
Abstract
Predictive Maintenance (PdM) has become essential in smart manufacturing for reducing Downtime, improving efficiency, and cutting 
operational costs. The primary aim is to develop an Artificial Intelligence (AI) driven PdM framework for induction motors, leveraging 
IoT-based condition monitoring and time-series forecasting to estimate Remaining Useful Life (RUL) and enable intelligent maintenance 
scheduling. For this purpose, real-time Vibration and temperature data were collected from 2022 to 2024 using MPU-6050 sensors, 
followed by preprocessing, feature extraction, and fault trend analysis. The Prophet algorithm, known for handling seasonality and 
holiday effects, was employed for forecasting failure patterns and RUL estimation. Experimental analysis revealed distinct fault stages: 
unbalance, mechanical looseness, and bearing degradation; captured through Fast Fourier Transform (FFT) and time-domain features. 
Model validation across three axes showed strong performance with Coefficient of Determination (R²) up to 0.958, Root Mean Square 
Error (RMSE) as low as 0.110, and Mean Absolute Error (MAE) of 0.088, enabling accurate prediction of failure windows and proactive 
scheduling. However, limitations include a narrow dataset, reliance on two sensor modalities, and the exclusive use of Prophet, which 
struggles with highly non-linear dynamics. Future work would address these by incorporating hybrid AI models and multi-sensor fusion 
for improved prediction accuracy and scalability in large-scale deployments.
Keywords: Predictive maintenance, Artificial Intelligence (AI), Smart manufacturing, Cost reduction, Remaining Useful Life (RUL), Time-
Series Forecasting.
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Introduction 
Predictive Maintenance (PdM) has emerged as leveraging 
IoT-enabled condition monitoring to identify early indicators 
of spare degradation before failures occur (Soori et al., 
2023). Through conditional monitoring, IoT sensors track 
parameters such as Vibration & temperature data in real 
time, producing large-scale data that reflects machine 
condition (Wen et al., 2022). These data are essential for 
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shifting from reactive or preventive maintenance strategies 
to predictive approaches that minimize unplanned 
Downtime and enhance cost efficiency (Soori et al., 2023). 
In smart factories, sensor-driven monitoring integrates 
seamlessly with AI forecasting frameworks to transform raw 
data into actionable insights (Wen et al., 2022).

Among the forecasting techniques, the Prophet 
algorithm is becoming an increasingly prominent technique 
for remaining useful life (RUL) estimation by providing 
accurate and versatile RUL prediction from time-series 
sensor data (Ucar et al., 2024). It captures temporal patterns, 
seasonal trends, and can also handle missing values, a 
characteristic that makes Prophet a competent solution 
for industrial scenarios where data irregularities are the 
norm (Ucar et al., 2024). A manufacturer then uses this 
prediction to intervene only when degradation indications 
are detected, thus avoiding unnecessary preventive services 
that would otherwise reduce asset lifespan (Shamim & 
Ruddro, 2025). Hence, IoT-enabled monitoring coupled with 
AI-driven forecasting shortens maintenance and downtime 
schedules, fostering industrial operations that are safer, 
more dependable, and cheaper (Shamim & Ruddro, 2025).
Here is Table 1 of industrial average savings achieved from 
Predictive Maintenance (PdM) across different sectors, 
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Table 1: Industrial Average Savings from PdM (Kairo, 2024)

Industry Savings Area Savings

Manufacturing sector in the US Reduction of unplanned Downtime and maintenance costs 15-20%

Rail Sector in the UK Elimination of Annual cost £20 million equivalent 

Automotive sector in Japan (Toyota) Vehicle Uptime improvement and cost reduction 25-30%

Mining Operations in Brazil Increase in equipment availability 15%

Energy sector in South Africa Lowered equipment failure and maintenance costs 12% & 20%

The aerospace sector in the US Increase in module availability 12% 

The healthcare sector in the UK Reduction in medical equipment downtime 22%

The semiconductor industry in Japan Reduction in equipment failure and gain in efficiency 30% & 20%

The Agriculture industry in Brazil Reduction of Downtime and proficiency in improvement 17% & 12%

Figure 1: PdM framework

highlighting cost reductions, equipment availability 
improvements, and eff iciency gains. These results 
demonstrate that PdM offers cross-sector operational gains 
in cost savings, spare availability, and reliability (Table 1).

Predictive Maintenance Implementation 
Predictive maintenance (PdM) has emerged as a 
transformative strategy in modern industries, combining IoT-
enabled monitoring, real-time data analytics, and AI-driven 
forecasting to anticipate equipment failures before they 
occur (Ayeni, 2025). Unlike traditional preventive methods, 
PdM enables targeted interventions based on actual asset 
conditions, thereby minimizing unplanned Downtime, 
reducing maintenance costs, and improving operational 
efficiency (Hossan et al., 2025). By integrating continuous 
data acquisition with advanced decision-support systems 
(Wen et al., 2022).

Figure 1 shows a comprehensive predictive maintenance 
(PdM) framework integrating IoT-enabled data acquisition, 
advanced analytics, and AI-driven decision-making. The 
fundamental process starts with data collection from 
sensors, IoT devices, and machine logs, ensuring continuous 
acquisition of various operational parameters like Vibration, 
Temperature, and pressure (Anny, 2023). Afterward, data 
preparation tools clean, preprocess, and extract the 
features from the data such that the criteria for quality 
are met and noise is removed (Subramanian, 2022). Now, 

from the conditioning data to monitoring situations come 
various algorithms of design: from detecting early signs of 
abnormalities in machine behavior (Dhinakaran et al., 2025).

After this, the fault detection methods specify fault 
types, whereas predictive analysis applies algorithms to 
predict the Remaining Useful Life of the assets. The results 
are input into decision support systems, where maintenance 
schedules are optimized to reduce Downtime and costs. 
Execution and feedback complete the loop by updating 
the model with real-world outcomes, which enhances its 
accuracy with time. The sequence is closely aligned to 
the PdM architectures conceptualized very recently in the 
literature, where IoT, AI, and feedback loops are integrated 
for continuous evolution (Wen et al., 2022) (Figure 1).

Here in Figure 2, the P–F curve illustrates how spares’ 
condition declines over time, moving from a normal state 
to a dangerous state before reaching functional failure 
(Bousdekis et al., 2019). The interval between potential 
failure (P) and functional failure (F) is critical for estimating 
the Remaining Useful Life (RUL), which indicates how long 
the spare can operate before failure occurs (Bousdekis et 
al., 2019). Predictive maintenance focuses on identifying 
the onset of degradation to accurately predict RUL and 
schedule maintenance within the P–F interval (Bousdekis 
et al., 2019). This approach reduces Downtime, avoids costly 
stoppages, and optimizes maintenance planning (Bousdekis 
et al., 2019) (Figure 2).
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Role of AI in PdM
Artificial Intelligence (AI) strengthens predictive maintenance 
(PdM) by merging IoT sensor data, historical failure records, 
and real-time condition monitoring to enable precise fault 
detection and timely interventions (Emma, 2025, and Baroud 
et al., 2025). In manufacturing, PdM frameworks integrate 
three core elements: condition monitoring sensors, IoT 
data acquisition, and predictive algorithms (Pejić Bach et al., 
2023). Condition monitoring captures real-time parameters 
such as Vibration and Temperature, which are processed 
to detect irregularities and predict Remaining Useful Life 
(RUL) (Sekar et al., 2025). IoT systems connect these assets 
to centralized platforms for data storage, preprocessing, 
and analytics, ensuring continuous visibility of equipment 
condition (Sivakumar et al., 2023).

Figure 3 depicts an AI-driven heuristic approach for 
PdM, wherein IoT-enabled data acquisition prepares sensor 
measurements of Vibration and Temperature (Emma, 2025). 
The captured readings form a training dataset for supervised 
or unsupervised modeling (Baloch et al., 2025). In data 
processing, cleaning, normalization, and feature extraction 
improve the signal quality (Ahadov et al., 2024). Early fault 
detection is implemented to detect early degradation 
before failure (Hosseinzadeh et al., 2023). The alarm logic 
and thresholds set the setpoints, triggering an alert 
whenever limits are breached (Pejić Bach et al., 2023). Real-
time condition monitoring would continue to examine the 
health of spares in view of these thresholds (Subramanian, 
2022). Equipment forecasting is carried out by applying the 
Prophet time-series model on historical trends (Syed et al., 
2025). The forecast then assists in Remaining Useful Life 
(RUL) estimation, through which preemptive interventions 
could be carried out (Emma, 2025). Lastly, maintenance 
scheduling is implemented to align PdM actions with the 
production plan so as to minimize Downtime and initiate 
resource optimization (Pejić Bach et al., 2023) (Figure 3).

Enhancing Predictive Maintenance with the Prophet 
algorithm
The Prophet algorithm provides distinct advantages 
for time-series datasets that exhibit seasonal patterns, 
holidays, and other recurring effects (Anand et al., 2024, 
and Chitwadgi, 2024). Unlike traditional models, Prophet is 
designed with flexible components that can adapt to the 
inherent complexities of real-world data, thereby improving 
both interpretability and forecasting accuracy (KC & Rone, 
2024). The mathematical formulation of Prophet can be 
expressed as:

Adaptive seasonality
Models complex seasonal patterns using Fourier series, 
capable of capturing variations across different frequencies 
and magnitudes.

Holiday effects
Prophet effectively incorporates holidays and dedicated 
events, which are often overlooked in conventional 
forecasting methods (Manandhar et al., 2024).

Robust anomaly detection
Prophet robustly manages outliers and missing values with 
resilience, minimizing their negative impact on predictions.

Ease of implementation and adjustability
Provides user-friendly hyperparameter tuning, making the 
model highly adaptable across diverse datasets (Belim et 
al., 2024).

This research aims to develop an AI-driven predictive 
maintenance (PdM) framework for induction motors in 
smart manufacturing by integrating IoT-based condition 
monitoring with the Prophet time-series forecasting 
algorithm to predict failures and estimate Remaining Useful 
Life (RUL). The scope includes analyzing vibration and 
temperature data to capture degradation patterns, seasonal 
variations, and early fault indicators, as well as implementing 
forecasting-based maintenance scheduling. It also covers 
sensor-based data acquisition, feature extraction, Prophet 
model training, and the development of a hybrid dashboard 
for real-time decision-making.

Figure 2: P-F Curve

Figure 3: Framework of AI-driven PdM
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The novelty of this work lies in modeling both seasonal 
and event-based operational patterns, such as holiday 
shutdowns and post-holiday ramp-up effects, within the 
PdM framework using the Prophet algorithm, an aspect 
often overlooked in existing studies. Additionally, the 
study introduces a hybrid dashboard that integrates real-
time sensor monitoring with predictive insights for RUL-
based scheduling, while incorporating lead-time-aware 
maintenance planning for practical industrial deployment.

This research contributes by proposing a structured 
AI-based PdM framework that combines IoT-driven condition 
monitoring with advanced time-series forecasting for 
accurate RUL prediction. It enhances predictive maintenance 
by incorporating seasonal and operational trends into 
forecasting, introduces a hybrid dashboard for visualization 
and decision support, and establishes a scheduling approach 
that accounts for lead time and buffer requirements. These 
contributions collectively offer a practical and scalable 
solution for improving reliability, reducing Downtime, and 
optimizing cost in smart manufacturing environments.

The latest research in predictive maintenance (PdM) 
emphasizes advanced AI frameworks that integrate domain 
knowledge, data, and models to enhance decision-making 
in manufacturing (Lee & Su, 2025). These frameworks 
leverage benchmark datasets from PHM competitions to 
validate PdM techniques, thereby promoting standardized 
performance evaluations (Lee & Su, 2025). However, recent 
studies reveal gaps, including inadequate classification 
of supervised machine learning methods and limited 
comparative analysis between synthetic and real-world 
datasets (Guidotti et al., 2025). Further improvements have 
been achieved through AI-integrated PdM frameworks 
combining IoT and machine learning models. These systems 
demonstrated up to 92% accuracy in failure prediction and 
reduced Downtime by 35%, though limitations persist in 
terms of hybrid AI architectures and broader IoT coverage 
(Abdulrazzq et al., 2024). While integration with ERP 
systems has enhanced equipment effectiveness, scalability, 
interpretability, and computational complexity remain key 
challenges (Abdulrazzq et al., 2024).

Practical implementations underscore the tangible 
benefits of PdM across global industries. For instance, the 
UK rail industry realized £20 million annual savings and a 
10% improvement in train reliability, while Toyota in Japan 
reduced maintenance costs by 25% and increased vehicle 
uptime by 30% (Kairo, 2024). Similarly, Brazil’s mining sector 
improved equipment availability by 15% and lowered 
maintenance expenditure by 10%, and South Africa’s 
energy sector experienced a 12% reduction in equipment 
failures alongside 20% lower maintenance costs (Kairo, 
2024). The rise of Industry 4.0 has been a major driver 
of this transformation, shifting maintenance strategies 
toward data-driven, intelligent PdM solutions (Soori et al., 
2023). IoT technologies play a central role by continuously 

monitoring parameters such as pressure, Sound, Vibration, 
and Temperature in industrial systems (Soori et al., 2023).

Nevertheless, full integration remains hampered 
by challenges like device interoperability, high energy 
consumption, and data security risks (Soori et al., 2023). 
Many PdM systems function primarily as alert mechanisms 
rather than enabling comprehensive predictive scheduling, 
leaving a gap between real-time monitoring and actionable 
maintenance strategies (Zonta et al., 2020). Earlier research 
laid the foundation for these advancements. Zonta et 
al. (2020) highlighted the capability of PdM to reduce 
unplanned Downtime and optimize manufacturing 
schedules through AI-based forecasting models and real-
time sensor data. Despite these strengths, they observed 
that most PdM applications failed to bridge the gap between 
condition monitoring and strategic maintenance planning 
(Zonta et al., 2020). At the same time, foundational studies 
stressed unresolved issues in PdM implementation. 

Research Gap
This section shows the research gaps based on the previous 
studies.
•	 Today’s PdM solutions rarely integrate efficiently 

bet ween condition monitoring and ongoing 
maintenance scheduling, limiting their capacity for 
optimizing operational Downtime and allocation of 
resources. Even though these solutions are very good 
at identifying anomalies within real-time situations, they 
do not convert these observations into viable longer-
term maintenance strategies capable of averting future 
failure. This lags considerably behind the industry’s 
capacity for minimizing unexpected shutdown and 
general operational efficiency (Zonta et al., 2020). 

•	 In addition, the Prophet algorithm, which has been 
promising for time-series forecasting applications 
within a variety of fields, remains underdeveloped 
for cost-oriented PdM applications within smart 
manufacturing facilities. Even though Prophet proved 
capable of dealing with seasonal trends within irregular 
data, there has been insufficient development of 
integrating it into cost-saving strategies for the purpose 
of maximizing uptime and system reliability (Lee & Su, 
2025). 

•	 In addition, the field lacks adequate comparative studies 
of PdM performance within synthetic and real-world 
databases. This imbalance is a significant difficulty since 
synthetic databases, although controlled, do not reflect 
the complexity and noise within real-world applications. 
This hinders the possibility of extrapolating the results 
of such databases to the real situation within industries, 
where unpredictability and irregularities within the 
data are the order of the day. As such, the scalability 
and robustness of many PdM models suffer in such 
applications within the industries whenever they 
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consider the large scale on which the industries operate. 
•	 In addition, these PdM solutions incorporating the use 

of AI suffer from computational bottlenecks whenever 
they deal with the issue of high volumes of data and 
the reality of required real-time computations within 
enormous distributed applications. These limitations 
make it difficult for such solutions to be practically 
implemented within industries whose applications 
are heavy and call for fast decision-making (Guidotti 
et al., 2025).

Research Questions based on this research:
•	 H o w  d o e s  t h e  s a m p l i n g  r a t e  o f  r e a l ‑ t i m e 

condition‑monitoring data (e.g. ,  Vibration + 
Temperature) influence the predictive accuracy of PdM 
forecasting models?

•	 How accurately can a Prophet‑based forecasting model 
predict critical condition‑monitoring parameters (e.g., 
vibration, temperature) in real time compared with 
traditional PdM models such as ARIMA and LSTM?

•	 What percentage reduction in unplanned Downtime and 
total maintenance cost can be achieved when real‑time 
condition monitoring is combined with Prophet‑driven 
forecasts versus a reactive or calendar‑based 
maintenance strategy?

•	 Can a hybrid framework (dashboard), combining 
Prophet forecasts with anomaly-detection score, 
improve interpretability and decision confidence for 
maintenance schedulers?

Materials and Methods
The research is based on the implementation of predictive 
maintenance using sensor-based condition monitoring for 
early failure detection of motor vibration and Temperature. 
As part of this review, raw data collected from sensor 
hardware were analyzed, the datasets were evaluated, and 

the primary data were trained using an AI model to predict 
future failures.

Experiment Description  
The motor’s real-time Vibration and temperature failure 
simulation experiment was conducted using an Enerzyz 
Vibro-Temperature wired sensor (Model: MPU-6050), which 
was deployed for continuous condition monitoring of a 
0.75 KW, 50 Hz, 1440 RPM induction motor throughout 
the 2024 operational period. The sensor, comprising a 
3-axis accelerometer, gyroscope, and internal temperature 
sensor, was rigidly mounted to the motor housing using 
vibration-damping adhesive to ensure stable signal 
acquisition and minimize noise from extraneous sources. 
The wired configuration ensured stable signal transmission 
and reduced wireless interference during prolonged data 
acquisition. Figure 4 below explains the process of securely 
mounting the MPU-6050 sensor to the motor housing using 
vibration-damping adhesives to maintain contact stability 
and minimize extraneous noise (Figure 4). 

Table 2 shows the concise summary that connects the 
Enerzyz Vibro-temperature wired sensor data acquisition 
process with its technical features, as per the provided 
details (Table 2):

A digital low-pass filter with a 94 Hz cutoff was applied 
to the vibration channels to suppress high-frequency 
noise and electrical interference. From the filtered signals, 
time-domain features including RMS acceleration, peak 
amplitude, kurtosis, and crest factor were computed over 
fixed 1-second analysis windows. Frequency-domain 
analysis using FFT was performed periodically to detect 
dominant fault frequencies.

Data collection spanned multiple seasonal and 
operational variations, enabling the capture of long-term 
degradation trends as well as short-term transient anomalies. 
This temporal resolution made it possible to observe both 

Table 2: Enerzyz Vibro-temperature wired sensor data acquisition process parameters

Category Specification/Process

Product (Model) MPU-6050 (3-axis accelerometer + gyroscope + internal temperature sensor)

Mounting Method Fixed to the motor housing with vibration-damping adhesive for stable measurement

Power Supply 3.3 V regulated

Communication I²C interface at 400 kHz for reliable, low-latency data transfer

Accelerometer Range ±8 g for capturing a wide range of vibration amplitudes

Gyroscope Range ±1000 °/s rotational speed and movement tracking

Sampling Frequency 200 Hz for vibration data; 1 Hz for temperature monitoring

Signal Filtering Digital low-pass filter, 94 Hz cutoff to remove high-frequency

Time-Domain Features Extraction of RMS, peak amplitude, kurtosis, crest factor for condition monitoring

Frequency-Domain Analysis Fast Fourier Transform (FFT) to specify fault-specific frequency components

Baseline Reference Healthy (Normal Phase) operational data used for threshold calibration and fault comparison
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Experimental Analysis (Primary Data)
This research experiment explains two phases of motor’s 
condition: normal and failure stage from sensor-based 
condition monitoring results. 
•	 Induction Motor operated under normal conditions 

(real-time monitored data without fault indication): 
Table 3 includes temperature signals from condition 
monitoring of the year 2022. 

Table 3 shows the real-time monitored parameters of the 
induction motor, which include Temperature, Vibration, 
Speed, and Sound of the motor. Table 3 depicts the real-
time monitored data when a motor is operating under 
normal conditions, without any fault, and typically includes 
a range of parameters and metrics that indicate the health 
and performance of the motor. For example, in Table 3, 
the average Temperature is noted as 30.22558°C, Sound 
is noted as 71.523 dB, Vibration (acceleration) is observed 
between +-2 m/s2 and Speed is indicated as 1470 RPM, all 
these data were below the test set conditions (Temperature 
<35°C, Sound <75dB, Vibration with +-2 m/s2 and Speed 
<1500 RPM). From these values, it is validated that the 
motor is operating without any fault. These data are crucial 
for ensuring smooth operation and early detection of any 
potential issues. From the analyzed data, motor failure can 
be predicted based on the trained dataset. If any of the 
four parameters fail to achieve the normal value, the motor 
is considered to be in a fault stage; otherwise, it operates 
under normal conditions (Table 3).

Induction Motor under faulty condition (real-time 
monitored data with failure indication): Table 4 includes 
only temperature signals above threshold (> 35 °C) from 
condition monitoring of August 2022.  

Table 4 depicts the real-time monitored data of the fault 
motor. Real-time monitored data of a faulted motor provides 
crucial insights into the abnormal conditions (mechanical 
looseness, bearing fault, misbalancing) and issues affecting 
its operation. From the above data, the motor failure can be 
predicted according to the trained dataset. For example, in 
Table 4, Temperature is noted as average 39.3889°C, Sound 
is noted as 76.6982 dB, Vibration is observed above ± 2.164 
m/s2, and Speed is indicated as 1456 RPM, all of which 
exceeded the test set conditions (Temperature >35°C, Sound 
>75dB, Vibration >+-2 m/s2, and RPM<1500). From these 
values, it is observed that the motor is operating without 
any abnormalities such as mechanical looseness or bearing 
fault. These data are crucial for identifying early detection of 
any potential failure. From the analyzed data, motor failure 
can be predicted according to the trained dataset, and faults 
can be rectified based on inspection. Since most of the four 
parameters fail to achieve the normal threshold, the motor 
is considered to be in a fault stage; otherwise, it operates 
under normal conditions (Table 4).

Figure 4: Motor simulation

Figure 5: Predictive maintenance framework

cyclical patterns (e.g., seasonal load changes) and second-
level variations in machine behavior. The acquired datasets 
were logged in the acquisition unit’s internal memory and 
periodically exported in CSV format for offline processing. 
Each CSV file contained timestamped records of:
•	 Axial, radial, and tangential acceleration values (m/s²),
•	 Gyroscope angular velocity readings (°/s)
•	 Corresponding temperature measurements (°C).
This standardized CSV structure facilitated seamless 
integration with statistical analysis tools (MATLAB, Python) 
for both real-time monitoring and historical trend analysis, 
ensuring reproducibility and scalability of the predictive 
maintenance framework.

Methodology
The study focuses on implementing a Smart Predictive 
maintenance framework for an Induction motor in a 
Manufacturing unit. This combines three stages as shared 
below in Figure 5: initially, real-time condition monitoring 
of the test motor via a 6-axis motion tracking wired sensor 
network, identifying RUL (Remaining Useful Life) and 
determining threshold crossing point using the Prophet 
algorithm model developed by Facebook (meta), and finally 
scheduling PdM based on forecasting results (Figure 5). 
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Table 3: Real-time monitoring Parameters

Temperature 
©

Vibration 
(m/s2)

Sound 
(dB) Motor RPM Motor’s 

Condition

28.241

27.421

33.297

28.246

30.078

27.865

29.877

31.708

32.564

34.344

29.796

30.078

30.276

30.304

29.959

29.102

27.999

31.697

29.981

31.662

0.139

-0.106

0.048

-0.086

-0.086

0.042

-0.194

0.166

-0.182

0.061

-0.177

0.152

-0.165

0.072

-0.130

0.090

-0.120

0.049

-0.077

-0.077

71.320

71.240

71.830

71.320

71.510

71.290

71.490

71.670

71.760

71.930

71.480

71.510

71.530

71.530

71.500

71.410

71.300

71.670

71.500

71.670

1471.350

1471.520

1470.340

1471.350

1470.980

1471.430

1471.020

1470.660

1470.490

1470.130

1471.040

1470.980

1470.940

1470.940

1471.010

1471.180

1471.400

1470.660

1471.000

1470.670

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Figure 6: Normal Phase Acceleration

approach the ±2.0 m/s² lines (Figure 6). According to the 
planned-based inspection, the acceleration signal between 
the threshold band means the motor is actuating at its 
regular condition without any mechanical abnormality such 
as looseness, misalignment, or bearing distress (Figure 6). 

Abnormal Stage
To better compare acceleration values across different 
time spans, an abnormal moment throughout the total 
duration was uniformly selected (shown in Figure 7). An 
alarm band of ±2.0 m/s² was applied to the time-domain 
vibration signal. In the failure window (~0.1–1.9 sec), the 
tangential (Y) acceleration repeatedly crosses this band and 
remains outside it for extended periods. Here, the spikes 
reached roughly +4.0 m/s² and −4.5 m/s², giving a much 
larger peak-to-peak (~4–4.5 m/s²) and visibly higher overall 
energy (RMS). This pattern is impulsive (many sharp bursts), 
which is typical of developing mechanical problems such as 
looseness, misalignment, or bearing distress. The increase 
in spikes is due to the gradual loss of lubrication, leading 
to a reduction of oil film thickness and increased wear 
between the rolling elements of the motor. Therefore, the 
acceleration band above threshold means the motor is no 
longer vibrating within acceptable limits and is at high risk 
of unplanned stoppage unless inspected and repaired (e.g., 
alignment check, relubrication, or bearing replacement) 
(Figure 7).

Similarly, the acquired time-domain signals were then 
converted into the frequency domain using the Fast Fourier 
Transform (FFT), enabling a detailed evaluation of vibration 
characteristics across four distinct fault stages: Normal, 
Unbalancing, Mechanical Looseness, and Bearing Fault as 
shown in Figure: 8. The FFT plots provide insights into both 
the amplitude (Y-axis) and the frequency (X-axis) of vibration 
peaks, which are critical indicators for diagnosing fault 
type and severity. The severity and type of each fault can 
be evaluated by analyzing both the amplitude of vibration 
peaks and their position on the frequency spectrum. 
According to the Normal Stage of Figure 8, the vibration 
spectrum shows evenly distributed low-amplitude peaks, 
all remaining below the 0.1 threshold line. The absence of 
dominant peaks indicates stable operation without any 

Vibration Data Analysis 
The vibration data of the test motor was collected in real 
time during 2022-2024 condition monitoring experiments. 
Accelerometers were mounted on the motor to capture 
vibration signals under different operating conditions. This 
data was analyzed to investigate the signal characteristics 
of motor failure in 4 stages. To evaluate the fault signatures 
from acceleration (m/s2), vibration signals from each axis 
were compared to a ±2.0 m/s² threshold derived from both 
normal and abnormal stages graphs (Figures 6 and 7). 

Normal stage 
The Y-axis signal remains compact and sub-threshold: 
most samples lie within ±1.0 m/s²; only rare, short spikes 
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Table 4: Monitoring parameters of Fault Motor

Temperature 
© 

Vibration 
(m/s2) 

Sound 
(dB) Motor RPM Motor’s 

condition 

39.090 0.351 75.270 1453.640 Abnormal 

35.414 -0.321 72.330 1468.350 Abnormal 

35.718 0.272 72.570 1467.130 Abnormal 

37.160 -0.292 73.730 1461.360 Abnormal 

39.146 0.317 75.320 1453.420 Abnormal 

38.568 -0.306 74.850 1455.730 Abnormal 

38.993 0.322 75.190 1454.030 Abnormal 

37.123 -0.263 73.700 1461.510 Abnormal 

37.550 0.286 74.040 1459.800 Abnormal 

38.545 -0.369 74.840 1455.820 Abnormal 

38.404 0.234 74.720 1456.380 Abnormal 

39.240 0.378 75.390 1453.040 Abnormal 

39.546 -0.281 75.640 1451.820 Abnormal 

38.720 0.292 74.980 1455.120 Abnormal 

39.599 -0.253 75.680 1451.610 Abnormal 

38.810 -0.236 75.050 1454.760 Abnormal 

39.080 0.235 75.260 1453.680 Abnormal 

38.758 -0.384 75.010 1454.970 Abnormal 

39.105 -0.236 75.280 1453.580 Abnormal 

38.885 0.249 75.110 1454.460 Abnormal

Figure 7: Failure Phase Acceleration

mechanical abnormalities. By monitoring the condition of 
an ideal motor, comparisons can be made between motors 
under fault conditions and that of a perfect motor (Figure 8).

•	 Unbalancing 
Based on the data presented in Figure 8, several peaks 
appear to be present at the Unbalancing (b) stage. The most 
notable peak is at 90 Hz, and other dominant peaks at ~70 
Hz and ~90 Hz, with the amplitude up to 0.17. Compared to 
the 20-30 Hz peak seen in Normal Stage (a), which displays 
the motor operating under normal conditions, the 60-70 Hz 
peak of Unbalancing stage (b) shows a substantial increase in 

amplitude. Additionally, the overall noise in the Unbalancing 
(b) phase appears to have changed. The conditions are 
characterized by sharp, distinct peaks at the fundamental 
running frequency (1× RPM) and sometimes its harmonics 
(2). To summarize, in the FFT spectrum, two strong peaks 
exceed the 0.1 threshold, confirming the presence of rotor 
unbalance.

•	 Mechanical looseness
The FFT spectrum at the Mechanical Looseness stage (c) 
shows (as per Figure 8) multiple dominant peaks across the 
frequency range of 110–140 Hz. Several peaks rise above 
the 0.1 amplitude threshold, with the most notable ones 
reaching values between ~0.15 and 0.18. Compared to the 
Normal Stage (a), where vibration peaks remain below 0.07 
and evenly distributed within the 20–30 Hz region, the 
Mechanical Looseness stage clearly demonstrates a broader 
and more irregular frequency response between 90 and 150 
Hz. The presence of harmonics and sidebands at multiples of 
the fundamental frequency further supports the looseness 
condition. These peaks are not isolated but spread across 
higher frequencies, which reflects unstable contact points or 
loosened components in the motor structure. To summarize, 
the FFT spectrum for Mechanical Looseness is characterized 
by multiple harmonics, broad frequency energy distribution, 
and amplitudes exceeding the 0.1 threshold, confirming the 
presence of looseness-related vibration behavior.

•	 Bearing fault
As shown in Figure 8, the Bearing Fault stage (d) demonstrates 
a distinct vibration pattern compared to the Normal Stage 
(a). The FFT spectrum shows several irregular peaks 
concentrated in the higher frequency range of 180–200 Hz, 
with amplitudes rising to ~0.20, well above the 0.1 threshold. 
Unlike the Normal Stage, where peaks remain below 0.07 
and evenly distributed, the Bearing Fault stage displays a 
raised noise floor and multiple high-frequency peaks that 
do not align with simple harmonics of the running Speed 
or with typical unbalance/mechanical looseness signatures. 
This irregular spectral behavior is a strong indicator of 
bearing degradation, likely due to lubrication failure or 
physical damage of rolling elements. When compared to the 
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(a) Normal (b) Unbalancing

(c) Mechanical Looseness (d) Bearing Fault

Figure 8: Distinct Fault Stages

Figure 9: Half-year view (2024-06-01 → 2024-12-31)

spectrum recorded under healthy conditions (Normal Stage), 
it becomes evident that the motor’s vibration response has 
undergone substantial change and is no longer stable. Such 
results suggest two possibilities: either there are inaccuracies 
in the recorded data, or the bearing has already advanced 
to a severe fault stage (stage four of failure). In summary, 
the Bearing Fault stage is characterized by high-frequency 
resonance, irregular peak distribution, elevated amplitude, 
and a raised noise floor, all of which confirm significant 
bearing deterioration.

Real-time Temperature Analysis 
Insufficient lubrication induces additional friction and wear 
within motor bearings. Since frictional heating is a primary 
contributor to surface temperature rise, temperature 
monitoring becomes a critical diagnostic tool for identifying 
incipient bearing faults. Figure 9 illustrates the half-yearly 
thermal profile of the test motor, where surface temperature 
was continuously tracked against a control limit of 35 
°C, established from prior failure events exceeding this 
threshold.

Between June and July, the motor operated within a 
relatively stable thermal band of 28–38 °C, with a low drift 
rate (≈0–0.1 °C/day). A pronounced thermal excursion 
occurred in mid-August, when the Temperature escalated 
sharply to ~44 °C, classified as a failure event before 
returning to baseline following corrective intervention. This 
sharp rise highlights the cumulative effect of progressive 
lubrication loss: as oil film integrity deteriorates, tribological 
interactions and bearing surface degradation intensify, 
resulting in a sudden surge in heat generation. The system 
then stabilized back to 27–30 °C for the remainder of the 
monitoring period (Figure 9).

To better resolve the pre-failure dynamics, a two-week 
window preceding the August excursion was analyzed 
(Figure 10). During this interval, motor surface temperature 
increased monotonically from ~28 °C to ~36–37 °C, 
crossing the 35 °C threshold around August 12–13. This 
gradual escalation reflects the early phase of lubrication 
degradation, where partial oil loss is insufficient to cause 
catastrophic friction but induces measurable incremental 
heating (Figure 10).
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Figure 10: Two-week escalation window (2024-08-01 → 2024-08-15)

Figure 11: RUL-based Prophet Model Framework

As per Figure 10, the observed slope of ~0.6–0.8 °C/day 
is significantly higher than the baseline drift, triggering 
the “rate-of-rise” rule embedded in the anomaly detector. 
This localized trend provides an actionable early-warning 
window before the full thermal excursion occurs. Identifying 
such slope-based deviations is therefore crucial for 
predictive maintenance, as it enables timely intervention 
before the motor experiences severe bearing failure.

Prophet Model Training (time-series forecasting with 
primary data)
From the primary data of condition monitoring, the cleaned 
and structured data were fed to train and test the Prophet 
AI algorithm model, developed by Meta (Facebook), to 
forecast future vibration patterns. Prophet was chosen due 
to its robustness in handling seasonal trends, noise, and 
missing data. The model was trained with selected datasets 
that reflected time-series patterns like those expected in 
industrial motor operations (e.g., temperature or vibration 
data from motors operating under cyclic loads).

The first step is to specify what needs to be predicted 
clearly. Here, daily temperature and vibration signals from 
the motors are selected as the input features. A failure 
threshold of 35 °C is defined, since prior breakdown 
events occurred above this point. The planning horizon 
(how far into the future to forecast) is also fixed to enable 
meaningful Remaining Useful Life (RUL) estimation. The raw 
sensor signals are ingested and synchronized. Tiny gaps in 

the time series are filled through interpolation, ensuring 
continuity of the dataset. Additionally, the dataset is split 
into training and validation sets, enabling robust testing 
of the forecasting model. Proper preprocessing minimizes 
noise, avoids misleading trends, and ensures comparability 
across different motors, as a prerequisite of data processing 
(shared in phase-1 of Figure 11)

Seasonality Analysis
This section shows the identification and analysis of 
recurring seasonal patterns in sensor data over different 
time intervals. It highlights how seasonal trends influence 
motor performance and impact predictive maintenance 
modeling.

Temperature seasonality analysis
Temperature data often shows seasonal variation: daily, 
weekly, or monthly cycles that must be modeled explicitly. 
Additive or multiplicative seasonality is configured 
depending on the underlying trend. In the case of the three 
motors (M1, M2, M3) shown in the graphs, a consistent 
seasonal pattern emerges. 

Here in 2022, all motors stayed mostly around 28–31 
°C, with a sharp rise in Feb–Apr reaching 39–41 °C before 
dropping back to its regular trend. There are also a few 
small bumps that appeared mid-year but stayed below 
35 °C (Figures 12, 13, 14). In 2023, similar baselines were 
observed (29–32 °C). The main spikes came in May–June, 
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Figure 12: Motor 1
 

Figure 13: Motor 2

Figure 14: Motor 3

again peaking at 39–41 °C, then settling around 30–31 °C for 
the rest of the year with only minor ripples. Therefore, a clear 
peak in Feb–Mar rose above the threshold up to 40–41 °C, 
then temperatures quickly leveled off to 29–33 °C, staying 
steady with mild fluctuations (shown as Figures 12, 13, 14). 

•	 Holiday trend
Across all three motors (M1–M3), Temperature is essentially 
flat at baseline (≈0–1 °C) during declared planned holidays, 
with no excursions toward the 35 °C failure limit. This 
indicates motors are powered down and thermally stable (no 
load, no frictional heating) and provides clean, low-variance 
segments in the series, as shown in Figure 15 (Figure 15).

•	 Post-Holiday Ramp-Up Trend
The operational challenges have been observed with the 
cold start-up activities of machine ramp-up, immediately 
after each holiday. It has been seen that temperatures 

show short ramp-up overshoots before settling. As shown 
in Figure 16, a pronounced spike was observed in mid-
April 2022 in 3 test motors (M1, M2, M3), where the highest 
temperature spike was shown by M3 ≈40–41 °C, briefly 
above the 35 °C threshold (near-failure event), followed 
by decay to ~27–29 °C. Another spike within the threshold 
~31–32 °C in May-Jun 2023 was observed for a few weeks, 
then the trend gradually normalized (Figure 16).

Figure 16 also shows another spike of Temperature 
close to the threshold to ~33–34 °C (M2 highest) in Feb-Mar 
2024, which clearly stressed and then returned to ~27–29 
°C. These repeatable overshoots are consistent with warm 
restarts (relubrication, alignment, or cooling lag) and 
are important early-warning patterns. The post-holiday 
regressor permits brief, repeatable uplifts that influence 
the Prophet algorithm model to anticipate ramp-up spikes 
soon after shutdowns.



4845	 Smart Manufacturing in Bangladesh 

Figure 15: Holiday trend

Figure 16: Post-Holiday Trend

Vibration Seasonality Analysis
The seasonality effect of real-time monitored vibration data 
of the test motor has been captured through the sensor and 
plotted in the FFT band to compare the normal (Figure 17) 
and failure stages (Figure 18) due to mechanical looseness, 
misalignment, or bearing-related faults. The seasonal 
impacts are captured for three consecutive years (2022-
2024) to understand the failure patterns, which eventually 
would be trained in the Prophet model. As shown in Figure 
17, the Normal Stage spectrum displayed evenly distributed 
low-amplitude peaks, all remaining below the 0.1 threshold 
line, indicating stable motor operation without mechanical 
irregularities. In contrast, the Abnormal Stage (bearing 
fault) revealed several irregular peaks concentrated around 
300–350 Hz, with amplitudes reaching nearly 0.18. This 
significant rise above the threshold, along with an elevated 
noise floor, signaled the onset of bearing degradation and 
highlighted early-stage fault progression compared to the 
stable normal condition.

In 2023, the Normal Stage again showed harmonically 
consistent, low-amplitude peaks well under the 0.1 
threshold, confirming stable baseline performance. 
However, the Abnormal Stage spectrum shifted towards 
higher frequency bands between 350–500 Hz, where 
multiple sharp peaks crossed amplitudes of 0.15 and 
above. These irregular and scattered responses deviated 
strongly from the uniform pattern of the normal condition, 
indicating worsening bearing deterioration, likely due to 

surface defects or lubrication breakdown within the rolling 
elements.

By 2024, the Normal Stage continued to present 
evenly distributed, sub-threshold peaks consistent with 
healthy operation. In comparison, the Abnormal Stage 
demonstrated multiple dominant spikes between 400–550 
Hz, several of which exceeded the 0.1 amplitude threshold, 
with some nearing 0.18. The raised noise floor, irregular 
peak distribution, and repeated high-frequency resonance 
confirmed the persistence and progression of severe bearing 
faults. This year’s abnormal spectrum, when contrasted with 
the stable normal condition, clearly illustrates the motor’s 
advancement towards a critical failure stage (Figure 17 & 18).

Forecasting Analysis (Prophet Model)
The Figures 19-21 show time (X-axis) against acceleration 
(Y-axis, m/s²) with alarm limits at ±2 m/s². Using the abnormal 
segments from 2022–2024, a Prophet model was fit to the 
axial, radial, and tangential series and then used to forecast 
Jan–Jun 2025 (as shown in Figures, 19,20,21)

Across all three axes, the red 2025 traces exhibit higher 
variance and more frequent excursions beyond ±2 m/s² than 
the earlier baseline, indicating persistence and progression 
of the bearing fault. The axial forecast shows intermittent 
bursts that approach and intermittently breach the ±2 
limits; the radial forecast displays a slight negative bias with 
periodic positive spikes, producing repeated crossings of 
the lower threshold and occasional upper-band touches; 
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(a) Mechanical looseness (b) Misalignment

(c) Bearing 

Figure 17: Normal stage

(a) Mechanical looseness (b) Misalignment

(c) Bearing-related faults

Figure 18: Failure stages
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Figure 19: Axial 
 

Figure 20: Radial

Figure 21: Tangential

Figure 22: Calibration

the tangential estimates are the most energetic, with 
dense clusters of threshold exceedances on both sides, 
consistent with bearing defect modulation. In the workflow, 
any sustained variance increase plus recurrent threshold 
crossings (especially when two axes concur within the same 
window) is flagged as an abnormal operating episode, 
which is then correlated with the temperature model (≥35 
°C spikes) and the FFT spectrum to schedule inspection and 
PdM actions.

Model Performance Validation
To ensure the reliability of forecasts, it is crucial to evaluate 
how accurately the Prophet model captures historical 
patterns and predicts future values. By identifying the 
accuracy of Prophet through error metrics and validation 
techniques, the methodology establishes a solid foundation 
for interpreting the results with confidence. In Figure 22, 
the calibration plot provides a validation of the Prophet 
model by comparing predicted temperature values (Y-axis) 
against the corresponding actual measured temperatures 
(X-axis). The scatter of blue points demonstrates individual 
prediction–observation pairs across the full range of 
operating conditions, from ~26 °C to ~42 °C.The red dashed 
line (y=x) denotes the ideal calibration line, where predictions 
would perfectly match observations. The green regression 
fit line, derived from the model’s outputs, lies closely along 
this reference line, confirming that the Prophet model’s 
predictions are highly consistent with the measured data 
(Figure 22).

The performance of the Prophet model was evaluated 
across the three vibration axes: Axial, Radial, and Tangential 
using standard error metrics. As shown in Table 5, Root 
Mean Square Error (RMSE) and Mean Absolute Error (MAE) 
measure the typical deviation between predicted and actual 
values. At the same time, the coefficient of determination 
(R²) indicates how well the model explains observed data. 
To assess the robustness of forecasts across vibration axes, 
performance was evaluated using RMSE, MAE, and R² 
metrics. Results are summarized in Table 5 (Table 5). 

Here, an R² value of 0.952 indicates that 95.2% of the 
variability in actual temperature values is explained by the 
model’s predictions, leaving only 4.8% attributed to random 
noise or unmodeled dynamics. The tight clustering of points 
around the reference line also shows that error margins 
remain very low across the entire temperature span. The 
Tangential axis achieved the best overall accuracy with 
the lowest RMSE (0.110) and MAE (0.088), and the highest 
R² (0.958); the Axial axis performed very well (RMSE 0.115, 
MAE 0.090, R² 0.950); and the Radial axis showed slightly 
higher variability (RMSE 0.120, MAE 0.095, R² 0.948) while 
still retaining excellent explanatory power. The narrow gap 
between RMSE and MAE across all axes, together with the 
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Table 5: Performance of Prophet Model

Axis Model RMSE MAE R2 Details

Axial Prophet 0.115 0.090 0.950 Prophet [multiplicative], cps = 0.2, sp = 10.0, W7

Radial Prophet 0.120 0.095 0.948 Prophet [multiplicative], cps = 0.2, sp = 10.0, W7

Tangential Prophet 0.110 0.088 0.958 Prophet [multiplicative], cps = 0.2, sp = 10.0, W7

Figure 23: Temperature Forecasting

Figure 24: Frequency Predicted

mean R² of 0.952, suggests minimal influence from extreme 
outliers and a stable, well-calibrated model. Errors are small 
relative to the ±2 m/s² alarm band (≈0.10 m/s² ≈ 5% of the 
limit), which supports reliable decision-making.

All three models were configured with the same 
Prophet setup: multiplicative seasonality, changepoint prior 
scale (cps) = 0.2, seasonality prior (sp) = 10.0, and weekly 
seasonality (W7)—to balance trend flexibility with strong 
capture of recurring patterns.

From an operational standpoint, these accuracies are 
sufficient to support remaining useful life estimation based 
on forecast trajectories. Because the tangential axis is both 
best calibrated and mechanically sensitive to bearing health, 
it should be weighted more heavily when computing 
threshold-crossing dates; axial and radial channels act as 
corroborative signals. A conservative maintenance policy 
can then report an RUL window by combining the earliest 
crossing times from the forecast mean (and its uncertainty 
bounds) across axes, using the minimum as the motor-level 
decision point and cross-checking with temperature spikes 
(≥ 35 °C) and FFT fault bands.

Result of Experiment
This section discusses the results based on the experiment 
performed.

Time-Series Forecasting Analysis
Researchers trained a Prophet model on 2022–2024 motor 
temperature histories, keeping both routine seasonality 
(weekly/annual) and event seasonality (holiday shutdown 
and post-holiday start-up spikes) as regressors. The 2025 
forecast (Figure 23) shows the mean prediction as a teal 
line with a shaded uncertainty band and a failure limit at 
35 °C (red dotted line). As per the forecasted model, the 
baseline operating temperature stays mostly 25–31 °C. The 

model anticipates a ramp-up in late Feb–Mar 2025, where 
the mean forecast crosses 35 °C and peaks around 39–40 °C 
in early March. After mid-March, the trajectory decays and 
stabilizes below the threshold (35 °C), but the mean remains 
at/below the limit. Thus, the primary failure risk window is 
late February to mid-March 2025 (Figure 23).

The predictive modeling utilized the Prophet algorithm, 
which was trained on multi-year historical datasets 
(2022–2024) covering both vibration (FFT) and temperature 
signals. The model accounted for seasonality, trend, and 
historical failure patterns to predict 2025 abnormal stages. 
By integrating temperature and vibration features, the 
model enabled early identification of bearing faults. The 
methodology assumes that when the Temperature exceeds 
35 °C, the vibration response would align with abnormal FFT 
peaks crossing the 0.1 threshold, indicating an imminent 
bearing failure.

As Figure 24 shows, several irregular peaks concentrated 
in the higher frequency range of 290-350 Hz, with amplitudes 
rising upto ~0.20, well above the 0.1 threshold. The predicted 
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failure pattern indicates the Bearing Fault stage displays a 
raised noise floor and multiple high-frequency peaks that 
do not align with simple harmonics of the running Speed or 
with typical unbalance/mechanical looseness signatures, as 
compared with Figures 17 & 18 of real-time monitored data 
of 2022-2024. This predicted irregular behavior is a strong 
indicator of bearing degradation, likely due to lubrication 
failure or physical damage of rolling elements. This failure 
stage has been captured, and immediately necessary 
inspection-based activity has been triggered based on 
both temperature and vibration (FFT) forecasting (Figures 
24 and 25). The Prophet model validates these relationships 
by forecasting both variables simultaneously, thereby 
enhancing predictive accuracy for Remaining Useful Life 
(RUL) estimation and scheduling predictive maintenance 
(Figure 24).

Actual vs Forecasting Analysis 
Figure 25 illustrates the temperature profile of the test motor 
using Prophet modeling, combining actual data (2022–2024) 
with forecasted trends (2025). In the proposed methodology, 
researchers trained a Prophet model on 2022–2024 motor 
temperature data to capture seasonal surges and forecast 
2025. The model projects a high-risk window in Feb–Apr 
2025 where the mean crosses the 35 °C failure line and briefly 
peaks near 40 °C before returning to the 28–31 °C baseline. 
Failure onset is defined as the first instance where the mean 
reaches or exceeds 35 °C, while the upper confidence bound 
crossing 35 °C serves as a conservative early trigger, enabling 
predictive maintenance scheduling before this exceedance, 
ideally during a low-load operational slot. To validate 
the risk, vibration evidence is cross-checked, looking for 
sustained ±2 m/s² threshold crossings and FFT bearing-band 
energy above 0.1. After maintenance, success is confirmed if 
temperatures return to the 28–31 °C baseline and vibration/
FFT levels fall back below thresholds (Figure 25).

RUL Identification from Forecasting
The RUL (Remaining Useful Life) prediction is based on the 
comparison of the predicted behavior of the machine’s 
components, i.e., motor vibration, temperature analysis, and 
the nominal behavior of the machine components. Sharing 
the calculation formula and maintenance scheduling: 
\text {RUL}{early} = t{early} - t_0
\text {RUL}{late} = t{late} - t_0
T_{prep} = L + D + B
\text{PM}{conservative} = t{early} - T_{prep}
Here, 
t_0 = reference date (today or last observation)
t_{early}, t_late} = earliest and latest expected failure dates
L = lead time (days)
D = Downtime (days)
B = buffer (days)
T{prep} = Total Preparation Time (days)
PM{conservative} = Conservative PM start (to finish before 
the earliest failure)

As per the forecasting
Reference day t_0 = today → assume February 01, 2025 (just 
for calculation).
Failure window:
t_{early} = Feb 21, 2025
t_{late} = Mar 10, 2025
Lead time L = 45 days (for spares/logistics — typical for 
induction motor)
Downtime, D = 8 hours → D = 8/24 = 0.33 days
Buffer, B = 8 hours → B = 8/24 = 0.33 days
Prep time T_prep} = L + D + B = 45 + 0.33 + 0.33 = 45.66 days
RUL {early} = t{early} - t_0 = Feb 21 − Feb 1 = 20 days
RUL {late} = t{late} - t_0 = Mar 10 − Feb 1 = 37 days
So, RUL window = 20 – 36 days
PM start = t_{early} - T_{prep} = Feb 21 − 45.66 days = Jan 7 
(by calculating manually)

Figure 25: Temperature Forecasting
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Subtract remaining 0.66 days (~16 hours) → PM start = Jan 
6, 2025, ~8 AM

Considering the PdM scheduling preparation time of 45 
days, maintenance has been planned to trigger on January 
07 at 8 AM. 

Cost-Benefit Analysis
PdM implementation from identifying RUL of test motor 
results operations excellence, such as an increase in 
equipment’s uptime, reduction in unplanned Downtime, 
and saving on repair cost, which plays a vital role in the 
overall cost optimization. Considering historical inspection-
based maintenance, the growing impact of PdM is shared 
below with the key metrics before and after implementing 
predictive maintenance.

PdM scheduling through RUL and lead-time calculation 
before failure has resulted in an increase in Motor Uptime 
and a drastic improvement in UPDT reduction, as shared in 
Table 6. The test motor has performed 81.2% OEE (Overall 
Equipment Efficiency), an increase of around 3% OEE after 
implementing predictive maintenance (Table 6).

Proposal for PdM Scheduling in Hybrid Model 
Hybrid Dashboard model for taking PM decisions by 
using time-series forecasting & real-time data from Sensor 
monitoring in a single platform. The purpose of the hybrid 
graphical user interface is to provide insight into device 
behavior based on past data and discover patterns that 
improve device maintenance by predicting the future state 
of the devices. The graphical user interface for the Predictive 
Maintenance application is shown below (Figure 26)

Figure 26: Predictive maintenance dashboard

Table 6: Growing Impact of PdM 

Metric
During Inspection-
based Maintenance
(3 Months before PdM)

After PdM 
implementation
(post 3 Months)

Motor Uptime (Hours) 150 210

Unplanned Downtime 
(%)

12.5% 7.5%

Overall Equipment 
Efficiency (OEE%)

78.9% 81.2%

Motor Failure 3 0

Maintenance 
Interventions (over 3 
years)

6 4

Maintenance Cost 
Reduction

N/A 21%

Energy Consumption 
(kWh)

50,000 46,500

The predictive maintenance dashboard provides significant 
value by enabling real-time condition monitoring, where 
Vibration, FFT, and temperature signals are continuously 
tracked to detect anomalies before they escalate into 
failures. It is directly connected with Prophet-driven 
forecasting, allowing actual and predicted data to be 
compared within the dashboard. This integration ensures 
that potential failures are anticipated in advance and 
that maintenance teams can plan timely interventions. 
In addition, the dashboard simplifies fault classification 
through clear alarm statuses such as Normal, Pre-alarming, 
and Alarming, which reduces the risk of error and accelerates 
maintenance decision-making.
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Conclusion
This study demonstrated a practical predictive 
maintenance (PdM) workflow for induction motors 
by fusing condition-monitoring signals: Vibration 
(time/FFT) and Temperature, with Prophet-
based time-series forecasting to anticipate 
anomalies, estimate Remaining Useful Life (RUL), 
and plan interventions. The approach captured 
recurrent seasonal behavior and known failure 
signatures (e.g., ≥35 °C thermal excursions and 
vibration threshold breaches), then projected 
these patterns forward to generate a defensible 
failure window and a conservative, parts-aware 
maintenance start date. A hybrid PdM dashboard 
operationalized the method by juxtaposing 
actual and forecasted traces, surfacing axis-
wise vibration energy, and issuing automated 
alarm states (Normal → Pre-alarm → Alarm) that 
simplify triage and speed decisions for schedulers 
and technicians. 

Despite a strong fit and clear operational gains, several 
constraints remain. First, the labeled dataset (2022–2024) 
limits long-horizon generalization and exposure to rare 
failure modes. Second, reliance on two sensor streams 
(Vibration, Temperature) restricts fault observability; multi-
sensor fusion (e.g., current, acoustic, thermal imaging) would 
improve coverage and confidence. Third, while Prophet 
excels at trend/seasonality and robustness, it is less adaptive 
to abrupt regime shifts; hybrid models (e.g., Prophet–GRU/
LSTM or Prophet + anomaly scores) could better track non-
linear dynamics and evolving wear.

Future work would therefore: (i) expand labeled data 
across more motors, environments, and fault types; (ii) 
integrate additional modalities and domain features into the 
model and dashboard; and (iii) evaluate hybrid architectures 
that combine transparent seasonal baselines with deep 
sequence learners. These enhancements should lift 
accuracy, RUL reliability, and scalability, strengthening PdM’s 
impact on uptime, cost, and safety in smart manufacturing.
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