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Abstract

This study assesses the performance of several deep learning optimizers for arrhythmia classification via the PTB-XL ECG dataset. Deep
learning (DL) based approaches, such as convolutional neural network (CNN) and recurrent neural network (RNN) have demonstrated
promising results in learning discriminative feature representations of ECGs for automatic cardiac diagnosis. A CNN-LSTM based model
was trained through six optimizers namely SGD, Momentum, Adagrad, Adadelta, RMSprop and Adam. The PTB-XL dataset with more
than 20,000 12-lead ECGs was utilized for the classification performance comparison. Interest centred toward the Adam performance,
which implies the adaptive moment estimated gradients and sets different learning rates for each learning rate. The Adam optimizer
outperformed all other tested optimizers with 98.26% accuracy, 96.15% sensitivity, 97.43% specificity, 96.78% precision, and 96.46%
F1-score. In comparison to other optimizers, they obtained low performance measures and reached convergence slowly. These results
reveal the advantage of Adam in terms of training stability and predictive confidence for ECG-based arrhythmia classification. This
research is one of the very few to systematically analyse various optimizers on PTB-XL dataset with hybrid architecture (CNN and LSTM).
The experimental results confirm the superiority of Adam in ECG signal classification and provide a strong baseline for more effective
deep learning model used in (cardiac) arrhythmia detection and clinical deep learning systems.
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Introduction is explicitly coded; instead, models learn from data. The

DLis a subfield of ML grounded in Artificial Neural Networks ~ idea itself_is not new—its rise in popL.JIar.ity reflects the
(ANN). Because neural networks aim to emulate humanoid ~ recentavailability of far more data and significantly greater
intelligence, DL likewise functions as an imitation ofhuman ~ €Omputing power over the past decades. Over roughly

intelligence. Unlike traditional programming, noteverything ~ twenty years, dramatic gains in processing capability have
accelerated advances in both ML and DL.

DL learns layered representations of the world:
concepts are organized hierarchically, with higher-level,
more abstract notions defined in terms of simpler ones
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ends with an output layer; the layers in between are hidden
layers. Each layer applies a basic, unified computation
using an activation function. Feature extraction is part of
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this process. DL is used to detect patterns and interpret
visual information, employing feature extraction to form
meaningful lines from data for learning, understanding, and
retention lines that are typically specified by data scientists
or programmers (Igbal H. Sarker, 2021).

The Electrocardiogram (ECG) is a crucial, non-invasive
method for diagnosing cardiac arrhythmias, which account
for a large share of morbidity and mortality linked to
cardiovascular disease. While manual ECG review can
be effective, it is labour-intensive and relies heavily on
expert judgment. Against this backdrop, deep learning has
become a powerful way to automate ECG interpretation
by learning layered representations directly from raw
signals. Models such as Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks
have shown strong capability in capturing spatial and
temporal patterns in biomedical data. In particular, hybrid
CNN-LSTM architectures are well suited to time-series like
ECG, combining localized feature extraction with sequential
modelling (M. Durairaj and S. Selvakumari, 2025).

While architectural innovations have been extensively
explored in the field of ECG classification, the impact
of optimization algorithms on model performance has
received considerably less attention. Most studies in this
domain either default to a single optimizer (typically Adam
or SGD) or fail to justify the choice of optimization strategy
altogether. This presents a critical gap in research, as the
choice of optimizer directly influences convergence speed,
generalization ability, and classification accuracy, especially
for noisy, high-dimensional biomedical signals like ECGs.

Moreover, although the PTB-XL dataset is one of the
largest and most comprehensive open-access 12-lead ECG
datasets, comparative studies on different optimizers using
this dataset are scarce. Existing works often overlook the
importance of clinically relevant metrics such as sensitivity
and specificity, which are crucial in avoiding misdiagnosis
in real-world healthcare applications. Additionally, there is
alack of empirical studies that evaluate multiple optimizers
on a fixed hybrid DL architecture like CNN-LSTM, which
combines the strengths of both convolutional and recurrent
layers for improved arrhythmia detection.

To address these gaps, this study conducts a
comprehensive evaluation of six popular deep learning
optimizers, SGD, Momentum, Adagrad, Adadelta, RMSprop,
and Adam, on the task of arrhythmia classification using the
PTB-XL dataset. The proposed approach employs a CNN-
LSTM hybrid model trained under consistent conditions to
ensure fair comparison. Emphasis is placed on the Adam
optimizer, given its adaptive nature and wide use in deep
learning tasks. The study further evaluates performance
using five clinically relevant metrics: Accuracy, Sensitivity,
Specificity, Precision, and F1-Score.

The goal is not only to determine the most effective
optimizer for this particular application but also to provide

insights that can guide future research and real-world
implementation of DL-based ECG diagnostic systems.

Methodology

Architecture

In this work we investigate several types of DL models
known to be effective in biomedical signal processing, and
especially in ECG-derived arrhythmia classification. The
fundamental parts of the architecture consist of Deep Neural
Networks (DNN), Deep Belief Networks (DBN), Recurrent
Neural Networks (RNN), and CNN (Mohammad-Parsa
Hosseini, Senbao Lu, Kavin Kamaraj, Alexander Slowikowski
and Haygreev C. Venkatesh, 2020). Finally, we used a hybrid
approach combining CNN and LSTM because a combination
of both spatial and temporal feature extraction can be
achieved.

Deep Neural Network

A DNN is a feedforward neural networks with many hidden
layers sandwiched between input and output layers. Such
networks are able to model non-linear dynamics on high-
dimensional data. DNN, particularly in the field of ECG
analysis, have great capability of capturing the hierarchical
structure of waveform features such as P-waves, QRS
complexes, and T-waves.

Deep Belief Network

DBNs are generative graphical models with multiple layers of
Restricted Boltzmann Machines (RBMs). They are pre-trained
by unsupervised learning with the Contrastive Divergence
algorithm in order to learn hierarchical representation with
input data. A DBN can be fine-tuned by supervision methods,
which are well suited for applications like classification and
anomaly detection in medical signals.

Convolutional Neural Network

CNNs are specifically for processing data that is structured
as a grid, e.g., time series or images. In ECG analysis, 1D
CNNs capture both local patterns and spatial relationship
of the ECG including, morphology transformation in parts
of waveform. Convolutional layers use filters on the ECG
sequence in order to capture local information, while
pooling layers reduce the dimensionality and improve the
translation invariance. CNNs work well as feature extractors,
especially with LSTM layers for temporal context modelling.

Recurrent Neural Network

As they are intended for sequential data, RNNs are
appropriate for time series data, including ECG signals. Due
to their feedback loop, they are provided a memory of the
previous inputs, which is crucial for capturing long-range
dependencies. However traditional RNNs suffers from
vanishing gradients which makes it difficult to capture long-
range dependencies.
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To address this issue, the use of LSTM units is proposed.
LSTMs can learn long-term dependencies with gating
mechanisms which are special type of RNN. In this work, due
to the extraction process of spatial features of ECG signals,
LSTM layers are positioned behind the convolutional layers
to learn the tempo-spatial features.

Hybrid CNN-LSTM Architecture

The model is a combined architecture employing both
CNN and LSTM. Therefore, the CNN layers are regarded
as the spatial ECG waveform feature ex-tractor, capturing
the local signal structures. These features are in turn fed to
LSTM layers, which capture the temporal structure within
the signal. The hybrid network thus integrates the two into
a whole and achieves better performance on arrhythmia
classification problem.

Activation Functions

The Activation Function (AF) in a neural network set how
each node turns the weighted sum of its inputs into an
output. Activation functions are sometimes referred to as
“flow functions,” and when their output range is limited,
they may be called “inhibit functions” (Shiv Ram Dubey,
Satish Kumar Singh, Bidyut Baran Chaudhuri, 2022). Many
activation functions are non-linear, and this non-linearity is
a key consideration in layer and network design. Choosing
the activation function strongly influences how the network
operates and performs, and different parts of a model
may use different ones. In DL, activation functions are a
central element of neural networks. Tasks such as image
categorization, language conversion, object detection, and
related applications rely on neural networks—and thus on
their activation functions.

In general, the neural network activation function is
the most important component of deep learning, which
determines the performance of the learning model, the
results of the deep learning model, accuracy, and the ability
to design or divide the network on a large scale. Neural
scales are mostly used in networks. An activation function
creates an output for an input or group of inputs, or a node
for its output given an input.

Basically, functions decide to turn neurons on or off
to get the desired result. It also performs non-linear input
transformations to improve the results of complex neural
networks. The enable function also helps normalize the
output for all inputs between 1 and -1.

AFs need to be computationally efficient, since neural
networks may be trained on millions of samples and thus
require fast evaluation (Siddharth Sharma, Simone Sharma
& Anidhya Athaiya, 2020). They effectively decide whether
the information entering a network is relevant. To illustrate
how a neuron works and how an AF constrains its output,
consider this: a neuron computes a weighted combination of
its inputs and then applies an AF to produce the final output.

Y= Z(weights X input + bias)#(l)

where Y can be any neuron ranging from -infinity to +infinity.
To achieve the required prediction or generalization
outcomes and limit the output.

Y= AF(Z(weights x input + bias))#(Z)

To bind the output value, pass the matching neuron to the
AF.

The AF is one of the options available when designing a
neural network. It can be employed not only in the network’s
output layer, but also in its hidden layers.

Neural Network Components

Input layer

Receives the feature inputs and passes information from the
external world into the network. This stage does not perform
computations; its nodes forward signals (functions) onward
to the hidden hierarchy.

Hidden layer

Composed of nodes not directly observable from outside
the model, forming the network’s abstraction. These layers
carry out multiple computations on the signals from the
input layer and then pass the processed results to the output.

Output layer
This layer introduces the information received by the
network to the outside world.

The AF takes the weighted sum of the inputs, adds a
bias, and then decides whether the neuron should activate.
The AFs objective is to add nonlinearity to the neuron’s
output signal. A neural network is made up of neurons that
function based on weights, biases, and activation functions.
Based on inference errors, a neural network fine-tunes the
weights and biases of its neurons. This procedure is known
as backpropagation. The trigger function enables for
backpropagation by feeding gradients and errors to update
weights and biases.

Variants of Activation Function

RELU

It denotes a rectified linear device. The most often used

activation function. This is mostly implemented in the

neural network’s hidden layers. The Figure 1 shows the
diagrammatic representation of RELU.

« Equation: 4(x)=max(0,x). It outputs x when x>0;
otherwise, it outputs 0.

- Range: [0,]

« Nature: Non-linear, enabling efficient error propagation
and the activation of many stacked layers when using
ReLu.

Usage: - ReLu uses simpler math operations than tanh and
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Figure 1: Rectified linear unit

sigmoid, hence it takes less processing. Only a few neurons
are active at once, making the network simple, efficient, and
straightforward to compute.

Softmax function

It's a sigmoid function that is effective for dealing

with classification challenges. The Figure 2 shows the

diagrammatic representation of Softmax function.

« Natural: - Nonlinear

« Typically used for managing many classes. The softmax
function compresses each class’s output between 0 and
1 and divides it by the overall output.

Learning Optimization Algorithm

DL models comprise several components, activation
functions, input and output layers, hidden layers, loss
functions, and more. A unifying feature across these models
is their use of algorithms that generalize from data to make
predictions on previously unseen samples. In essence,
require a method that maps inputs to outputs, along with
an optimization routine. The optimizer adjusts the model’s
parameters (weights) to minimize the errors made when
transforming inputs into outputs. These optimizers affect
the sensibility of the deep learning model greatly. When
training the deep learning model, we have to tune the
weights every time, and we need to minimize the loss
function. An optimizer is a process or a mechanism that
changes the properties of a NNs, i.e. their weights and
learning rates. Therefore, it is reducing total loss along
with improving fineness. As the size of the network grows,
the weights of the filters become increasingly difficult to
determine. This also highlights the necessity of choosing
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Figure 2: Softmax Function

the appropriate optimization approach for the application.

Therefore, understanding these algorithms requires deep

study in this domain.

« The epoch is the appearance frequency of the full data
on the algorithm.

« Asample refers to a record in the dataset.

- Batch-The number of samplesto be used for rationalising
model parameters.

- Learning Rate - The parameter that decides at each
iteration the step size and moving towards a minimum
of a loss function.

« The difference between the estimated result and real
value, called cost will be calculated using the cost
function / loss function.

«  Weights/bias are parameters of a model which are
adapted and control the signal between any two
neurons.

Implementation

The Figure 3 shows the process applied in this research
to classify arrhythmia with “PTB-XL ECG dataset”. We first
collect ECG data, then conduct necessary signal processing
for normalization and preparation of acquired ECGs that
is required by deep learning. In the next architecture, we
further use a hybrid CNN-LSTM model that considers not
only spatial but also temporal features of ECG data. The
model is trained and tested with SGD, Momentum, Adam,
AdaGrad, and AdaDelta for finding their performance on
improving the classification accuracy. Finally, performance
analysis is performed to compare the optimizers in several
metrics: It shows that Adam has superiority in robustness
and reliability for our application.

Dataset

The PTB-XL comprises multilead ECG signals labeled
as normal or arrhythmic. The signals were resampled,
normalized, and divided into test sets, training, and
validation in an 80:20 split.

Network architecture

The deep learning architecture we presented here integrates
Convolutional and Recurrent components to perform well
in spatial and temporal information extraction from ECG
signals suitable for arrhythmia classifications.

Convolutional Layers

The model begins with two 1D convolutional layers. The
first applies 32 filters with a kernel size of 7 and a stride
of 2, followed by a RelLU activation to add non-linearity.
Afterward, a max-pooling layer with pool size 2 reduces the
feature dimensions. The second convolutional layer contains
64 filters of kernel size 5 with a stride of 2 followed by ReLU
activation and max pooling. This set of convolutional layers
can learn localized pattern and morphological structure in
ECG signals.
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Table 1: Summary of Optimizers Used in This Study

Reference Optimizer Description
A simple optimizer that objects to model parameters in an individual training
Carmina Fjellstrom and Kaj SGD(Stochastic sample. It is simple and memory-efficient, but sometimes slow to converge and

Nystrom, 2022

Aadil Gani Ganie and Samad
Dadvandipour, 2023

Liu Yang and Deng Cai, 2021

Liu Yang and Deng Cai, 2021

Dongpo Xu, Shengdong Zhang,
Huisheng Zhang and Danilo P.
Mandic, 2021

S. Selvakumari and M. Durairaj,
2025

Mohamed Reyad, Amany M.
Sarhan, and M. Arafa, 2023

Gradient Descent)

Momentum

Adagrad(Adaptive
Gradient Algorithm)

Adadelta

RMSprop(Root Mean
Square Propagation)

Adam(Adaptive
Moment Estimation)

susceptible to noisy gradients, making it prone to unstable training, particularly
in challenging and noisy biomedical data, such as ECG heartbeat signals.

A generalization of SGD that expands the gradient-based end-of-step estimator
to include a ‘velocity’ term that integrates over past gradients. This facilitates
faster convergence and removes oscillations. Momentum helps optimization over
rugged landscapes, but is not adaptive to changes in the scale of the gradient.

Scales the learning rate of each parameter by the magnitude of its past gradient.
It is effective for rare data but has serious issue of fast decaying of the learning
rate, which may cause to stop learning prematurely in very long training runs and
degrade its performance on ECG data.

It has a to restrict the accumulation of the squared gradients and a does not
require an explicit learning rate. It does better with noisy data but doesn't have
the bias correction and robustness of some of the more evolved optimizers out
there, such as Adam.

Sustains an average running of the squared gradient to dynamically adjust the
learning rate. Especially for sequential and time series data such as ECGs, the
RMSprop enables a stable and rapid convergence equivalent to Adam across the
experimentation.

Momentum and RMSprop - Calculating first and second moment estimate of
gradient. It adjusts the learning rate for each parameter, and introduces bias
correction, which leads to better convergence and generalization. Adam was the
top performer in all @-metrics in this study.

PTB-XL ECG Dataset

Signal Processing

CNN-LSTM Model

Training and Evaluation

@

Performance Analysis

Figure 3: Performance Analysis

LSTM Layer

Fully Connected Output Layer

The last layer of the model is a dense, fully connected layer
which uses softmax as an AF to produce probabilities for
two classes, Normal and Arrhythmia.

Activation and Loss Function

The convolutional layers use ReLU to help them train through
non-linearity, whereas the softmax ensures a probabilistic
readout at the output layer. The network is optimized for
binary classification problems with binary cross-entropy loss.

Optimizers and Training Setup

For the optimal optimization algorithm to use, 6 optimizers
are used SGD, Momentum, Adagrad Adadelta, RMSProp and
Adam and each of them is trained with the model. The initial
learning rate for all optimizers is set to 0.001, the batch size
is set to 32, and training is performed within 50 epochs.

Result And Discussion

This section delivers a detailed comparison of six commonly
used deep learning optimizers for arrhythmia classification
on the PTB-XL ECG dataset. The methods assessed are
Stochastic Gradient Descent (SGD), Momentum, Adagrad,

After feature extraction, an LSTM layer with 100 units is
utilized to capture the temporal dependencies existing
among ECG sequences. We incorporate a dropout ratio
of 0.5 to avoid overfitting and spectrum generalization
performance.

Adadelta, RMSprop, and Adam. A hybrid CNN-LSTM model
is used to capture both spatial and temporal characteristics
of ECG signals. This study performed an empirical analysis
comparing SGD, RMSProp, and Adam in, who reported that
adaptive optimizers converge faster than the other optimizer
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Table 2: Performance analysis
Optimizer Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%)
SGD 91.84 89.35 92.56 90.02 89.68
Momentum 93.62 90.88 94.10 91.71 91.29
Adagrad 92.14 88.45 93.37 89.26 88.85
Adadelta 94.38 91.57 95.42 92.68 92.12
RMSprop 95.67 94.03 96.12 94.39 94.21
Adam 98.26 96.15 97.43 96.78 96.46

(Arshiya Mobeen M and Saistha N, 2022). The comparison
of deep learning optimizers on the PTB-XL ECG dataset
exemplifies how important it is to select an appropriate
optimizer for optimizing models that converge, generalize
and have good performance (Jour,Yang Shunxiang, Lian
cheng, Zeng Zhigang, Xu Bingrong, Zang Junbin and Zhang
Zhidong, 2023). Experiments show that advanced optimizers
with the architectural innovation (attention mechanisms and
multi-scale networks) can boost classification performance
to a large extent, validating the fact that optimizer-model
synergy is important for better biomedical signal analysis.

Quantitative Results
The performance results for each optimizer are summarized
in the following Table 2.

Comparative Analysis
The results clearly demonstrate that the Adam optimizer
significantly outperforms all other tested optimizers across
every metric. Adam’s strong results stem from its per-
parameter adaptive learning rates, computed from running
estimates of the gradient’s first moment (mean) and second
moment. By doing so, it copes well with noisy gradients
and changing (non-stationary) objectives, conditions often
encountered in real-world ECG data. Figure 4 depicted the
diagrammatic representation of performance analysis.

«  SGD displayed the weakest performance, primarily due
to its reliance on a fixed learning rate, which leads to
slow convergence and difficulty escaping local minima
in complex optimization landscapes.

+ Momentum improved upon basic SGD by incorporating
avelocity term that accelerates gradients in the correct

100

{1

Accuracy  Sensitivity  Specificity = Precision F1-Score
(%) (%) (%) (%) (%)
ESGD ®Momentum = Adagrad = Adadelta ®RMSprop = Adam

Figure 4: Performance analysis

direction, yet it still lacked the adaptiveness required to
achieve high performance on this biomedical dataset.

- Adagrad, while effective in sparse data contexts,
suffered from an excessively decaying learning rate
over time, which prevented it from reaching higher
accuracy levels.

« Adadeltaintroduced an adaptive component to counter
Adagrad’s decay, but its performance was moderate and
unstable across different training epochs.

« RMSprop performed strongly, closely trailing Adam in
most metrics. Its use of exponentially weighted moving
averages helped stabilize training, but it lacks the bias-
correction and second-order momentum estimation
that make Adam more robust.

«  Adam not only converged faster than all other
optimizers but also maintained a balance between
sensitivity (96.15%) and specificity (97.43%), which is
critical in medical diagnostics where both false positives
and false negatives must be minimized.

Interpretation and Implications

The results suggest that optimizer selection plays a vital
role in the successful training of deep learning models for
ECG-based arrhythmia classification. Given that biomedical
signals like ECGs are noisy, non-linear, and time-varying,
optimizers must adapt quickly and efficiently to changing
gradients. Adam’s dynamic update mechanism allows it to
generalize well even with limited training data per class,
which is often the case in real-world medical datasets.

Summary

«  Adam optimizer demonstrated the best overall
performance, outperforming all others in accuracy,
stability, and speed of convergence.

RMSprop was a close second but lacked the adaptive
momentum benefits that gave Adam its edge.

SGD, Adagrad, and Adadelta were suboptimal for the
non-stationary and multi-scale nature of ECG signals.
The hybrid CNN-LSTM model, when paired with Adam,
achieved state-of-the-art results on the PTB-XL dataset.
« These findings highlight the importance of optimizer
selection in deep learning models used for biomedical
applications and support the adoption of Adam as a
default choice for similar time-series classification tasks.
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Conclusion

This study presented a comprehensive evaluation of six
widely used deep learning optimizers—SGD, Momentum,
Adagrad, Adadelta, RMSprop, and Adam—for arrhythmia
classification using the PTB-XL ECG dataset. A hybrid CNN-
LSTM model was implemented to capture spatial and
temporal patterns within ECG signals.

Quantitative results clearly demonstrate that the choice of
optimizer significantly affects model performance. Among
the compared methods, the Adam optimizer outperformed
all others, achieving 98.26% classification accuracy, 96.15%
sensitivity, 97.43% specificity, 96.78% precision, and an
F1-score of 96.46%. These results validate Adam'’s adaptive
learning capabilities and robustness in handling high-
dimensional biomedical signals.

In conclusion, Adam emerges as the most effective
optimizer for ECG-based arrhythmia detection, offering a
strong foundation for real-time clinical decision support
systems. Future work will explore hybrid optimization
strategies, ensemble learning, and explainability for
enhanced model transparency and trustworthiness in
healthcare environments.

Summary of Key Findings

A hybrid CNN-LSTM model was successfullyimplemented for
classifying arrhythmia using the PTB-XL 12-lead ECG dataset.
Six popular deep learning optimization algorithms—SGD,
Momentum, Adagrad, Adadelta, RMSprop, and Adam—
were systematically evaluated. Among all optimizers, the
Adam optimizer consistently yielded the best performance,
achieving: Accuracy: 98.26%, Sensitivity: 96.15%, Specificity:
97.43%, Precision: 96.78%, F1-Score: 96.46%. The results
clearly show that Adam’s adaptive learning rates and
efficient convergence are especially well-matched for high-
dimensional biomedical time-series such as ECG signals.
The study confirms that optimizer selection is critical to the
success of deep learning models in healthcare applications.

Future Enhancements

Tofurtheradvance thisresearch, the following enhancements
are proposed:

Ensemble Learning

Combine multiple deep learning architectures (e.g.,
CNN-LSTM, BiLSTM, Transformer) to boost classification
robustness.

Explainable Al (XAl)

Integrate methods like Grad-CAM or SHAP to provide
interpretability of model decisions for clinical validation.

Multi-Lead Feature Fusion

Incorporate features from all 12 ECG leads, using attention
mechanisms or multi-stream architectures to improve
diagnostic granularity.

Real-Time Deployment
Develop lightweight versions of the model for deployment
on portable or mobile ECG monitoring devices.

Transfer Learning
Apply pretrained models on other ECG datasets (e.g., MIT-
BIH) to validate generalizability.

Clinical Integration

Collaborate with healthcare professionals to test the model
in real-world diagnostic workflows, enhancing clinical
relevance.
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