
Abstract
This study assesses the performance of several deep learning optimizers for arrhythmia classification via the PTB-XL ECG dataset. Deep 
learning (DL) based approaches, such as convolutional neural network (CNN) and recurrent neural network (RNN) have demonstrated 
promising results in learning discriminative feature representations of ECGs for automatic cardiac diagnosis. A CNN-LSTM based model 
was trained through six optimizers namely SGD, Momentum, Adagrad, Adadelta, RMSprop and Adam. The PTB-XL dataset with more 
than 20,000 12-lead ECGs was utilized for the classification performance comparison. Interest centred toward the Adam performance, 
which implies the adaptive moment estimated gradients and sets different learning rates for each learning rate. The Adam optimizer 
outperformed all other tested optimizers with 98.26% accuracy, 96.15% sensitivity, 97.43% specificity, 96.78% precision, and 96.46% 
F1-score. In comparison to other optimizers, they obtained low performance measures and reached convergence slowly. These results 
reveal the advantage of Adam in terms of training stability and predictive confidence for ECG-based arrhythmia classification. This 
research is one of the very few to systematically analyse various optimizers on PTB-XL dataset with hybrid architecture (CNN and LSTM). 
The experimental results confirm the superiority of Adam in ECG signal classification and provide a strong baseline for more effective 
deep learning model used in (cardiac) arrhythmia detection and clinical deep learning systems.
Keywords: Deep Learning, Artificial Intelligence, Adam, Deep Learning Architecture, Activation functions, Arrhythmia.
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Introduction
DL is a subfield of ML grounded in Artificial Neural Networks 
(ANN). Because neural networks aim to emulate humanoid 
intelligence, DL likewise functions as an imitation of human 
intelligence. Unlike traditional programming, not everything 
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is explicitly coded; instead, models learn from data. The 
idea itself is not new—its rise in popularity reflects the 
recent availability of far more data and significantly greater 
computing power over the past decades. Over roughly 
twenty years, dramatic gains in processing capability have 
accelerated advances in both ML and DL.

DL learns layered representations of the world: 
concepts are organized hierarchically, with higher-level, 
more abstract notions defined in terms of simpler ones 
(Deekshith Shetty, Harshavardhan C A, M Jayanth Varma, 
Shrishail Navi, Mohammed Riyaz Ahmed,2020). This layered 
approach enables highly flexible and powerful learning. The 
human brain has on the order of 100 billion neurons; each 
connected to thousands of others.  In DL, multiple layers of 
algorithms process data, simulate cognitive operations, and 
build abstractions (Laith Alzubaidi, Jinglan Zhang, Amjad 
J. Humaidi, Ayad Al-Dujaili, Ye Duan, Omran Al-Shamma, J. 
Santamaría, Mohammed A. Fadhel, Muthana Al-Amidie & 
Laith Farhan, 2021). A network begins with an input layer and 
ends with an output layer; the layers in between are hidden 
layers. Each layer applies a basic, unified computation 
using an activation function. Feature extraction is part of 
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this process. DL is used to detect patterns and interpret 
visual information, employing feature extraction to form 
meaningful lines from data for learning, understanding, and 
retention lines that are typically specified by data scientists 
or programmers (Iqbal H. Sarker, 2021).

The Electrocardiogram (ECG) is a crucial, non-invasive 
method for diagnosing cardiac arrhythmias, which account 
for a large share of morbidity and mortality linked to 
cardiovascular disease. While manual ECG review can 
be effective, it is labour-intensive and relies heavily on 
expert judgment. Against this backdrop, deep learning has 
become a powerful way to automate ECG interpretation 
by learning layered representations directly from raw 
signals. Models such as Convolutional Neural Networks 
(CNNs) and Long Short-Term Memory (LSTM) networks 
have shown strong capability in capturing spatial and 
temporal patterns in biomedical data.  In particular, hybrid 
CNN-LSTM architectures are well suited to time-series like 
ECG, combining localized feature extraction with sequential 
modelling (M. Durairaj and S. Selvakumari, 2025).

While architectural innovations have been extensively 
explored in the field of ECG classification, the impact 
of optimization algorithms on model performance has 
received considerably less attention. Most studies in this 
domain either default to a single optimizer (typically Adam 
or SGD) or fail to justify the choice of optimization strategy 
altogether. This presents a critical gap in research, as the 
choice of optimizer directly influences convergence speed, 
generalization ability, and classification accuracy, especially 
for noisy, high-dimensional biomedical signals like ECGs.

Moreover, although the PTB-XL dataset is one of the 
largest and most comprehensive open-access 12-lead ECG 
datasets, comparative studies on different optimizers using 
this dataset are scarce. Existing works often overlook the 
importance of clinically relevant metrics such as sensitivity 
and specificity, which are crucial in avoiding misdiagnosis 
in real-world healthcare applications. Additionally, there is 
a lack of empirical studies that evaluate multiple optimizers 
on a fixed hybrid DL architecture like CNN-LSTM, which 
combines the strengths of both convolutional and recurrent 
layers for improved arrhythmia detection.

To address these gaps, this study conducts a 
comprehensive evaluation of six popular deep learning 
optimizers, SGD, Momentum, Adagrad, Adadelta, RMSprop, 
and Adam, on the task of arrhythmia classification using the 
PTB-XL dataset. The proposed approach employs a CNN-
LSTM hybrid model trained under consistent conditions to 
ensure fair comparison. Emphasis is placed on the Adam 
optimizer, given its adaptive nature and wide use in deep 
learning tasks. The study further evaluates performance 
using five clinically relevant metrics: Accuracy, Sensitivity, 
Specificity, Precision, and F1-Score.

The goal is not only to determine the most effective 
optimizer for this particular application but also to provide 

insights that can guide future research and real-world 
implementation of DL-based ECG diagnostic systems.

Methodology

Architecture
In this work we investigate several types of DL models 
known to be effective in biomedical signal processing, and 
especially in ECG-derived arrhythmia classification. The 
fundamental parts of the architecture consist of Deep Neural 
Networks (DNN), Deep Belief Networks (DBN), Recurrent 
Neural Networks (RNN), and CNN (Mohammad-Parsa 
Hosseini, Senbao Lu, Kavin Kamaraj, Alexander Slowikowski 
and Haygreev C. Venkatesh, 2020). Finally, we used a hybrid 
approach combining CNN and LSTM because a combination 
of both spatial and temporal feature extraction can be 
achieved.

Deep Neural Network
A DNN is a feedforward neural networks with many hidden 
layers sandwiched between input and output layers. Such 
networks are able to model non-linear dynamics on high-
dimensional data. DNN, particularly in the field of ECG 
analysis, have great capability of capturing the hierarchical 
structure of waveform features such as P-waves, QRS 
complexes, and T-waves.

Deep Belief Network
DBNs are generative graphical models with multiple layers of 
Restricted Boltzmann Machines (RBMs). They are pre-trained 
by unsupervised learning with the Contrastive Divergence 
algorithm in order to learn hierarchical representation with 
input data. A DBN can be fine-tuned by supervision methods, 
which are well suited for applications like classification and 
anomaly detection in medical signals.

Convolutional Neural Network
CNNs are specifically for processing data that is structured 
as a grid, e.g., time series or images. In ECG analysis, 1D 
CNNs capture both local patterns and spatial relationship 
of the ECG including, morphology transformation in parts 
of waveform. Convolutional layers use filters on the ECG 
sequence in order to capture local information, while 
pooling layers reduce the dimensionality and improve the 
translation invariance. CNNs work well as feature extractors, 
especially with LSTM layers for temporal context modelling.

Recurrent Neural Network
As they are intended for sequential data, RNNs are 
appropriate for time series data, including ECG signals. Due 
to their feedback loop, they are provided a memory of the 
previous inputs, which is crucial for capturing long-range 
dependencies. However traditional RNNs suffers from 
vanishing gradients which makes it difficult to capture long-
range dependencies.
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To address this issue, the use of LSTM units is proposed. 
LSTMs can learn long-term dependencies with gating 
mechanisms which are special type of RNN. In this work, due 
to the extraction process of spatial features of ECG signals, 
LSTM layers are positioned behind the convolutional layers 
to learn the tempo-spatial features.

Hybrid CNN-LSTM Architecture
The model is a combined architecture employing both 
CNN and LSTM. Therefore, the CNN layers are regarded 
as the spatial ECG waveform feature ex-tractor, capturing 
the local signal structures. These features are in turn fed to 
LSTM layers, which capture the temporal structure within 
the signal. The hybrid network thus integrates the two into 
a whole and achieves better performance on arrhythmia 
classification problem.

Activation Functions
The Activation Function (AF) in a neural network set how 
each node turns the weighted sum of its inputs into an 
output. Activation functions are sometimes referred to as 
“flow functions,” and when their output range is limited, 
they may be called “inhibit functions” (Shiv Ram Dubey, 
Satish Kumar Singh, Bidyut Baran Chaudhuri, 2022). Many 
activation functions are non-linear, and this non-linearity is 
a key consideration in layer and network design. Choosing 
the activation function strongly influences how the network 
operates and performs, and different parts of a model 
may use different ones. In DL, activation functions are a 
central element of neural networks. Tasks such as image 
categorization, language conversion, object detection, and 
related applications rely on neural networks—and thus on 
their activation functions. 

In general, the neural network activation function is 
the most important component of deep learning, which 
determines the performance of the learning model, the 
results of the deep learning model, accuracy, and the ability 
to design or divide the network on a large scale. Neural 
scales are mostly used in networks. An activation function 
creates an output for an input or group of inputs, or a node 
for its output given an input. 

Basically, functions decide to turn neurons on or off 
to get the desired result. It also performs non-linear input 
transformations to improve the results of complex neural 
networks. The enable function also helps normalize the 
output for all inputs between 1 and -1.  

AFs need to be computationally efficient, since neural 
networks may be trained on millions of samples and thus 
require fast evaluation (Siddharth Sharma, Simone Sharma 
& Anidhya Athaiya, 2020). They effectively decide whether 
the information entering a network is relevant. To illustrate 
how a neuron works and how an AF constrains its output, 
consider this: a neuron computes a weighted combination of 
its inputs and then applies an AF to produce the final output.

( ) ( )# 1= ∑ × +Y weights input bias
where Y can be any neuron ranging from -infinity to +infinity. 
To achieve the required prediction or generalization 
outcomes and limit the output.

( )( ) ( )# 2= ∑ × +Y AF weights input bias

To bind the output value, pass the matching neuron to the 
AF. 

The AF is one of the options available when designing a 
neural network. It can be employed not only in the network’s 
output layer, but also in its hidden layers. 

Neural Network Components

Input layer
Receives the feature inputs and passes information from the 
external world into the network. This stage does not perform 
computations; its nodes forward signals (functions) onward 
to the hidden hierarchy.

Hidden layer
Composed of nodes not directly observable from outside 
the model, forming the network’s abstraction. These layers 
carry out multiple computations on the signals from the 
input layer and then pass the processed results to the output.

Output layer
This layer introduces the information received by the 
network to the outside world.

The AF takes the weighted sum of the inputs, adds a 
bias, and then decides whether the neuron should activate. 
The AFs objective is to add nonlinearity to the neuron’s 
output signal. A neural network is made up of neurons that 
function based on weights, biases, and activation functions. 
Based on inference errors, a neural network fine-tunes the 
weights and biases of its neurons. This procedure is known 
as backpropagation. The trigger function enables for 
backpropagation by feeding gradients and errors to update 
weights and biases.

Variants of Activation Function

RELU
It denotes a rectified linear device. The most often used 
activation function. This is mostly implemented in the 
neural network’s hidden layers. The Figure 1 shows the 
diagrammatic representation of RELU.
•	 Equation: ( ) ( )0,=A x max x .  It outputs x  when 0>x ; 

otherwise, it outputs 0.
•	 Range: [ ]0,∞
•	 Nature: Non-linear, enabling efficient error propagation 

and the activation of many stacked layers when using 
ReLu.

Usage: - ReLu uses simpler math operations than tanh and 
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sigmoid, hence it takes less processing. Only a few neurons 
are active at once, making the network simple, efficient, and 
straightforward to compute. 

Softmax function
It ’s a sigmoid function that is effective for dealing 
with classification challenges. The Figure 2 shows the 
diagrammatic representation of Softmax function.
•	 Natural: - Nonlinear 
•	 Typically used for managing many classes. The softmax 

function compresses each class’s output between 0 and 
1 and divides it by the overall output.

Learning Optimization Algorithm
DL models comprise several components, activation 
functions, input and output layers, hidden layers, loss 
functions, and more. A unifying feature across these models 
is their use of algorithms that generalize from data to make 
predictions on previously unseen samples. In essence, 
require a method that maps inputs to outputs, along with 
an optimization routine. The optimizer adjusts the model’s 
parameters (weights) to minimize the errors made when 
transforming inputs into outputs. These optimizers affect 
the sensibility of the deep learning model greatly. When 
training the deep learning model, we have to tune the 
weights every time, and we need to minimize the loss 
function. An optimizer is a process or a mechanism that 
changes the properties of a NNs, i.e. their weights and 
learning rates. Therefore, it is reducing total loss along 
with improving fineness. As the size of the network grows, 
the weights of the filters become increasingly difficult to 
determine. This also highlights the necessity of choosing 

Figure 1: Rectified linear unit

Figure 2: Softmax Function

the appropriate optimization approach for the application. 
Therefore, understanding these algorithms requires deep 
study in this domain.
•	 The epoch is the appearance frequency of the full data 

on the algorithm.
•	 A sample refers to a record in the dataset.
•	 Batch - The number of samples to be used for rationalising 

model parameters.
•	 Learning Rate - The parameter that decides at each 

iteration the step size and moving towards a minimum 
of a loss function.

•	 The difference between the estimated result and real 
value, called cost will be calculated using the cost 
function / loss function.

•	 Weights/bias are parameters of a model which are 
adapted and control the signal between any two 
neurons.

Implementation
The Figure 3 shows the process applied in this research 
to classify arrhythmia with “PTB-XL ECG dataset”. We first 
collect ECG data, then conduct necessary signal processing 
for normalization and preparation of acquired ECGs that 
is required by deep learning. In the next architecture, we 
further use a hybrid CNN-LSTM model that considers not 
only spatial but also temporal features of ECG data. The 
model is trained and tested with SGD, Momentum, Adam, 
AdaGrad, and AdaDelta for finding their performance on 
improving the classification accuracy. Finally, performance 
analysis is performed to compare the optimizers in several 
metrics: It shows that Adam has superiority in robustness 
and reliability for our application.

Dataset
The PTB-XL comprises multilead ECG signals labeled 
as normal or arrhythmic. The signals were resampled, 
normalized, and divided into test sets, training, and 
validation in an 80:20 split.

Network architecture
The deep learning architecture we presented here integrates 
Convolutional and Recurrent components to perform well 
in spatial and temporal information extraction from ECG 
signals suitable for arrhythmia classifications.

Convolutional Layers
The model begins with two 1D convolutional layers. The 
first applies 32 filters with a kernel size of 7 and a stride 
of 2, followed by a ReLU activation to add non-linearity. 
Afterward, a max-pooling layer with pool size 2 reduces the 
feature dimensions. The second convolutional layer contains 
64 filters of kernel size 5 with a stride of 2 followed by ReLU 
activation and max pooling. This set of convolutional layers 
can learn localized pattern and morphological structure in 
ECG signals.
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Table 1: Summary of Optimizers Used in This Study

Reference Optimizer Description

Carmina Fjellstrom and Kaj 
Nystrom, 2022

SGD(Stochastic 
Gradient Descent)

A simple optimizer that objects to model parameters in an individual training 
sample. It is simple and memory-efficient, but sometimes slow to converge and 
susceptible to noisy gradients, making it prone to unstable training, particularly 
in challenging and noisy biomedical data, such as ECG heartbeat signals.

Aadil Gani Ganie and Samad 
Dadvandipour, 2023 Momentum

A generalization of SGD that expands the gradient-based end-of-step estimator 
to include a ‘velocity’ term that integrates over past gradients. This facilitates 
faster convergence and removes oscillations. Momentum helps optimization over 
rugged landscapes, but is not adaptive to changes in the scale of the gradient.

Liu Yang and Deng Cai, 2021 Adagrad(Adaptive 
Gradient Algorithm)

Scales the learning rate of each parameter by the magnitude of its past gradient. 
It is effective for rare data but has serious issue of fast decaying of the learning 
rate, which may cause to stop learning prematurely in very long training runs and 
degrade its performance on ECG data.

Liu Yang and Deng Cai, 2021 Adadelta

It has a to restrict the accumulation of the squared gradients and a does not 
require an explicit learning rate. It does better with noisy data but doesn’t have 
the bias correction and robustness of some of the more evolved optimizers out 
there, such as Adam.

Dongpo Xu, Shengdong Zhang, 
Huisheng Zhang and Danilo P. 
Mandic, 2021

RMSprop(Root Mean 
Square Propagation)

Sustains an average running of the squared gradient to dynamically adjust the 
learning rate. Especially for sequential and time series data such as ECGs, the 
RMSprop enables a stable and rapid convergence equivalent to Adam across the 
experimentation.

S. Selvakumari and M. Durairaj, 
2025
Mohamed Reyad, Amany M. 
Sarhan, and  M. Arafa, 2023

Adam(Adaptive 
Moment Estimation)

Momentum and RMSprop - Calculating first and second moment estimate of 
gradient. It adjusts the learning rate for each parameter, and introduces bias 
correction, which leads to better convergence and generalization. Adam was the 
top performer in all @-metrics in this study.

Figure 3: Performance Analysis

LSTM Layer
After feature extraction, an LSTM layer with 100 units is 
utilized to capture the temporal dependencies existing 
among ECG sequences. We incorporate a dropout ratio 
of 0.5 to avoid overfitting and spectrum generalization 
performance.

Fully Connected Output Layer
The last layer of the model is a dense, fully connected layer 
which uses softmax as an AF to produce probabilities for 
two classes, Normal and Arrhythmia.

Activation and Loss Function
The convolutional layers use ReLU to help them train through 
non-linearity, whereas the softmax ensures a probabilistic 
readout at the output layer. The network is optimized for 
binary classification problems with binary cross-entropy loss.

Optimizers and Training Setup
For the optimal optimization algorithm to use, 6 optimizers 
are used SGD, Momentum, Adagrad Adadelta, RMSProp and 
Adam and each of them is trained with the model. The initial 
learning rate for all optimizers is set to 0.001, the batch size 
is set to 32, and training is performed within 50 epochs.

Result And Discussion
This section delivers a detailed comparison of six commonly 
used deep learning optimizers for arrhythmia classification 
on the PTB-XL ECG dataset. The methods assessed are 
Stochastic Gradient Descent (SGD), Momentum, Adagrad, 
Adadelta, RMSprop, and Adam. A hybrid CNN–LSTM model 
is used to capture both spatial and temporal characteristics 
of ECG signals. This study performed an empirical analysis 
comparing SGD, RMSProp, and Adam in, who  reported that 
adaptive optimizers converge faster than the other optimizer 
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(Arshiya Mobeen M and Saistha N, 2022). The comparison 
of deep learning optimizers on the PTB-XL ECG dataset 
exemplifies how important it is to select an appropriate 
optimizer for optimizing models that converge, generalize 
and have good performance (Jour,Yang Shunxiang, Lian 
cheng, Zeng Zhigang, Xu Bingrong, Zang Junbin and Zhang 
Zhidong, 2023). Experiments show that advanced optimizers 
with the architectural innovation (attention mechanisms and 
multi-scale networks) can boost classification performance 
to a large extent, validating the fact that optimizer-model 
synergy is important for better biomedical signal analysis.

Quantitative Results
The performance results for each optimizer are summarized 
in the following Table 2.

Comparative Analysis
The results clearly demonstrate that the Adam optimizer 
significantly outperforms all other tested optimizers across 
every metric. Adam’s strong results stem from its per-
parameter adaptive learning rates, computed from running 
estimates of the gradient’s first moment (mean) and second 
moment. By doing so, it copes well with noisy gradients 
and changing (non-stationary) objectives, conditions often 
encountered in real-world ECG data. Figure 4 depicted the 
diagrammatic representation of performance analysis.
•	 SGD displayed the weakest performance, primarily due 

to its reliance on a fixed learning rate, which leads to 
slow convergence and difficulty escaping local minima 
in complex optimization landscapes.

•	 Momentum improved upon basic SGD by incorporating 
a velocity term that accelerates gradients in the correct 

direction, yet it still lacked the adaptiveness required to 
achieve high performance on this biomedical dataset.

•	 Adagrad, while effective in sparse data contexts, 
suffered from an excessively decaying learning rate 
over time, which prevented it from reaching higher 
accuracy levels.

•	 Adadelta introduced an adaptive component to counter 
Adagrad’s decay, but its performance was moderate and 
unstable across different training epochs.

•	 RMSprop performed strongly, closely trailing Adam in 
most metrics. Its use of exponentially weighted moving 
averages helped stabilize training, but it lacks the bias-
correction and second-order momentum estimation 
that make Adam more robust.

•	 Adam not only converged faster than all other 
optimizers but also maintained a balance between 
sensitivity (96.15%) and specificity (97.43%), which is 
critical in medical diagnostics where both false positives 
and false negatives must be minimized.

Interpretation and Implications
The results suggest that optimizer selection plays a vital 
role in the successful training of deep learning models for 
ECG-based arrhythmia classification. Given that biomedical 
signals like ECGs are noisy, non-linear, and time-varying, 
optimizers must adapt quickly and efficiently to changing 
gradients. Adam’s dynamic update mechanism allows it to 
generalize well even with limited training data per class, 
which is often the case in real-world medical datasets.

Summary
•	 Adam optimizer demonstrated the best overall 

performance, outperforming all others in accuracy, 
stability, and speed of convergence.

•	 RMSprop was a close second but lacked the adaptive 
momentum benefits that gave Adam its edge.

•	 SGD, Adagrad, and Adadelta were suboptimal for the 
non-stationary and multi-scale nature of ECG signals.

•	 The hybrid CNN-LSTM model, when paired with Adam, 
achieved state-of-the-art results on the PTB-XL dataset.

•	 These findings highlight the importance of optimizer 
selection in deep learning models used for biomedical 
applications and support the adoption of Adam as a 
default choice for similar time-series classification tasks.

Table 2: Performance analysis

Optimizer Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%)

SGD 91.84 89.35 92.56 90.02 89.68

Momentum 93.62 90.88 94.10 91.71 91.29

Adagrad 92.14 88.45 93.37 89.26 88.85

Adadelta 94.38 91.57 95.42 92.68 92.12

RMSprop 95.67 94.03 96.12 94.39 94.21

Adam 98.26 96.15 97.43 96.78 96.46

20

40

60

80

100

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%)

F1-Score
(%)

SGD Momentum Adagrad Adadelta RMSprop Adam

Figure 4: Performance analysis
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Conclusion
This study presented a comprehensive evaluation of six 
widely used deep learning optimizers—SGD, Momentum, 
Adagrad, Adadelta, RMSprop, and Adam—for arrhythmia 
classification using the PTB-XL ECG dataset. A hybrid CNN-
LSTM model was implemented to capture spatial and 
temporal patterns within ECG signals.
Quantitative results clearly demonstrate that the choice of 
optimizer significantly affects model performance. Among 
the compared methods, the Adam optimizer outperformed 
all others, achieving 98.26% classification accuracy, 96.15% 
sensitivity, 97.43% specificity, 96.78% precision, and an 
F1-score of 96.46%. These results validate Adam’s adaptive 
learning capabilities and robustness in handling high-
dimensional biomedical signals.

In conclusion, Adam emerges as the most effective 
optimizer for ECG-based arrhythmia detection, offering a 
strong foundation for real-time clinical decision support 
systems. Future work will explore hybrid optimization 
strategies, ensemble learning, and explainability for 
enhanced model transparency and trustworthiness in 
healthcare environments.

Summary of Key Findings
A hybrid CNN-LSTM model was successfully implemented for 
classifying arrhythmia using the PTB-XL 12-lead ECG dataset. 
Six popular deep learning optimization algorithms—SGD, 
Momentum, Adagrad, Adadelta, RMSprop, and Adam—
were systematically evaluated. Among all optimizers, the 
Adam optimizer consistently yielded the best performance, 
achieving: Accuracy: 98.26%, Sensitivity: 96.15%, Specificity: 
97.43%, Precision: 96.78%, F1-Score: 96.46%. The results 
clearly show that Adam’s adaptive learning rates and 
efficient convergence are especially well-matched for high-
dimensional biomedical time-series such as ECG signals. 
The study confirms that optimizer selection is critical to the 
success of deep learning models in healthcare applications.

Future Enhancements
To further advance this research, the following enhancements 
are proposed:

Ensemble Learning
Combine multiple deep learning architectures (e.g., 
CNN-LSTM, BiLSTM, Transformer) to boost classification 
robustness.

Explainable AI (XAI)
Integrate methods like Grad-CAM or SHAP to provide 
interpretability of model decisions for clinical validation.

Multi-Lead Feature Fusion
Incorporate features from all 12 ECG leads, using attention 
mechanisms or multi-stream architectures to improve 
diagnostic granularity.

Real-Time Deployment
Develop lightweight versions of the model for deployment 
on portable or mobile ECG monitoring devices.

Transfer Learning
Apply pretrained models on other ECG datasets (e.g., MIT-
BIH) to validate generalizability.

Clinical Integration
Collaborate with healthcare professionals to test the model 
in real-world diagnostic workflows, enhancing clinical 
relevance.
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