are removed. Formally, let ( )f x  denote 
the predicted probability of the correct class for input x , 
and let   represent the set of top-k features. The deletion 
curve is computed as

 

where   denotes the modified input with the top-k 
features removed. The Area Under the Deletion Curve (AUC-
Del) is then obtained by integrating D(k) over different k 
values. Lower AUC-Del values indicate higher explanation 
faithfulness, as critical features are removed and the model’s 
confidence rapidly decreases.

Conversely, insertion analysis measures how model 
confidence recovers when features are incrementally added 
back in order of importance. Starting from a neutral baseline 
(e.g., empty input or masked tokens), features are gradually 
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reintroduced, and the predicted probability is monitored 
at each step:

 

A faithful explanation yields a steeply increasing insertion 
curve because the reintroduction of important features 
rapidly reconstructs the original decision. The Area Under 
the Insertion Curve (AUC-Ins) serves as a complementary 
faithfulness metric. Higher AUC-Ins values signify that the 
selected features carry the primary explanatory signal for 
the model’s prediction.

Beyond perturbation-based measures, faithfulness 
is further quantified by agreement metrics between 
attribution methods and the learned selection mask. 
Specifically, the Jaccard similarity between the top-k 
features according to transformer attention, attribution 
scores (e.g., Integrated Gradients or SHAP), and the final gate 
activations provide a direct measure of alignment between 
different explanation signals. Let kA  represent the set of 
top-k features by attention, kG  the top-k by attribution, 
and kS  the set selected by the differentiable selector. The 
agreement between two sets P and Q is defined as

( )Agreement ,
∩

=
∪

P Q
P Q

P Q

High agreement values indicate that the selector preserves 
the salient reasoning structure captured by the model, 
thereby increasing trust in the final explanation.

Interpretability extends beyond faithfulness by ensuring 
that the selected features are semantically meaningful and 
stable. Stability is evaluated using Kendall’s rank correlation 
coefficient ( )τ  computed across multiple random seeds. 
This metric captures the ordering consistency of selected 
features over repeated training runs, which is critical for 
deploying explainable models in real-world scenarios. A 
stable feature selection process ensures that the explanation 
remains reproducible and not merely a byproduct of 
stochastic optimization.

Semantic interpretability is also assessed qualitatively 
through attention–attribution heatmap visualization. 
Tokens or n-grams selected by the gating mechanism are 
projected back to the original text to evaluate whether they 
align with human-understandable sentiment indicators 
such as negation cues (“not good”), intensity markers 
(“extremely satisfied”), or polarity-laden terms (“terrible”, 
“excellent”). Although qualitative, this step supports the 
human trustworthiness aspect of the framework, which 
cannot be fully captured by numerical metrics alone.

To account for potential model biases, the faithfulness 
gap between the learned selection mask and post-hoc 
attribution is measured using mean squared error between 
normalized importance scores. A small faithfulness gap 

implies that the selector has successfully internalized the 
same explanatory signal as the attribution mechanism, 
leading to self-consistent explanations that do not require 
complex post-processing.

Results and Discussion

Experimental Setup
The performance of the proposed TALEX framework was 
systematically evaluated on four widely used sentiment 
analysis benchmarks: MR, CR, IMDB, and SemEval 2013. These 
datasets were chosen to reflect a diverse set of linguistic 
characteristics, review lengths, and domain variations, which 
allows for a rigorous assessment of the generalization ability 
of the proposed explainable feature selection methodology. 
Each dataset was preprocessed using standard NLP 
procedures including token normalization, subword 
segmentation, and attention-compatible embedding 
alignment. The transformer backbone was frozen during 
training to ensure that performance improvements arise 
from the feature selection process and not from extensive 
fine-tuning.

Table 1 provides the dataset description, including the 
number of samples, average sentence length, and domain 
characteristics. The MR and CR datasets represent short-form 
reviews with high lexical variability, while IMDB contains 
long-form reviews, making it suitable for evaluating the 
ability of the selector to handle redundant features. SemEval 
2013 serves as a challenging cross-domain benchmark due 
to its tweet-style, informal language and class imbalance.

The experiments employed RoBERTa as the transformer 
backbone and a BiGRU-attention head for classification after 
feature selection. To maintain comparability across datasets, 
the same hyperparameter configuration was adopted, 
with minor adjustments to the feature selector sparsity 
target based on average input length. The optimization 
was performed using the AdamW optimizer with learning 
rate warmup, and the gating temperature was annealed 
progressively to achieve sharp feature selection boundaries 
toward the end of training.

Table 2 lists the major hyperparameters used in 
all experiments. The number of training epochs was 
determined through early stopping based on validation loss 
and explanation faithfulness metrics. The selector target size 
k was chosen as 500 for short-form datasets and 1,000 for 

Table 1: Dataset description used for evaluating the TALEX framework

Dataset Samples Avg. Length 
(tokens) Classes Domain

MR 10,662 22 2 Movie Reviews

CR 3,775 20 2 Product Reviews

IMDB 50,000 231 2 Movie Reviews

Sem Eval 
2013

9,684 27 3 Twitter Sentiment
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long-form datasets (IMDB) to ensure sufficient coverage of 
semantically meaningful features.

The training was performed on an NVIDIA RTX 3060 
GPU with 16 GB memory, which allowed efficient parallel 
processing of batched sequences and saliency computation. 
All experiments were repeated over five random seeds, and 
the reported results correspond to the mean performance 
to ensure statistical robustness. Both classification and 
explainability metrics were computed on the held-out test 
splits to avoid any leakage between feature selection and 
evaluation phases. The combination of diverse datasets, 
controlled hyperparameters, and explainability-focused 
evaluation criteria provides a rigorous foundation for 
assessing the fidelity and efficiency of the proposed TALEX 
framework.

MR Dataset
The evaluation on the MR dataset provides a strong baseline 
for understanding how the proposed TALEX framework 
performs on short-form sentiment data with high lexical 
variability. MR is characterized by informal movie reviews 
with short sentences and frequent use of sentiment-bearing 
bigrams, making it particularly suitable for analyzing the 
effectiveness of attention-guided explainable feature 
selection.

The experimental results are compared against classical 
feature selectors (Chi-Square, RFE), metaheuristic selectors 
(PSO, GA, GWO, FFA), and deep learning baselines (CNN-
VAE, BiGRU-Attention, and ensemble architectures). TALEX 
shows a substantial improvement in both classification 
performance and explanation faithfulness. The attention 

Table 2: Hyperparameter configuration for TALEX training and evaluation.

Parameter Value / Setting Description

Transformer Backbone RoBERTa-base Pre-trained model, frozen layers

Classifier BiGRU-Attention Lightweight sequential layer after selection

Optimizer AdamW Weight decay of 0.01

Learning Rate 1e-4 Linear warmup, cosine decay

Batch Size 64 Fixed across all datasets

Epochs 50 (Early Stopping) Patience = 5 on validation loss

Target Feature Count k 500 (MR, CR, SemEval), 1000 (IMDB) Number of selected features

Gate Temperature ( )ô 2 → 0.1 (annealed) Controls Hard-Concrete sharpness

( )1ë  Sparsity 1e-3 Controls feature count

( )2ë  Alignment 0.4 Controls alignment with attention

( )3ë  Redundancy 0.2 Controls semantic diversity

( )4ë  Faithfulness 0.3 Aligns selection with SHAP/IG attribution

Table 3: Comparative results of classification accuracy on MR 
dataset.

Model MR (Accuracy %)

CNN-VAE 91.24

BiGRU-Attention 91.92

Ensemble BiLSTM+GRU+CNN 92.1

Chi-Square 88.1

RFE 89.2

PSO 90.25

GA 90.8

GWO 90.1

FFA 90.6

PCOA 94.7

TALEX (Proposed) 95.2

and attribution alignment mechanism allows TALEX 
to identify semantically relevant tokens with minimal 
redundancy, yielding high discriminative power.

Table 3 presents comparative accuracy across all models. 
TALEX achieves 95.2% accuracy on MR, outperforming 
both traditional selectors and metaheuristic methods. 
This is consistent with the expectation that attention-
based selection improves classification while maintaining 
interpretability. The accuracy exceeds SHAP-aligned classical 
methods such as Chi-Square (88.1%) and RFE (89.2%), 
and also slightly surpasses RoBERTa-based deep learning 
baselines.
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Table 4 shows the corresponding F1-scores, reflecting 
balanced precision and recall. TALEX achieves an F1-score 
of 95.0%, surpassing PCOA by 0.6% and outperforming 
deep learning baselines by approximately 4–6%. This 
demonstrates that explanation-guided feature selection 
does not compromise model sensitivity or specificity but 
rather enhances both by focusing on highly informative 
tokens and phrases.

In terms of feature reduction, TALEX reduces the 
dimensionality by 61.3%, slightly higher than PCOA (60%) 
and considerably higher than conventional selectors. This 
efficiency arises from the differentiable gating aligned 
with attention saliency and SHAP attribution, allowing for 
selective pruning of low-impact features.

The learning curve for the MR dataset is shown in Figure 
2, where both training and validation accuracy converge 
rapidly within the first 10 epochs. TALEX exhibits minimal 
generalization gap, indicating stable training and effective 
regularization through explainable feature selection. The 
model avoids overfitting by constraining the input to highly 
relevant feature subsets, which is evident from the near-
overlapping loss curves for training and validation.

To assess the faithfulness of explanations, deletion and 
insertion analyses were performed using the top-k features 
identified by TALEX. As shown in Figure 3, deletion of top 
features leads to a sharp decline in model confidence, while 
re-insertion of the same features quickly recovers prediction 
probability. This indicates that the selected features have 
high causal influence on model decisions, validating the 
alignment between explanation and prediction behavior.

The explanation alignment between attention, 
Integrated Gradients, and SHAP attributions is shown in 
Figure 4, where top tokens such as “not good”, “loved”, 
“boring”, “excellent” and “terrible” consistently appear across 
all explanation sources. The alignment score between SHAP 
and TALEX-selected features reached 0.82, and between 

Table 4: Comparative results of F1-score on MR dataset.

Model MR (F1-Score %)

CNN-VAE 89.3

BiGRU-Attention 90.1

Ensemble BiLSTM+GRU+CNN 90.9

Chi-Square 86.1

RFE 87.2

PSO 88.9

GA 89.4

GWO 88.6

FFA 88.8

PCOA 94.4

TALEX (Proposed) 95.0

Table 5: Feature reduction comparison on MR dataset

Model MR (Feature Reduction %)

Chi-Square 42

RFE 46

PSO 51

GA 50.5

GWO 48

FFA 49

PCOA 60

TALEX (Proposed) 61.3

Figure 2: Training and validation accuracy/loss curves for TALEX on 
MR dataset

Figure 3: Deletion and insertion faithfulness curves for TALEX on MR 
dataset

Table 6: Comparative results of classification accuracy on CR dataset

Model CR (Accuracy %)

CNN-VAE 91.8

BiGRU-Attention 92.4

Ensemble BiLSTM+GRU+CNN 93.2

Chi-Square 89.4

RFE 90.2

PSO 91.1

GA 91.6

GWO 91.2

FFA 91.5

PCOA 95.5

TALEX (Proposed) 96.1
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Figure 4: XAI alignment visualization (Attention, IG, SHAP) on MR dataset.

Table 7: Comparative results of F1-score on CR dataset.

Model CR (F1-Score %)

CNN-VAE 90.4

BiGRU-Attention 91.2

Ensemble BiLSTM+GRU+CNN 92.0

Chi-Square 87.8

RFE 88.5

PSO 89.9

GA 90.1

GWO 89.7

FFA 89.8

PCOA 95.3

TALEX (Proposed) 95.9

Table 8: Feature reduction comparison on CR dataset.

Model CR (Feature Reduction %)

Chi-Square 43

RFE 48

PSO 50.7

GA 51.2

GWO 49.5

FFA 50.1

PCOA 58

TALEX (Proposed) 59.4

attention rollout and TALEX 0.79, reflecting strong cross-
method interpretability coherence.

CR Dataset
The CR dataset provides a complementary evaluation 
scenario to MR by introducing product review text with 
moderate length and rich opinion-bearing expressions. 
Unlike MR, CR sentences contain structured sentiment cues 
such as comparative phrases (“better than”, “worth buying”), 
intensifiers (“extremely good”, “very bad”), and mixed 
polarity segments. This makes it a suitable benchmark for 
evaluating whether TALEX can maintain high accuracy and 
interpretability in moderately complex sentiment structures.

The results demonstrate that the attention–attribution 
fusion mechanism in TALEX is particularly effective for 
this dataset. Compared to statistical feature selection 
methods and metaheuristic baselines, TALEX achieves both 
higher predictive performance and stronger explanation 
faithfulness. Table 6 summarizes the classification accuracy 
achieved by various models. TALEX attains an accuracy 
of 96.1%, outperforming traditional selectors such as Chi-
Square (89.4%) and RFE (90.2%), as well as metaheuristics 
including GA and PSO. Moreover, TALEX slightly surpasses 
the PCOA baseline, indicating that the explainability-driven 
selection process is highly competitive even without 
evolutionary search.

F1-score results, shown in Table 7, further reinforce these 
findings. TALEX reaches an F1-score of 95.9%, demonstrating 
improved balance between precision and recall. This 
reflects the model’s ability to capture sentiment-bearing 
features without overfitting to local patterns or discarding 
minority sentiment expressions. The proposed selector 
provides stable feature sets that remain interpretable and 
discriminative across training runs.

A key strength of TALEX lies in its feature reduction 
capability. For CR, the proposed method achieved a feature 
reduction of 59.4%, higher than GA (51.2%) and PSO (50.7%), 
while maintaining top-tier accuracy. This indicates that 
the differentiable gating mechanism effectively removes 

redundant tokens, particularly product-specific modifiers 
and neutral phrases that do not contribute to sentiment 
polarity. The results are detailed in Table 8.

The training and validation accuracy and loss curves in 
Figure 5 show fast and stable convergence, with minimal 
overfitting across epochs. Unlike MR, where sentiment 
cues are short and highly polarized, CR introduces more 
context-dependent expressions. The model benefits from 
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Figure 5: Training and validation accuracy/loss curves for TALEX on 
CR dataset

Figure 6: Deletion and insertion faithfulness curves for TALEX on CR 
dataset

Figure 7: XAI alignment visualization (Attention, IG, SHAP) on CR dataset

Table 9: Comparative results of classification accuracy on IMDB 
dataset

Model IMDB (Accuracy %)

CNN-VAE 93.1

BiGRU-Attention 93.8

Ensemble BiLSTM+GRU+CNN 94.5

Chi-Square 86.7

RFE 88.2

PSO 91.5

GA 92.1

GWO 91.7

FFA 91.9

PCOA 96.6

TALEX (Proposed) 97.1

attention-aligned selection, which prioritizes semantically 
critical phrases and reduces irrelevant modifiers. The close 
tracking of validation accuracy with training accuracy 
illustrates the robustness of the selected features.

Faithfulness analysis through deletion and insertion 
curves further confirms the causal importance of the 
selected features. As shown in Figure 6, deleting top-
ranked features leads to a sharp decline in prediction 
confidence, while incremental insertion reconstructs the 
model output efficiently. This behavior reflects that TALEX-
selected features capture the dominant sentiment signal 
with minimal noise, unlike classical selectors where deletion 
curves often show slower degradation.

The XAI alignment visualization in Figure 7 illustrates the 
overlap between attention rollout, Integrated Gradients, 
and SHAP feature attributions. The top-ranked features—
such as “excellent quality”, “not recommended”, “value for 
money”, and “terrible service”—are consistently identified 
across explanation methods, demonstrating high alignment 
between explanation and feature selection. The alignment 
scores reach 0.84 for SHAP–TALEX overlap and 0.80 for 
Attention–TALEX overlap, indicating stable interpretability 
performance.

IMDB Dataset
The IMDB dataset is particularly challenging due to its 
long-form reviews, which often contain complex sentiment 
structures, topic shifts, and a significant amount of lexical 
redundancy. Unlike MR and CR, where sentiment can 
be inferred from short, polarized phrases, IMDB reviews 
require the model to identify distributed sentiment cues 
scattered throughout lengthy text. This makes it an ideal 
benchmark for evaluating the scalability and robustness 
of the TALEX framework, especially its ability to perform 
explainable feature selection under high-dimensional 
input conditions.
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The results in Table 9 show that TALEX achieves an 
accuracy of 97.1%, outperforming all classical feature 
selection baselines and matching or slightly surpassing 
the performance of RoBERTa with full fine-tuning, despite 
using less than half the features. Traditional methods like 
Chi-Square and RFE perform poorly in this setting, primarily 
due to their inability to model contextual interactions in 
long reviews. Metaheuristic methods provide moderate 
improvements but remain less competitive than TALEX in 
terms of both accuracy and efficiency.

In terms of F1-score, shown in Table 10, TALEX 
demonstrates strong precision and recall, achieving an F1 of 
96.9%, which is a 6–9% improvement over classical selectors 
and about 2–3% higher than conventional deep learning 
baselines. This improvement is particularly meaningful for 
IMDB because sentiment cues often appear in the middle 
and tail of the text, and selecting the most informative and 
non-redundant features plays a critical role in avoiding 
sentiment drift.

TALEX also achieved 52.4% feature reduction on IMDB, 
as presented in Table 11, which is significant given the 
length of the documents. Unlike filter methods, which 
often eliminate features indiscriminately, the differentiable 
selection mechanism in TALEX aligns feature gating with 

transformer attention and attribution, ensuring that even 
distributed sentiment cues are preserved.

The training curves in Figure 8 reveal that TALEX 
stabilizes after 15–18 epochs, compared to over 30 epochs 
required by the deep learning baselines. The reduction 
in input dimensionality accelerates convergence while 
preserving performance. This is particularly beneficial for 
large-scale applications where training cost is a critical factor.

Faithfulness evaluation using deletion and insertion 
analysis shows highly consistent results. Figure 9 
demonstrates that removing the top-ranked features 
leads to a rapid drop in confidence, while inserting them 
reconstructs the original decision boundary efficiently. This 
confirms that TALEX prioritizes causally meaningful features, 
even in long documents, where distributed sentiment is 
difficult to capture with classical approaches.
The XAI alignment visualization in Figure 10 reveals 
strong consistency between TALEX-selected features and 
attention/attribution signals. Sentiment-bearing phrases 
such as “highly recommended”, “worst experience ever”, 
“absolutely fantastic”, and “waste of time” consistently 
appeared across SHAP, Integrated Gradients, and attention 
rollout explanations. The alignment scores were 0.87 (SHAP–
TALEX) and 0.83 (Attention–TALEX), which are the highest 
among all datasets evaluated, indicating that the model is 
able to stably identify and retain salient phrases even when 
they are distributed throughout long sequences.

Table 10: Comparative results of F1-score on IMDB dataset.

Model IMDB (F1-Score %)

CNN-VAE 91.2

BiGRU-Attention 92.4

Ensemble BiLSTM+GRU+CNN 93.1

Chi-Square 85.4

RFE 86.3

PSO 90.0

GA 90.8

GWO 90.1

FFA 90.5

PCOA 96.2

TALEX (Proposed) 96.9

Table 11: Feature reduction comparison on IMDB dataset

Model IMDB (Feature Reduction %)

Chi-Square 37

RFE 41

PSO 45.5

GA 46.1

GWO 44.8

FFA 45.0

PCOA 51.0

TALEX (Proposed) 52.4

Figure 8: Training and validation accuracy/loss curves for TALEX on 
IMDB dataset.

Figure 9: Deletion and insertion faithfulness curves for TALEX on 
IMDB dataset.
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SemEval 2013 Dataset
The SemEval 2013 dataset presents a more complex 
evaluation setting compared to MR, CR, and IMDB due to its 
informal language, code-switching, and class imbalance. This 
dataset consists primarily of short, Twitter-style messages, 
where sentiment cues are often embedded in slang, 
abbreviations, emojis, and irregular linguistic structures. 

This type of noisy, real-world data poses a significant 
challenge for traditional feature selection methods, which 
typically rely on well-structured lexical patterns. Evaluating 
TALEX on this dataset highlights its capacity to generalize 
to non-canonical linguistic environments while preserving 
explanation fidelity.

Table 12 summarizes the classification accuracy across 
different methods. TALEX achieved an accuracy of 94.2%, 
surpassing classical and metaheuristic selectors by a 
wide margin and closely approaching its performance 
on more structured datasets. Chi-Square and RFE show a 
clear performance drop on this dataset, indicating their 
limited ability to capture informal linguistic expressions. 

Figure 10: XAI alignment visualization (Attention, IG, SHAP) on IMDB dataset.

Table 12: Comparative results of classification accuracy on SemEval 
2013 dataset

Model SemEval 2013 (Accuracy %)

CNN-VAE 89.5

BiGRU-Attention 90.2

Ensemble BiLSTM+GRU+CNN 91.1

Chi-Square 82.6

RFE 84.4

PSO 88.5

GA 88.9

GWO 88.3

FFA 88.7

PCOA 93.4

TALEX (Proposed) 94.2

Table 13: Comparative results of F1-score on SemEval 2013 dataset

Model SemEval 2013 (F1-Score %)

CNN-VAE 87.4

BiGRU-Attention 88.1

Ensemble BiLSTM+GRU+CNN 89.0

Chi-Square 81.3

RFE 83.0

PSO 86.4

GA 87.0

GWO 86.2

FFA 86.6

PCOA 93.1

TALEX (Proposed) 93.9

Figure 11: Training and validation accuracy/loss curves for TALEX on 
SemEval 2013 dataset

Figure 12: Deletion and insertion faithfulness curves for TALEX on 
SemEval 2013 dataset.
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Table 14: Feature reduction comparison on SemEval 2013 dataset

Model SemEval 2013 (Feature Reduction %)

Chi-Square 41

RFE 44

PSO 49

GA 51

GWO 48

FFA 50

PCOA 59

TALEX (Proposed) 60.2

Figure 13: XAI alignment visualization (Attention, IG, SHAP) on SemEval 2013 dataset

Metaheuristic approaches such as PSO and GA offer some 
improvements, but they remain inferior to the attention–
attribution alignment strategy used in TALEX.
Table 13 shows the F1-score results, which better reflect 
model behavior under class imbalance. TALEX achieved an 
F1-score of 93.9%, improving upon Chi-Square by over 10% 
and slightly surpassing the evolutionary PCOA baseline. This 
result highlights the robustness of transformer attention 
combined with attribution signals, which can prioritize 
sentiment-relevant patterns even when they appear in 
non-standard formats.

As shown in Table 14, TALEX achieved a feature 
reduction of 60.2%, outperforming Chi-Square (41%) and 
metaheuristics (45–52%). This reduction is particularly 
meaningful for SemEval, where many tokens are either 
neutral, context-irrelevant, or stylistic (e.g., “lol”, “:-)”, “idk”). 
By aligning the selection with both attention and attribution, 
TALEX effectively filters out noise tokens while retaining 
sentiment-rich patterns such as “not cool”, “super happy”, 
and “worst ever”.

The learning curves in Figure 11 show that TALEX 
converges steadily with minimal overfitting, despite the 
noisy input. The early stabilization of validation accuracy is 
indicative of the selector’s ability to focus on discriminative 
features early in training, avoiding overfitting to irrelevant 
tokens such as hashtags or neutral filler words.

Faithfulness analysis, visualized in Figure 12, reveals that 
deleting the top-ranked features results in a sharp drop in 
model confidence, while reinserting them rapidly restores 
the original prediction probability. This demonstrates that 
the selected features contribute directly to the model’s 
decision, even in informal language settings.

The XAI alignment visualization in Figure 13 illustrates 
how attention rollout, Integrated Gradients, and SHAP 
attributions align with TALEX’s selected feature subsets. Top 
tokens such as “worst”, “amazing”, “not good”, “love this”, and 
“hate it” are consistently identified across all explanation 
methods. The alignment scores were 0.81 for SHAP–TALEX 
and 0.77 for Attention–TALEX, which indicates high 
explanation consistency despite the linguistic irregularities 
in the dataset.

Conclusion and Future Directions
This study introduced TALEX, a Transformer-Attention-Led 
EXplainable Feature Selection framework for sentiment 
analysis that integrates multi-view attention attribution, 
differentiable gating, and faithfulness-aligned explanation 
objectives. Unlike conventional feature selection techniques, 
TALEX leverages the intrinsic interpretability signals 
of transformer architectures to identify a compact yet 
semantically rich subset of features. By combining attention 
rollout, Integrated Gradients, and SHAP-based faithfulness 
alignment, the framework achieves both state-of-the-art 
classification performance and robust interpretability across 
datasets with different linguistic characteristics.

The experimental results on four benchmark datasets: 
MR, CR, IMDB, and SemEval 2013, confirm the efficacy and 
adaptability of TALEX. On short-form datasets (MR and 
CR), the method effectively captured polarized sentiment 
expressions with high precision. On IMDB, which contains 
long and lexically redundant reviews, TALEX demonstrated 
scalability, achieving over 50% feature reduction without 
compromising accuracy. On the SemEval 2013 dataset, 
characterized by informal and noisy language, TALEX 
maintained stable performance, illustrating its robustness 
in non-canonical linguistic contexts. Across all datasets, 
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the framework consistently outperformed statistical 
and metaheuristic selectors in accuracy, F1-score, and 
explanation alignment.

Looking forward, this work opens several promising 
research directions. First, future studies may extend TALEX 
to multilingual and code-mixed datasets, where attention 
attribution must capture cross-lingual sentiment cues. 
Second, incorporating online and streaming variants of 
the selection mechanism can enable real-time explainable 
sentiment analysis in dynamic environments such as 
social media monitoring. Third, integrating human-
in-the-loop explanation refinement may strengthen 
interpretability and improve the alignment between 
automated explanations and human perception. Finally, 
exploring hybrid interpretability metrics that combine 
faithfulness with human comprehensibility can further 
enhance the trustworthiness of sentiment models in 
practical deployments.
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