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Abstract

Predictive Maintenance (PdM) has become essential in smart manufacturing for reducing Downtime, improving efficiency, and cutting
operational costs. The primary aim is to develop an Artificial Intelligence (Al) driven PdM framework for induction motors, leveraging
loT-based condition monitoring and time-series forecasting to estimate Remaining Useful Life (RUL) and enable intelligent maintenance
scheduling. For this purpose, real-time Vibration and temperature data were collected from 2022 to 2024 using MPU-6050 sensors,
followed by preprocessing, feature extraction, and fault trend analysis. The Prophet algorithm, known for handling seasonality and
holiday effects, was employed for forecasting failure patterns and RUL estimation. Experimental analysis revealed distinct fault stages:
unbalance, mechanical looseness, and bearing degradation; captured through Fast Fourier Transform (FFT) and time-domain features.
Model validation across three axes showed strong performance with Coefficient of Determination (R?) up to 0.958, Root Mean Square
Error (RMSE) as low as 0.110, and Mean Absolute Error (MAE) of 0.088, enabling accurate prediction of failure windows and proactive
scheduling. However, limitations include a narrow dataset, reliance on two sensor modalities, and the exclusive use of Prophet, which
struggles with highly non-linear dynamics. Future work would address these by incorporating hybrid Al models and multi-sensor fusion
forimproved prediction accuracy and scalability in large-scale deployments.

Keywords: Predictive maintenance, Artificial Intelligence (Al), Smart manufacturing, Cost reduction, Remaining Useful Life (RUL), Time-

Series Forecasting.

Introduction

Predictive Maintenance (PdM) has emerged as leveraging
loT-enabled condition monitoring to identify early indicators
of spare degradation before failures occur (Soori et al.,
2023). Through conditional monitoring, loT sensors track
parameters such as Vibration & temperature data in real
time, producing large-scale data that reflects machine
condition (Wen et al., 2022). These data are essential for
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shifting from reactive or preventive maintenance strategies
to predictive approaches that minimize unplanned
Downtime and enhance cost efficiency (Soori et al., 2023).
In smart factories, sensor-driven monitoring integrates
seamlessly with Al forecasting frameworks to transform raw
data into actionable insights (Wen et al., 2022).

Among the forecasting techniques, the Prophet
algorithm is becoming an increasingly prominent technique
for remaining useful life (RUL) estimation by providing
accurate and versatile RUL prediction from time-series
sensor data (Ucar et al., 2024). It captures temporal patterns,
seasonal trends, and can also handle missing values, a
characteristic that makes Prophet a competent solution
for industrial scenarios where data irregularities are the
norm (Ucar et al., 2024). A manufacturer then uses this
prediction to intervene only when degradation indications
are detected, thus avoiding unnecessary preventive services
that would otherwise reduce asset lifespan (Shamim &
Ruddro, 2025). Hence, loT-enabled monitoring coupled with
Al-driven forecasting shortens maintenance and downtime
schedules, fostering industrial operations that are safer,
more dependable, and cheaper (Shamim & Ruddro, 2025).
Here is Table 1 of industrial average savings achieved from
Predictive Maintenance (PdM) across different sectors,

Published: 16/10/2025
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Table 1: Industrial Average Savings from PdM (Kairo, 2024)

Industry Savings Area

Savings

Manufacturing sector in the US

Rail Sector in the UK

Reduction of unplanned Downtime and maintenance costs

Elimination of Annual cost

15-20%

£20 million equivalent

Automotive sector in Japan (Toyota) Vehicle Uptime improvement and cost reduction 25-30%
Mining Operations in Brazil Increase in equipment availability 15%
Energy sector in South Africa Lowered equipment failure and maintenance costs 12% & 20%
The aerospace sector in the US Increase in module availability 12%

The healthcare sector in the UK Reduction in medical equipment downtime 22%

The semiconductor industry in Japan Reduction in equipment failure and gain in efficiency 30% & 20%

The Agriculture industry in Brazil

Reduction of Downtime and proficiency in improvement

17% & 12%

highlighting cost reductions, equipment availability
improvements, and efficiency gains. These results
demonstrate that PdM offers cross-sector operational gains
in cost savings, spare availability, and reliability (Table 1).

Predictive Maintenance Implementation

Predictive maintenance (PdM) has emerged as a
transformative strategy in modern industries, combining loT-
enabled monitoring, real-time data analytics, and Al-driven
forecasting to anticipate equipment failures before they
occur (Ayeni, 2025). Unlike traditional preventive methods,
PdM enables targeted interventions based on actual asset
conditions, thereby minimizing unplanned Downtime,
reducing maintenance costs, and improving operational
efficiency (Hossan et al., 2025). By integrating continuous
data acquisition with advanced decision-support systems
(Wen etal., 2022).

Figure 1 shows a comprehensive predictive maintenance
(PdM) framework integrating loT-enabled data acquisition,
advanced analytics, and Al-driven decision-making. The
fundamental process starts with data collection from
sensors, loT devices, and machine logs, ensuring continuous
acquisition of various operational parameters like Vibration,
Temperature, and pressure (Anny, 2023). Afterward, data
preparation tools clean, preprocess, and extract the
features from the data such that the criteria for quality
are met and noise is removed (Subramanian, 2022). Now,

%50

(Sensor, loT, Logs)  (Cleaning, Features)  {Abnormality Detection)

from the conditioning data to monitoring situations come
various algorithms of design: from detecting early signs of
abnormalities in machine behavior (Dhinakaran et al., 2025).

After this, the fault detection methods specify fault
types, whereas predictive analysis applies algorithms to
predict the Remaining Useful Life of the assets. The results
areinputinto decision support systems, where maintenance
schedules are optimized to reduce Downtime and costs.
Execution and feedback complete the loop by updating
the model with real-world outcomes, which enhances its
accuracy with time. The sequence is closely aligned to
the PdM architectures conceptualized very recently in the
literature, where loT, Al, and feedback loops are integrated
for continuous evolution (Wen et al., 2022) (Figure 1).

Here in Figure 2, the P-F curve illustrates how spares’
condition declines over time, moving from a normal state
to a dangerous state before reaching functional failure
(Bousdekis et al., 2019). The interval between potential
failure (P) and functional failure (F) is critical for estimating
the Remaining Useful Life (RUL), which indicates how long
the spare can operate before failure occurs (Bousdekis et
al., 2019). Predictive maintenance focuses on identifying
the onset of degradation to accurately predict RUL and
schedule maintenance within the P-F interval (Bousdekis
etal.,2019). This approach reduces Downtime, avoids costly
stoppages, and optimizes maintenance planning (Bousdekis
etal., 2019) (Figure 2).

Q-5 0

Data Collection Data Preparation Conditional Monitoring Fault Detection Predictive Analysis
(Fault ID)

Execution & Feedback
(Update Models)

Decision Support

(RUL prediction)  (Maintenance Scheduling)

Figure 1: PdM framework
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Figure 2: P-F Curve

Role of Al in PdM

Artificial Intelligence (Al) strengthens predictive maintenance
(PdM) by merging loT sensor data, historical failure records,
and real-time condition monitoring to enable precise fault
detection and timely interventions (Emma, 2025, and Baroud
et al., 2025). In manufacturing, PdAM frameworks integrate
three core elements: condition monitoring sensors, loT
data acquisition, and predictive algorithms (Peji¢ Bach et al.,
2023). Condition monitoring captures real-time parameters
such as Vibration and Temperature, which are processed
to detect irregularities and predict Remaining Useful Life
(RUL) (Sekar et al., 2025). loT systems connect these assets
to centralized platforms for data storage, preprocessing,
and analytics, ensuring continuous visibility of equipment
condition (Sivakumar et al., 2023).

Figure 3 depicts an Al-driven heuristic approach for
PdM, wherein loT-enabled data acquisition prepares sensor
measurements of Vibration and Temperature (Emma, 2025).
The captured readings form a training dataset for supervised
or unsupervised modeling (Baloch et al., 2025). In data
processing, cleaning, normalization, and feature extraction
improve the signal quality (Ahadov et al., 2024). Early fault
detection is implemented to detect early degradation
before failure (Hosseinzadeh et al., 2023). The alarm logic
and thresholds set the setpoints, triggering an alert
whenever limits are breached (Peji¢ Bach et al., 2023). Real-
time condition monitoring would continue to examine the
health of spares in view of these thresholds (Subramanian,
2022). Equipment forecasting is carried out by applying the
Prophet time-series model on historical trends (Syed et al.,
2025). The forecast then assists in Remaining Useful Life
(RUL) estimation, through which preemptive interventions
could be carried out (Emma, 2025). Lastly, maintenance
scheduling is implemented to align PdM actions with the
production plan so as to minimize Downtime and initiate
resource optimization (Peji¢ Bach et al., 2023) (Figure 3).

Enhancing Predictive Maintenance with the Prophet
algorithm

The Prophet algorithm provides distinct advantages
for time-series datasets that exhibit seasonal patterns,
holidays, and other recurring effects (Anand et al., 2024,
and Chitwadgi, 2024). Unlike traditional models, Prophet is
designed with flexible components that can adapt to the
inherent complexities of real-world data, thereby improving
both interpretability and forecasting accuracy (KC & Rone,
2024). The mathematical formulation of Prophet can be
expressed as:

Adaptive seasonality

Models complex seasonal patterns using Fourier series,
capable of capturing variations across different frequencies
and magnitudes.

Holiday effects

Prophet effectively incorporates holidays and dedicated
events, which are often overlooked in conventional
forecasting methods (Manandhar et al., 2024).

Robust anomaly detection
Prophet robustly manages outliers and missing values with
resilience, minimizing their negative impact on predictions.

Ease of implementation and adjustability

Provides user-friendly hyperparameter tuning, making the
model highly adaptable across diverse datasets (Belim et
al., 2024).

This research aims to develop an Al-driven predictive
maintenance (PdM) framework for induction motors in
smart manufacturing by integrating loT-based condition
monitoring with the Prophet time-series forecasting
algorithm to predict failures and estimate Remaining Useful
Life (RUL). The scope includes analyzing vibration and
temperature data to capture degradation patterns, seasonal
variations, and early fault indicators, as well asimplementing
forecasting-based maintenance scheduling. It also covers
sensor-based data acquisition, feature extraction, Prophet
model training, and the development of a hybrid dashboard
for real-time decision-making.

Acquire & Prepare

Detect & Monitor Predict & Plan

@ ;z

Early failure detection Al-Based Failure
Forecasting (Prophet)

oD
o
D

o
8
5
o
e
3
S
2
E

i }
888 .
RULL A
H = D -
Remaining Useful Life
(RUL) Estimation

Training Dataset Thresholding & Alerts

o
) G
=) y
\ Data Preparation ) \ Live Fault Tracking /

Figure 3: Framework of Al-driven PdM

D




4837 Smart Manufacturing in Bangladesh

The novelty of this work lies in modeling both seasonal
and event-based operational patterns, such as holiday
shutdowns and post-holiday ramp-up effects, within the
PdM framework using the Prophet algorithm, an aspect
often overlooked in existing studies. Additionally, the
study introduces a hybrid dashboard that integrates real-
time sensor monitoring with predictive insights for RUL-
based scheduling, while incorporating lead-time-aware
maintenance planning for practical industrial deployment.

This research contributes by proposing a structured
Al-based PdM framework that combines loT-driven condition
monitoring with advanced time-series forecasting for
accurate RUL prediction. It enhances predictive maintenance
by incorporating seasonal and operational trends into
forecasting, introduces a hybrid dashboard for visualization
and decision support, and establishes a scheduling approach
that accounts for lead time and buffer requirements. These
contributions collectively offer a practical and scalable
solution for improving reliability, reducing Downtime, and
optimizing cost in smart manufacturing environments.

The latest research in predictive maintenance (PdM)
emphasizes advanced Al frameworks that integrate domain
knowledge, data, and models to enhance decision-making
in manufacturing (Lee & Su, 2025). These frameworks
leverage benchmark datasets from PHM competitions to
validate PdM techniques, thereby promoting standardized
performance evaluations (Lee & Su, 2025). However, recent
studies reveal gaps, including inadequate classification
of supervised machine learning methods and limited
comparative analysis between synthetic and real-world
datasets (Guidotti et al., 2025). Further improvements have
been achieved through Al-integrated PdM frameworks
combining loT and machine learning models. These systems
demonstrated up to 92% accuracy in failure prediction and
reduced Downtime by 35%, though limitations persist in
terms of hybrid Al architectures and broader loT coverage
(Abdulrazzq et al., 2024). While integration with ERP
systems has enhanced equipment effectiveness, scalability,
interpretability, and computational complexity remain key
challenges (Abdulrazzq et al., 2024).

Practical implementations underscore the tangible
benefits of PAM across global industries. For instance, the
UK rail industry realized £20 million annual savings and a
10% improvement in train reliability, while Toyota in Japan
reduced maintenance costs by 25% and increased vehicle
uptime by 30% (Kairo, 2024). Similarly, Brazil’s mining sector
improved equipment availability by 15% and lowered
maintenance expenditure by 10%, and South Africa’s
energy sector experienced a 12% reduction in equipment
failures alongside 20% lower maintenance costs (Kairo,
2024). The rise of Industry 4.0 has been a major driver
of this transformation, shifting maintenance strategies
toward data-driven, intelligent PdM solutions (Soori et al.,
2023). loT technologies play a central role by continuously

monitoring parameters such as pressure, Sound, Vibration,
and Temperature in industrial systems (Soori et al., 2023).
Nevertheless, full integration remains hampered
by challenges like device interoperability, high energy
consumption, and data security risks (Soori et al., 2023).
Many PdM systems function primarily as alert mechanisms
rather than enabling comprehensive predictive scheduling,
leaving a gap between real-time monitoring and actionable
maintenance strategies (Zonta et al., 2020). Earlier research
laid the foundation for these advancements. Zonta et
al. (2020) highlighted the capability of PdM to reduce
unplanned Downtime and optimize manufacturing
schedules through Al-based forecasting models and real-
time sensor data. Despite these strengths, they observed
that most PdM applications failed to bridge the gap between
condition monitoring and strategic maintenance planning
(Zonta et al., 2020). At the same time, foundational studies
stressed unresolved issues in PAM implementation.

Research Gap

This section shows the research gaps based on the previous

studies.

« Today’s PdM solutions rarely integrate efficiently
between condition monitoring and ongoing
maintenance scheduling, limiting their capacity for
optimizing operational Downtime and allocation of
resources. Even though these solutions are very good
atidentifying anomalies within real-time situations, they
do not convert these observations into viable longer-
term maintenance strategies capable of averting future
failure. This lags considerably behind the industry’s
capacity for minimizing unexpected shutdown and
general operational efficiency (Zonta et al., 2020).

- In addition, the Prophet algorithm, which has been
promising for time-series forecasting applications
within a variety of fields, remains underdeveloped
for cost-oriented PdM applications within smart
manufacturing facilities. Even though Prophet proved
capable of dealing with seasonal trends within irregular
data, there has been insufficient development of
integrating itinto cost-saving strategies for the purpose
of maximizing uptime and system reliability (Lee & Su,
2025).

« Inaddition, the field lacks adequate comparative studies
of PdM performance within synthetic and real-world
databases. Thisimbalance is a significant difficulty since
synthetic databases, although controlled, do not reflect
the complexity and noise within real-world applications.
This hinders the possibility of extrapolating the results
of such databases to the real situation within industries,
where unpredictability and irregularities within the
data are the order of the day. As such, the scalability
and robustness of many PdM models suffer in such
applications within the industries whenever they
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consider the large scale on which the industries operate.

« In addition, these PdM solutions incorporating the use
of Al suffer from computational bottlenecks whenever
they deal with the issue of high volumes of data and
the reality of required real-time computations within
enormous distributed applications. These limitations
make it difficult for such solutions to be practically
implemented within industries whose applications
are heavy and call for fast decision-making (Guidotti
etal., 2025).

Research Questions based on this research:

« How does the sampling rate of real-time
condition-monitoring data (e.g., Vibration +
Temperature) influence the predictive accuracy of PdM
forecasting models?

«  How accurately can a Prophet-based forecasting model
predict critical condition-monitoring parameters (e.g.,
vibration, temperature) in real time compared with
traditional PdAM models such as ARIMA and LSTM?

«  What percentage reduction in unplanned Downtime and
total maintenance cost can be achieved when real-time
condition monitoring is combined with Prophet-driven
forecasts versus a reactive or calendar-based
maintenance strategy?

« Can a hybrid framework (dashboard), combining
Prophet forecasts with anomaly-detection score,
improve interpretability and decision confidence for
maintenance schedulers?

Materials and Methods

The research is based on the implementation of predictive
maintenance using sensor-based condition monitoring for
early failure detection of motor vibration and Temperature.
As part of this review, raw data collected from sensor
hardware were analyzed, the datasets were evaluated, and

the primary data were trained using an Al model to predict
future failures.

Experiment Description

The motor’s real-time Vibration and temperature failure
simulation experiment was conducted using an Enerzyz
Vibro-Temperature wired sensor (Model: MPU-6050), which
was deployed for continuous condition monitoring of a
0.75 KW, 50 Hz, 1440 RPM induction motor throughout
the 2024 operational period. The sensor, comprising a
3-axis accelerometer, gyroscope, and internal temperature
sensor, was rigidly mounted to the motor housing using
vibration-damping adhesive to ensure stable signal
acquisition and minimize noise from extraneous sources.
The wired configuration ensured stable signal transmission
and reduced wireless interference during prolonged data
acquisition. Figure 4 below explains the process of securely
mounting the MPU-6050 sensor to the motor housing using
vibration-damping adhesives to maintain contact stability
and minimize extraneous noise (Figure 4).

Table 2 shows the concise summary that connects the
Enerzyz Vibro-temperature wired sensor data acquisition
process with its technical features, as per the provided
details (Table 2):

A digital low-pass filter with a 94 Hz cutoff was applied
to the vibration channels to suppress high-frequency
noise and electrical interference. From the filtered signals,
time-domain features including RMS acceleration, peak
amplitude, kurtosis, and crest factor were computed over
fixed 1-second analysis windows. Frequency-domain
analysis using FFT was performed periodically to detect
dominant fault frequencies.

Data collection spanned multiple seasonal and
operational variations, enabling the capture of long-term
degradation trends as well as short-term transient anomalies.
This temporal resolution made it possible to observe both

Table 2: Enerzyz Vibro-temperature wired sensor data acquisition process parameters

Category

Specification/Process

Product (Model)

Mounting Method

Power Supply
Communication
Accelerometer Range
Gyroscope Range

Sampling Frequency

Signal Filtering
Time-Domain Features
Frequency-Domain Analysis

Baseline Reference

MPU-6050 (3-axis accelerometer + gyroscope + internal temperature sensor)

Fixed to the motor housing with vibration-damping adhesive for stable measurement
3.3 Vregulated

I’C interface at 400 kHz for reliable, low-latency data transfer

+8 g for capturing a wide range of vibration amplitudes

+1000 °/s rotational speed and movement tracking

200 Hz for vibration data; 1 Hz for temperature monitoring

Digital low-pass filter, 94 Hz cutoff to remove high-frequency

Extraction of RMS, peak amplitude, kurtosis, crest factor for condition monitoring

Fast Fourier Transform (FFT) to specify fault-specific frequency components

Healthy (Normal Phase) operational data used for threshold calibration and fault comparison
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Figure 4: Motor simulation

cyclical patterns (e.g., seasonal load changes) and second-
level variations in machine behavior. The acquired datasets
were logged in the acquisition unit’s internal memory and
periodically exported in CSV format for offline processing.
Each CSV file contained timestamped records of:

« Axial, radial, and tangential acceleration values (m/s?),
«  Gyroscope angular velocity readings (°/s)

«  Corresponding temperature measurements (°C).

This standardized CSV structure facilitated seamless
integration with statistical analysis tools (MATLAB, Python)
for both real-time monitoring and historical trend analysis,
ensuring reproducibility and scalability of the predictive
maintenance framework.

Methodology

The study focuses on implementing a Smart Predictive
maintenance framework for an Induction motor in a
Manufacturing unit. This combines three stages as shared
below in Figure 5: initially, real-time condition monitoring
of the test motor via a 6-axis motion tracking wired sensor
network, identifying RUL (Remaining Useful Life) and
determining threshold crossing point using the Prophet
algorithm model developed by Facebook (meta), and finally
scheduling PdM based on forecasting results (Figure 5).

Primary Data Preparation

Signal Processing
(Noiseflteringusing (%]~ Windowing M| Normalization
low-pass filter)

Model Training

Define Target Prophet Model Determine

Variables from ({ SPecifySeasonal |} Training  {pl pyitd Future Fame [ Forecastlrend (b ~threshold
Primary Data Patterns (Fitthe model, CV crossing point
and Tuning)

and RUL
PdM Scheduling

¥
Model Trained Th“‘;‘""l " Compare ) Schedule
Data&Threshold [  Forecasting [ Cm"‘i: ‘;oim Prediction with (] Trigger Ly pgsessUrgency P Inspection-Based
Crossing Point s Threshold Alert/Notification Maintenance

Above PamM
Threshold Integrate Planned || Implementation
Calculate RUL [P | 'mP
Crossing Point alulate PdMinto ERP and Closing
Feedback Loop

Feature Extraction
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16T enabled Vibro- (Rule-based
Temperature
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Figure 5: Predictive maintenance framework

Experimental Analysis (Primary Data)

This research experiment explains two phases of motor’s

condition: normal and failure stage from sensor-based

condition monitoring results.

« Induction Motor operated under normal conditions
(real-time monitored data without fault indication):
Table 3 includes temperature signals from condition
monitoring of the year 2022.

Table 3 shows the real-time monitored parameters of the

induction motor, which include Temperature, Vibration,

Speed, and Sound of the motor. Table 3 depicts the real-

time monitored data when a motor is operating under

normal conditions, without any fault, and typically includes

a range of parameters and metrics that indicate the health

and performance of the motor. For example, in Table 3,

the average Temperature is noted as 30.22558°C, Sound

is noted as 71.523 dB, Vibration (acceleration) is observed
between +-2 m/s2 and Speed is indicated as 1470 RPM, all
these data were below the test set conditions (Temperature
<35°C, Sound <75dB, Vibration with +-2 m/s2 and Speed
<1500 RPM). From these values, it is validated that the
motor is operating without any fault. These data are crucial
for ensuring smooth operation and early detection of any
potential issues. From the analyzed data, motor failure can
be predicted based on the trained dataset. If any of the
four parameters fail to achieve the normal value, the motor
is considered to be in a fault stage; otherwise, it operates

under normal conditions (Table 3).

Induction Motor under faulty condition (real-time
monitored data with failure indication): Table 4 includes
only temperature signals above threshold (> 35 °C) from
condition monitoring of August 2022.

Table 4 depicts the real-time monitored data of the fault
motor. Real-time monitored data of a faulted motor provides
crucial insights into the abnormal conditions (mechanical
looseness, bearing fault, misbalancing) and issues affecting
its operation. From the above data, the motor failure can be
predicted according to the trained dataset. For example, in
Table 4, Temperature is noted as average 39.3889°C, Sound
is noted as 76.6982 dB, Vibration is observed above + 2.164
m/s2, and Speed is indicated as 1456 RPM, all of which
exceeded the test set conditions (Temperature >35°C, Sound
>75dB, Vibration >+-2 m/s2, and RPM<1500). From these
values, it is observed that the motor is operating without
any abnormalities such as mechanical looseness or bearing
fault. These data are crucial for identifying early detection of
any potential failure. From the analyzed data, motor failure
can be predicted according to the trained dataset, and faults
can be rectified based on inspection. Since most of the four
parameters fail to achieve the normal threshold, the motor
is considered to be in a fault stage; otherwise, it operates
under normal conditions (Table 4).
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Table 3: Real-time monitoring Parameters

éemperature \(ilnb/rsc;t;lon .(S;;nd Motor RPM /é/l:;z;;on
28.241 0.139 71.320 1471.350 Normal
27.421 -0.106 71.240 1471.520 Normal
33.297 0.048 71.830 1470.340 Normal
28.246 -0.086 71.320 1471.350 Normal
30.078 -0.086 71.510 1470.980 Normal
27.865 0.042 71.290 1471.430 Normal
29.877 -0.194 71.490 1471.020 Normal
31.708 0.166 71.670 1470.660 Normal
32.564 -0.182 71.760 1470.490 Normal
34.344 0.061 71.930 1470.130 Normal
29.796 -0.177 71.480 1471.040 Normal
30.078 0.152 71.510 1470.980 Normal
30.276 -0.165 71.530 1470.940 Normal
30.304 0.072 71.530 1470.940 Normal
29.959 -0.130 71.500 1471.010 Normal
29.102 0.090 71410 1471.180 Normal
27.999 -0.120 71.300 1471.400 Normal
31.697 0.049 71.670 1470.660 Normal
29.981 -0.077 71.500 1471.000 Normal
31.662 -0.077 71.670 1470.670 Normal

Vibration Data Analysis

The vibration data of the test motor was collected in real
time during 2022-2024 condition monitoring experiments.
Accelerometers were mounted on the motor to capture
vibration signals under different operating conditions. This
data was analyzed to investigate the signal characteristics
of motor failure in 4 stages. To evaluate the fault signatures
from acceleration (m/s2), vibration signals from each axis
were compared to a +2.0 m/s* threshold derived from both
normal and abnormal stages graphs (Figures 6 and 7).

Normal stage

The Y-axis signal remains compact and sub-threshold:
most samples lie within £1.0 m/s% only rare, short spikes

Actual Vibration — 2024 — Normal Phase Acceleration

4

2:2.70 a.u. Threshold

[V (AU JE P
-2.0 a.u. Threshold

Acceleration (a.u.)

0 0.5 1 1.5 2

Time (Seconds)

approach the +2.0 m/s? lines (Figure 6). According to the
planned-based inspection, the acceleration signal between
the threshold band means the motor is actuating at its
regular condition without any mechanical abnormality such
as looseness, misalignment, or bearing distress (Figure 6).

Abnormal Stage

To better compare acceleration values across different
time spans, an abnormal moment throughout the total
duration was uniformly selected (shown in Figure 7). An
alarm band of +2.0 m/s*> was applied to the time-domain
vibration signal. In the failure window (~0.1-1.9 sec), the
tangential (Y) acceleration repeatedly crosses this band and
remains outside it for extended periods. Here, the spikes
reached roughly +4.0 m/s* and —4.5 m/s’, giving a much
larger peak-to-peak (~4-4.5 m/s?) and visibly higher overall
energy (RMS). This pattern is impulsive (many sharp bursts),
which is typical of developing mechanical problems such as
looseness, misalignment, or bearing distress. The increase
in spikes is due to the gradual loss of lubrication, leading
to a reduction of oil film thickness and increased wear
between the rolling elements of the motor. Therefore, the
acceleration band above threshold means the motor is no
longer vibrating within acceptable limits and is at high risk
of unplanned stoppage unless inspected and repaired (e.g.,
alignment check, relubrication, or bearing replacement)
(Figure 7).

Similarly, the acquired time-domain signals were then
converted into the frequency domain using the Fast Fourier
Transform (FFT), enabling a detailed evaluation of vibration
characteristics across four distinct fault stages: Normal,
Unbalancing, Mechanical Looseness, and Bearing Fault as
shown in Figure: 8. The FFT plots provide insights into both
the amplitude (Y-axis) and the frequency (X-axis) of vibration
peaks, which are critical indicators for diagnosing fault
type and severity. The severity and type of each fault can
be evaluated by analyzing both the amplitude of vibration
peaks and their position on the frequency spectrum.
According to the Normal Stage of Figure 8, the vibration
spectrum shows evenly distributed low-amplitude peaks,
all remaining below the 0.1 threshold line. The absence of
dominant peaks indicates stable operation without any

Actual Vibration — 2024
— Axial

—— Radial

—— Tangential

Figure 6: Normal Phase Acceleration
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Prophet Predicted Vibration — 2024 — Failure Phase Acceleration
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Figure 7: Failure Phase Acceleration

mechanical abnormalities. By monitoring the condition of
an ideal motor, comparisons can be made between motors
under fault conditions and that of a perfect motor (Figure 8).

e Unbalancing

Based on the data presented in Figure 8, several peaks
appear to be present at the Unbalancing (b) stage. The most
notable peak is at 90 Hz, and other dominant peaks at ~70
Hz and ~90 Hz, with the amplitude up to 0.17. Compared to
the 20-30 Hz peak seen in Normal Stage (a), which displays
the motor operating under normal conditions, the 60-70 Hz
peak of Unbalancing stage (b) shows a substantial increase in

Table 4: Monitoring parameters of Fault Motor

gmperature mczzl;on ?;Bu)nd Motor RPM Q/(l;l:,'; ,'Son
39.090 0.351 75.270 1453.640 Abnormal
35414 -0.321 72.330 1468.350 Abnormal
35.718 0.272 72.570 1467.130 Abnormal
37.160 -0.292 73.730 1461.360 Abnormal
39.146 0.317 75.320 1453.420 Abnormal
38.568 -0.306 74.850 1455.730 Abnormal
38.993 0.322 75.190 1454.030 Abnormal
37.123 -0.263 73.700 1461.510 Abnormal
37.550 0.286 74.040 1459.800 Abnormal
38.545 -0.369 74.840 1455.820 Abnormal
38.404 0.234 74.720 1456.380 Abnormal
39.240 0.378 75.390 1453.040 Abnormal
39.546 -0.281 75.640 1451.820 Abnormal
38.720 0.292 74.980 1455.120 Abnormal
39.599 -0.253 75.680 1451.610 Abnormal
38.810 -0.236 75.050 1454.760 Abnormal
39.080 0.235 75.260 1453.680 Abnormal
38.758 -0.384 75.010 1454.970 Abnormal
39.105 -0.236 75.280 1453.580 Abnormal
38.885 0.249 75.110 1454.460 Abnormal

amplitude. Additionally, the overall noise in the Unbalancing
(b) phase appears to have changed. The conditions are
characterized by sharp, distinct peaks at the fundamental
running frequency (1x RPM) and sometimes its harmonics
(2). To summarize, in the FFT spectrum, two strong peaks
exceed the 0.1 threshold, confirming the presence of rotor
unbalance.

e Mechanical looseness

The FFT spectrum at the Mechanical Looseness stage (c)
shows (as per Figure 8) multiple dominant peaks across the
frequency range of 110-140 Hz. Several peaks rise above
the 0.1 amplitude threshold, with the most notable ones
reaching values between ~0.15 and 0.18. Compared to the
Normal Stage (a), where vibration peaks remain below 0.07
and evenly distributed within the 20-30 Hz region, the
Mechanical Looseness stage clearly demonstrates a broader
and moreirregular frequency response between 90 and 150
Hz. The presence of harmonics and sidebands at multiples of
the fundamental frequency further supports the looseness
condition. These peaks are not isolated but spread across
higher frequencies, which reflects unstable contact points or
loosened components in the motor structure. To summarize,
the FFT spectrum for Mechanical Looseness is characterized
by multiple harmonics, broad frequency energy distribution,
and amplitudes exceeding the 0.1 threshold, confirming the
presence of looseness-related vibration behavior.

e Bearing fault

Asshownin Figure 8, the Bearing Fault stage (d) demonstrates
a distinct vibration pattern compared to the Normal Stage
(@). The FFT spectrum shows several irregular peaks
concentrated in the higher frequency range of 180-200 Hz,
with amplitudes rising to ~0.20, well above the 0.1 threshold.
Unlike the Normal Stage, where peaks remain below 0.07
and evenly distributed, the Bearing Fault stage displays a
raised noise floor and multiple high-frequency peaks that
do not align with simple harmonics of the running Speed
or with typical unbalance/mechanical looseness signatures.
This irregular spectral behavior is a strong indicator of
bearing degradation, likely due to lubrication failure or
physical damage of rolling elements. When compared to the
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Figure 8: Distinct Fault Stages

spectrum recorded under healthy conditions (Normal Stage),
it becomes evident that the motor’s vibration response has
undergone substantial change and is no longer stable. Such
results suggest two possibilities: either there are inaccuracies
in the recorded data, or the bearing has already advanced
to a severe fault stage (stage four of failure). In summary,
the Bearing Fault stage is characterized by high-frequency
resonance, irregular peak distribution, elevated amplitude,
and a raised noise floor, all of which confirm significant
bearing deterioration.

Real-time Temperature Analysis

Insufficient lubrication induces additional friction and wear
within motor bearings. Since frictional heating is a primary
contributor to surface temperature rise, temperature
monitoring becomes a critical diagnostic tool for identifying
incipient bearing faults. Figure 9 illustrates the half-yearly
thermal profile of the test motor, where surface temperature
was continuously tracked against a control limit of 35
°C, established from prior failure events exceeding this
threshold.

Between June and July, the motor operated within a
relatively stable thermal band of 28-38 °C, with a low drift
rate (=0-0.1 °C/day). A pronounced thermal excursion
occurred in mid-August, when the Temperature escalated
sharply to ~44 °C, classified as a failure event before
returning to baseline following corrective intervention. This
sharp rise highlights the cumulative effect of progressive
lubrication loss: as oil film integrity deteriorates, tribological
interactions and bearing surface degradation intensify,
resulting in a sudden surge in heat generation. The system
then stabilized back to 27-30 °C for the remainder of the
monitoring period (Figure 9).

To better resolve the pre-failure dynamics, a two-week
window preceding the August excursion was analyzed
(Figure 10). During this interval, motor surface temperature
increased monotonically from ~28 °C to ~36-37 °C,
crossing the 35 °C threshold around August 12-13. This
gradual escalation reflects the early phase of lubrication
degradation, where partial oil loss is insufficient to cause
catastrophic friction but induces measurable incremental
heating (Figure 10).

Biweekly Temperature (Failure Period)

42

40 4

Failure

Temperature (°C)

—e— Temperature (°C)
=== Threshold (35.0°C)

June July August September

October November December

Month

Figure 9: Half-year view (2024-06-01 — 2024-12-31)
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Daily Temperature from August 01 to August 15

=
S

=
S

w
&

w
-3

—e— Temperature (°C)
=== Threshold (35.0°C)

w
®

w
S

Temperature (°C)

304

01-Aug 03-Aug 05-Aug 07-Aug

09-Aug 11-Aug 13-Aug 15-Aug

Figure 10: Two-week escalation window (2024-08-01 — 2024-08-15)

As per Figure 10, the observed slope of ~0.6-0.8 °C/day
is significantly higher than the baseline drift, triggering
the “rate-of-rise” rule embedded in the anomaly detector.
This localized trend provides an actionable early-warning
window before the full thermal excursion occurs. Identifying
such slope-based deviations is therefore crucial for
predictive maintenance, as it enables timely intervention
before the motor experiences severe bearing failure.

Prophet Model Training (time-series forecasting with
primary data)

From the primary data of condition monitoring, the cleaned
and structured data were fed to train and test the Prophet
Al algorithm model, developed by Meta (Facebook), to
forecast future vibration patterns. Prophet was chosen due
to its robustness in handling seasonal trends, noise, and
missing data. The model was trained with selected datasets
that reflected time-series patterns like those expected in
industrial motor operations (e.g., temperature or vibration
data from motors operating under cyclic loads).

The first step is to specify what needs to be predicted
clearly. Here, daily temperature and vibration signals from
the motors are selected as the input features. A failure
threshold of 35 °C is defined, since prior breakdown
events occurred above this point. The planning horizon
(how far into the future to forecast) is also fixed to enable
meaningful Remaining Useful Life (RUL) estimation. The raw
sensor signals are ingested and synchronized. Tiny gaps in

the time series are filled through interpolation, ensuring
continuity of the dataset. Additionally, the dataset is split
into training and validation sets, enabling robust testing
of the forecasting model. Proper preprocessing minimizes
noise, avoids misleading trends, and ensures comparability
across different motors, as a prerequisite of data processing
(shared in phase-1 of Figure 11)

Seasonality Analysis

This section shows the identification and analysis of
recurring seasonal patterns in sensor data over different
time intervals. It highlights how seasonal trends influence
motor performance and impact predictive maintenance
modeling.

Temperature seasonality analysis

Temperature data often shows seasonal variation: daily,
weekly, or monthly cycles that must be modeled explicitly.
Additive or multiplicative seasonality is configured
depending on the underlying trend. In the case of the three
motors (M1, M2, M3) shown in the graphs, a consistent
seasonal pattern emerges.

Here in 2022, all motors stayed mostly around 28-31
°C, with a sharp rise in Feb—Apr reaching 39-41 °C before
dropping back to its regular trend. There are also a few
small bumps that appeared mid-year but stayed below
35 °C (Figures 12, 13, 14). In 2023, similar baselines were
observed (29-32 °C). The main spikes came in May-June,

. _ by . f.-'
a 5 o ' | I RUL
0 [ h I
[ Phase 0 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 ]
Define Target . . .
Select daily Data Pre- Seasonal Validation of Forecasting RUL Estimation
temperature & procegslng Analysis Fit Prophet Model time-series Gel_mrale forecasts for Ap.ply domain
vibration signals, ) '"ge“l:ta"fgn data, Configure additive or [ Configure prophet, Diagnase with ’{‘3“ "Z”':tf;empefat“fe}‘ Slﬁﬁgf‘ﬂ thfﬂﬁ;ihjll_d,
define failure Interpolate tiny gaps, multiplicative train per signal metrics: RMSE, MAE, onvert forecasts into etermine
threshold, choose split datasets for seasonality R2 FFT band (vibration) period based on
planning horizon validation threshold crossing

Figure 11: RUL-based Prophet Model Framework
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again peaking at 39-41 °C, then settling around 30-31 °Cfor
the rest of the year with only minor ripples. Therefore, a clear
peak in Feb-Mar rose above the threshold up to 40-41 °C,
then temperatures quickly leveled off to 29-33 °C, staying
steady with mild fluctuations (shown as Figures 12, 13, 14).

Holiday trend

Across all three motors (M1-M3), Temperature is essentially
flat at baseline (=0-1 °C) during declared planned holidays,
with no excursions toward the 35 °C failure limit. This
indicates motors are powered down and thermally stable (no
load, nofrictional heating) and provides clean, low-variance
segments in the series, as shown in Figure 15 (Figure 15).

Post-Holiday Ramp-Up Trend

The operational challenges have been observed with the
cold start-up activities of machine ramp-up, immediately
after each holiday. It has been seen that temperatures
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show short ramp-up overshoots before settling. As shown
in Figure 16, a pronounced spike was observed in mid-
April 2022 in 3 test motors (M1, M2, M3), where the highest
temperature spike was shown by M3 =40-41 °C, briefly
above the 35 °C threshold (near-failure event), followed
by decay to ~27-29 °C. Another spike within the threshold
~31-32 °Cin May-Jun 2023 was observed for a few weeks,
then the trend gradually normalized (Figure 16).

Figure 16 also shows another spike of Temperature
close to the threshold to ~33-34 °C (M2 highest) in Feb-Mar
2024, which clearly stressed and then returned to ~27-29
°C.These repeatable overshoots are consistent with warm
restarts (relubrication, alignment, or cooling lag) and
are important early-warning patterns. The post-holiday
regressor permits brief, repeatable uplifts that influence

the Prophet algorithm model to anticipate ramp-up spikes
soon after shutdowns.
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Holiday Trend — (2022-2024)
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Figure 16: Post-Holiday Trend

Vibration Seasonality Analysis

The seasonality effect of real-time monitored vibration data
of the test motor has been captured through the sensor and
plotted in the FFT band to compare the normal (Figure 17)
and failure stages (Figure 18) due to mechanical looseness,
misalignment, or bearing-related faults. The seasonal
impacts are captured for three consecutive years (2022-
2024) to understand the failure patterns, which eventually
would be trained in the Prophet model. As shown in Figure
17,the Normal Stage spectrum displayed evenly distributed
low-amplitude peaks, all remaining below the 0.1 threshold
lineg, indicating stable motor operation without mechanical
irregularities. In contrast, the Abnormal Stage (bearing
fault) revealed several irregular peaks concentrated around
300-350 Hz, with amplitudes reaching nearly 0.18. This
significant rise above the threshold, along with an elevated
noise floor, signaled the onset of bearing degradation and
highlighted early-stage fault progression compared to the
stable normal condition.

In 2023, the Normal Stage again showed harmonically
consistent, low-amplitude peaks well under the 0.1
threshold, confirming stable baseline performance.
However, the Abnormal Stage spectrum shifted towards
higher frequency bands between 350-500 Hz, where
multiple sharp peaks crossed amplitudes of 0.15 and
above. These irregular and scattered responses deviated
strongly from the uniform pattern of the normal condition,
indicating worsening bearing deterioration, likely due to

surface defects or lubrication breakdown within the rolling
elements.

By 2024, the Normal Stage continued to present
evenly distributed, sub-threshold peaks consistent with
healthy operation. In comparison, the Abnormal Stage
demonstrated multiple dominant spikes between 400-550
Hz, several of which exceeded the 0.1 amplitude threshold,
with some nearing 0.18. The raised noise floor, irregular
peak distribution, and repeated high-frequency resonance
confirmed the persistence and progression of severe bearing
faults. This year’s abnormal spectrum, when contrasted with
the stable normal condition, clearly illustrates the motor’s
advancement towards a critical failure stage (Figure 17 & 18).

Forecasting Analysis (Prophet Model)

The Figures 19-21 show time (X-axis) against acceleration
(Y-axis, m/s%) with alarm limits at +£2 m/s% Using the abnormal
segments from 2022-2024, a Prophet model was fit to the
axial, radial, and tangential series and then used to forecast
Jan-Jun 2025 (as shown in Figures, 19,20,21)

Across all three axes, the red 2025 traces exhibit higher
variance and more frequent excursions beyond +2 m/s* than
the earlier baseline, indicating persistence and progression
of the bearing fault. The axial forecast shows intermittent
bursts that approach and intermittently breach the +2
limits; the radial forecast displays a slight negative bias with
periodic positive spikes, producing repeated crossings of
the lower threshold and occasional upper-band touches;
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the tangential estimates are the most energetic, with
dense clusters of threshold exceedances on both sides,
consistent with bearing defect modulation. In the workflow,
any sustained variance increase plus recurrent threshold
crossings (especially when two axes concur within the same
window) is flagged as an abnormal operating episode,
which is then correlated with the temperature model (=35
°Cspikes) and the FFT spectrum to schedule inspection and
PdM actions.

Calibration: Predicted vs Actual R2=0.952

40
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Model Performance Validation

To ensure the reliability of forecasts, it is crucial to evaluate
how accurately the Prophet model captures historical
patterns and predicts future values. By identifying the
accuracy of Prophet through error metrics and validation
techniques, the methodology establishes a solid foundation
for interpreting the results with confidence. In Figure 22,
the calibration plot provides a validation of the Prophet
model by comparing predicted temperature values (Y-axis)
against the corresponding actual measured temperatures
(X-axis). The scatter of blue points demonstrates individual
prediction-observation pairs across the full range of
operating conditions, from ~26 °C to ~42 °CThe red dashed
line (y=x) denotes the ideal calibration line, where predictions
would perfectly match observations. The green regression
fitline, derived from the model’s outputs, lies closely along
this reference line, confirming that the Prophet model’s
predictions are highly consistent with the measured data
(Figure 22).

The performance of the Prophet model was evaluated
across the three vibration axes: Axial, Radial, and Tangential
using standard error metrics. As shown in Table 5, Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE)
measure the typical deviation between predicted and actual
values. At the same time, the coefficient of determination
(R?) indicates how well the model explains observed data.
To assess the robustness of forecasts across vibration axes,
performance was evaluated using RMSE, MAE, and R?
metrics. Results are summarized in Table 5 (Table 5).

Here, an R? value of 0.952 indicates that 95.2% of the
variability in actual temperature values is explained by the
model’s predictions, leaving only 4.8% attributed to random
noise or unmodeled dynamics. The tight clustering of points
around the reference line also shows that error margins
remain very low across the entire temperature span. The
Tangential axis achieved the best overall accuracy with
the lowest RMSE (0.110) and MAE (0.088), and the highest
R? (0.958); the Axial axis performed very well (RMSE 0.115,
MAE 0.090, R* 0.950); and the Radial axis showed slightly
higher variability (RMSE 0.120, MAE 0.095, R? 0.948) while
still retaining excellent explanatory power. The narrow gap
between RMSE and MAE across all axes, together with the

*  Paints
= = Ideal (y=x)
— Fit

36 38 40 42

Actual Temperature (°C)

Figure 22: Calibration
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Table 5: Performance of Prophet Model

Axis Model RMSE MAE R? Details

Axial Prophet 0.115 0.090 0.950 Prophet [multiplicative], cps = 0.2, sp = 10.0, W7
Radial Prophet 0.120 0.095 0.948 Prophet [multiplicative], cps = 0.2, sp = 10.0, W7
Tangential Prophet 0.110 0.088 0.958 Prophet [multiplicative], cps = 0.2, sp = 10.0, W7
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Figure 23: Temperature Forecasting

mean R? of 0.952, suggests minimal influence from extreme
outliers and a stable, well-calibrated model. Errors are small
relative to the +2 m/s* alarm band (=0.10 m/s* = 5% of the
limit), which supports reliable decision-making.

All three models were configured with the same
Prophet setup: multiplicative seasonality, changepoint prior
scale (cps) = 0.2, seasonality prior (sp) = 10.0, and weekly
seasonality (W7)—to balance trend flexibility with strong
capture of recurring patterns.

From an operational standpoint, these accuracies are
sufficient to support remaining useful life estimation based
on forecast trajectories. Because the tangential axis is both
best calibrated and mechanically sensitive to bearing health,
it should be weighted more heavily when computing
threshold-crossing dates; axial and radial channels act as
corroborative signals. A conservative maintenance policy
can then report an RUL window by combining the earliest
crossing times from the forecast mean (and its uncertainty
bounds) across axes, using the minimum as the motor-level
decision point and cross-checking with temperature spikes
(= 35 °C) and FFT fault bands.

Result of Experiment
This section discusses the results based on the experiment
performed.

Time-Series Forecasting Analysis

Researchers trained a Prophet model on 2022-2024 motor
temperature histories, keeping both routine seasonality
(weekly/annual) and event seasonality (holiday shutdown
and post-holiday start-up spikes) as regressors. The 2025
forecast (Figure 23) shows the mean prediction as a teal
line with a shaded uncertainty band and a failure limit at
35 °C (red dotted line). As per the forecasted model, the
baseline operating temperature stays mostly 25-31 °C. The

Abnormal Stage (Bearning Fault) 2025 Predicted

0.2

=== Failure Threshold

Amplitude

Frequency (Hz)

Figure 24: Frequency Predicted

model anticipates a ramp-up in late Feb-Mar 2025, where
the mean forecast crosses 35 °C and peaks around 39-40 °C
in early March. After mid-March, the trajectory decays and
stabilizes below the threshold (35 °C), but the mean remains
at/below the limit. Thus, the primary failure risk window is
late February to mid-March 2025 (Figure 23).

The predictive modeling utilized the Prophet algorithm,
which was trained on multi-year historical datasets
(2022-2024) covering both vibration (FFT) and temperature
signals. The model accounted for seasonality, trend, and
historical failure patterns to predict 2025 abnormal stages.
By integrating temperature and vibration features, the
model enabled early identification of bearing faults. The
methodology assumes that when the Temperature exceeds
35 °C, the vibration response would align with abnormal FFT
peaks crossing the 0.1 threshold, indicating an imminent
bearing failure.

As Figure 24 shows, several irregular peaks concentrated
inthe higher frequency range of 290-350 Hz, with amplitudes
rising upto ~0.20, well above the 0.1 threshold. The predicted
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failure pattern indicates the Bearing Fault stage displays a
raised noise floor and multiple high-frequency peaks that
do not align with simple harmonics of the running Speed or
with typical unbalance/mechanical looseness signatures, as
compared with Figures 17 & 18 of real-time monitored data
of 2022-2024. This predicted irregular behavior is a strong
indicator of bearing degradation, likely due to lubrication
failure or physical damage of rolling elements. This failure
stage has been captured, and immediately necessary
inspection-based activity has been triggered based on
both temperature and vibration (FFT) forecasting (Figures
24 and 25). The Prophet model validates these relationships
by forecasting both variables simultaneously, thereby
enhancing predictive accuracy for Remaining Useful Life
(RUL) estimation and scheduling predictive maintenance
(Figure 24).

Actual vs Forecasting Analysis

Figure 25 illustrates the temperature profile of the test motor
using Prophet modeling, combining actual data (2022-2024)
with forecasted trends (2025). In the proposed methodology,
researchers trained a Prophet model on 2022-2024 motor
temperature data to capture seasonal surges and forecast
2025. The model projects a high-risk window in Feb-Apr
2025 where the mean crosses the 35 °Cfailure line and briefly
peaks near 40 °C before returning to the 28-31 °C baseline.
Failure onset is defined as the first instance where the mean
reaches or exceeds 35 °C, while the upper confidence bound
crossing 35 °C serves as a conservative early trigger, enabling
predictive maintenance scheduling before this exceedance,
ideally during a low-load operational slot. To validate
the risk, vibration evidence is cross-checked, looking for
sustained +2 m/s* threshold crossings and FFT bearing-band
energy above 0.1. After maintenance, success is confirmed if
temperatures return to the 28-31 °C baseline and vibration/
FFT levels fall back below thresholds (Figure 25).

Temperature - Prophet Modeling

45

Confidence Interval CI —— Forecast (2022-2024)

RUL Identification from Forecasting

The RUL (Remaining Useful Life) prediction is based on the
comparison of the predicted behavior of the machine’s
components, i.e., motor vibration, temperature analysis, and
the nominal behavior of the machine components. Sharing
the calculation formula and maintenance scheduling:
\text {RUL}Hearly} = t{early}-t_0

\text {RUL}{late} = t{late} - t_0O

T {prep}=L+D+B

\text{PM}{conservative} = t{early} - T_{prep}

Here,

t_0 = reference date (today or last observation)

t_fearly}, t_late} = earliest and latest expected failure dates
L = lead time (days)

D = Downtime (days)

B = buffer (days)

T{prep} = Total Preparation Time (days)

PM{conservative} = Conservative PM start (to finish before
the earliest failure)

As per the forecasting

Reference day t_0 =today — assume February 01, 2025 (just
for calculation).

Failure window:

t_{early} = Feb 21, 2025

t_{late} = Mar 10, 2025

Lead time L = 45 days (for spares/logistics — typical for
induction motor)

Downtime, D = 8 hours = D = 8/24 = 0.33 days

Buffer, B =8 hours — B = 8/24 = 0.33 days
PreptimeT_prep}=L+D+B=45+0.33 +0.33 =45.66 days
RUL {early} = t{early} - t_0 =Feb 21 — Feb 1 =20 days

RUL {late} = t{late} - t_0 = Mar 10 — Feb 1 = 37 days

So, RUL window = 20 - 36 days

PM start = t_{early} - T_{prep} = Feb 21 — 45.66 days = Jan 7
(by calculating manually)

Actual (2022-2024) —— Forecast (2025)

Failure 35°C

Temperature (°C)

12 #oN
1z220
2z ueg

Figure 25: Temperature Forecasting
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Subtract remaining 0.66 days (~16 hours) — PM start = Jan
6,2025, ~8 AM

Considering the PdM scheduling preparation time of 45
days, maintenance has been planned to trigger on January
07 at 8 AM.

Cost-Benefit Analysis

PdM implementation from identifying RUL of test motor
results operations excellence, such as an increase in
equipment’s uptime, reduction in unplanned Downtime,
and saving on repair cost, which plays a vital role in the
overall cost optimization. Considering historical inspection-
based maintenance, the growing impact of PdM is shared
below with the key metrics before and after implementing
predictive maintenance.

PdM scheduling through RUL and lead-time calculation
before failure has resulted in an increase in Motor Uptime
and a drastic improvement in UPDT reduction, as shared in
Table 6. The test motor has performed 81.2% OEE (Overall
Equipment Efficiency), an increase of around 3% OEE after
implementing predictive maintenance (Table 6).

Proposal for PdAM Scheduling in Hybrid Model

Hybrid Dashboard model for taking PM decisions by
using time-series forecasting & real-time data from Sensor
monitoring in a single platform. The purpose of the hybrid
graphical user interface is to provide insight into device
behavior based on past data and discover patterns that
improve device maintenance by predicting the future state
of the devices. The graphical user interface for the Predictive
Maintenance application is shown below (Figure 26)

Home Ar Live @ History Alerts

PREDICTIVE MAINTENANCE DASHBOARD

' on Y onY on

75% 12% 5%
Normal Condition Low-level Anomalies High-Level Anomalies
Devices (Within Threshold) {Above Threshold)
Real-Time Monitoring =
: A : I A N
MMM Ambunhe, AU s

I AU li-_“ Nk, L’m&"““m‘m‘lu

Acceleration

Table 6: Growing Impact of PdM

During Inspection- After PAM
Metric based Maintenance implementation
(3 Months before PdM)  (post 3 Months)
Motor Uptime (Hours) 150 210
Unplanned Downtime  12.5% 7.5%
(%)
Overall Equipment 78.9% 81.2%
Efficiency (OEE%)
Motor Failure
Maintenance 6 4
Interventions (over 3
years)
Maintenance Cost N/A 21%
Reduction
Energy Consumption 50,000 46,500

(kWh)

The predictive maintenance dashboard provides significant
value by enabling real-time condition monitoring, where
Vibration, FFT, and temperature signals are continuously
tracked to detect anomalies before they escalate into
failures. It is directly connected with Prophet-driven
forecasting, allowing actual and predicted data to be
compared within the dashboard. This integration ensures
that potential failures are anticipated in advance and
that maintenance teams can plan timely interventions.
In addition, the dashboard simplifies fault classification
through clear alarm statuses such as Normal, Pre-alarming,
and Alarming, which reduces the risk of error and accelerates
maintenance decision-making.

Q =
# Edit Dashboard
; Lt
Actual vs Predicted
.......................... “.f‘ -:k sessisssnanmmnssansas LY 2NN
e .-r-n'.'-" M’

Prediction Motor Alarm  — ~

Status

Motor 1 Normal
Motor 2

Motor 3 Normal
Motor 4 Normal

— e

Motor 5 Alarming
Motor 6 Normal

Figure 26: Predictive maintenance dashboard
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Conclusion

This study demonstrated a practical predictive
maintenance (PdM) workflow for induction motors
by fusing condition-monitoring signals: Vibration
(time/FFT) and Temperature, with Prophet-
based time-series forecasting to anticipate
anomalies, estimate Remaining Useful Life (RUL),
and plan interventions. The approach captured
recurrent seasonal behavior and known failure
signatures (e.g., =35 °C thermal excursions and
vibration threshold breaches), then projected
these patterns forward to generate a defensible
failure window and a conservative, parts-aware
maintenance start date. A hybrid PdM dashboard
operationalized the method by juxtaposing
actual and forecasted traces, surfacing axis-
wise vibration energy, and issuing automated
alarm states (Normal — Pre-alarm — Alarm) that
simplify triage and speed decisions for schedulers
and technicians.

Despite a strong fit and clear operational gains, several
constraints remain. First, the labeled dataset (2022-2024)
limits long-horizon generalization and exposure to rare
failure modes. Second, reliance on two sensor streams
(Vibration, Temperature) restricts fault observability; multi-
sensor fusion (e.g., current, acoustic, thermal imaging) would
improve coverage and confidence. Third, while Prophet
excels at trend/seasonality and robustness, it is less adaptive
to abrupt regime shifts; hybrid models (e.g., Prophet-GRU/
LSTM or Prophet + anomaly scores) could better track non-
linear dynamics and evolving wear.

Future work would therefore: (i) expand labeled data
across more motors, environments, and fault types; (ii)
integrate additional modalities and domain features into the
model and dashboard; and (iii) evaluate hybrid architectures
that combine transparent seasonal baselines with deep
sequence learners. These enhancements should lift
accuracy, RUL reliability, and scalability, strengthening PdM’s
impact on uptime, cost, and safety in smart manufacturing.
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