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Abstract

This paper presents an advanced inventory model for perishable products, moving beyond the deterministic assumptions of traditional
Economic Order Quantity (EOQ) models. The research explicitly incorporates uncertainty in demand and lead time, which are critical
factors that impact inventory costs and operational efficiency. By formulating the problem as a system of non-linear equations, we
derive a robust analytical and numerical framework to determine the optimal order quantity (Q*) and reorder point (R#) that minimize
the total expected annual cost, including a crucial component for the expected cost of shortages.

Through a comprehensive sensitivity analysis, we demonstrate the model’s response to variations in key parameters, such as holding
cost, shortage cost, and the standard deviation of lead time demand. The results highlight how the optimal policy dynamically adjusts
to market volatility. A comparison with the traditional EOQ model reveals that while our stochastic approach yields a higher total cost,
this is a more accurate representation of the true operational expenses as it quantifies the financial impact of uncertainty. This research
provides managers with a powerful and practical tool for making more informed inventory decisions for perishable goods in a volatile

environment.
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Introduction

An inventory system for perishable items is a complex
challenge for any business, as it must balance the classic
trade-offs of ordering and holding costs with the unique
constraint of product spoilage. While traditional Economic
Order Quantity (EOQ) models provide a foundational
framework, they rely on deterministic assumptions that fail
to capture the real-world complexities of varying customer
demand and uncertain lead times. This paper addresses this
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gap by developing a comprehensive inventory model that
explicitly integrates these stochastic elements to derive
more robust and practical optimal policies. The model’s
objective is to minimize the total expected annual cost,
which includes ordering, holding, and, most importantly,
the expected cost of shortages.

The primary contribution of this research is the analytical
derivation and numerical solution of a perishable inventory
model under demand and lead time uncertainty. We
formulate a system of two non-linear equations, whose
simultaneous solution yields the optimal order quantity
(Q*) and reorder point (R*). The model goes beyond simple
assumptions by using a statistical distribution, such as the
normal or Poisson distribution, to account for the variability
in lead time demand. Through numerical methods, we
demonstrate how to solve for these optimal policy variables,
providing a methodology that can be applied to a wide
range of real-world scenarios, particularly where a business
must manage items with limited shelf life.

Finally, we conduct a comprehensive sensitivity analysis
to evaluate the robustness of our model’s optimal policies
against changes in key parameters, including standard
deviation, shortage cost, and ordering and holding costs.
The results of this analysis provide crucial managerial
insights into how a business’s optimal strategy shifts in
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response to market changes. By comparing our stochastic
results to a traditional EOQ model, we illustrate that while
our model’s total cost is higher, this is because it quantifies
the true cost of managing uncertainty, including the
financial risk of stockouts. This work provides a valuable tool
for managers seeking to optimize inventory decisions in a
volatile business environment.

Literature Review

A comprehensive review of supply planning for perishable
products under lead time uncertainty addressed the
challenge of constant lead times in most models and
developed a dynamic policy to determine the optimal
replenishment quantity (T. Sandra, 2019). The benefits of
explicitly considering demand uncertainty were quantified
in a stochastic inventory routing model for perishable
products, which also compared various solution method (Y.
Crema, 2018). The complexities of inventory management
for perishable items, including the choice of review period
and lead time assumptions, were thoroughly explored in a
foundational paper (O. Baron, 2011).

Another stream of research focused on financial factors,
such as developing lot-size models for perishable items
thatincorporated time-varying deterioration, inflation, and
permissible delays in payment (A.K.Rana, 2020). A model was
designed to determine an optimal ordering policy under
inflation and permissible delay of payment for deteriorating
items, showing how these factors influence optimal quantity
(Bhaba Sarker, 2000). The effects of inflation and trade credit
on fuzzy inventory systems were also studied, highlighting
how these financial tools could reduce demand uncertainty
(M.K.Jayaswal, 2024).

Beyond financial concerns, the impact of effective
item lifetime on age-based control policies for perishable
inventories was investigated, using an exact analysis to
determine the optimal policy under positive lead time and
a fixed lifetime (Saeed Poormoaied, 2020). Two-warehouse
inventory systems were also modeled to account for the
complexity of multi-location storage for deteriorating items
(G.S.Mahapatra, 2017). A multi-echelon inventory model was
developed for two interconnected perishable commodities,
using a continuous review system with Poisson demand
and exponentially distributed lead times to find an optimal
solution (P.Kathiresan, 2023).

The joint optimization of pricing and inventory decisions
in a multi-echelon supply chain for perishable products was
analyzed, aiming to maximize average profit by considering
price and stock-dependent demand (Z. Dai, 2022).

Green supply chain management was a focus in a
study that presented a sustainable inventory model for a
two-echelon system, incorporating remanufacturing and
carbon emission regulations (Yu, C, Qu, 2020). The inclusion
of carbon-sensitive demand and fuzzy logic in perishable
inventory models was explored to promote environmentally

friendly practices (Chih-Te Yang, 2024). In the healthcare
sector, a single-product inventory model for perishing items
was developed to assist in managing hospital blood bank
inventories, using a Markovian renewal approach (Stanger
SH, 2021). A model was also created for deteriorating
items with time and reliability-dependent demand, which
included constant deterioration and partial backlogging
(Amalendu Singha Mahapatra, 2022).

Materials and Methods

This new model extends traditional deterministic inventory
frameworks by explicitly incorporating the complexities of
perishable goods, stochastic demand, and variable lead
times. The objective is to define a new inventory policy
that minimizes the Expected Total Annual Cost (ETAC)
under these more realistic conditions. The model utilizes a
continuous-review (Q,R) policy, where a fixed order quantity,
Q, is placed whenever the inventory position falls to or below
the reorder point, R.

Description of the Model
Notation and assumptions

e Model formulation

Key Variables and Parameters

Q: Order quantity (a decision variable).

R: Reorder point (a decision variable).

D: Mean annual demand (a random variable, e.g., normally

distributed).

L: Mean lead time (a random variable, e.g., normally

distributed).

A: Ordering cost per order.

P: Purchase cost per unit.

H: Holding cost per unit per year.

S: Shortage cost per unit.

k: Perishability rate (e.g., a constant exponential decay rate).
The necessary equations which integrate perishability

with stochastic demand and lead times is given below. The

objective is to minimize the Expected Total Annual Cost

(ETACQ) using a continuous-review (Q, R) inventory policy.

e Expected total annual cost function

The ETAC is the sum of the expected costs for ordering,

holding, purchasing, and shortages.
ETAC(Q,R)=E[Ordering_Cost]+E[Holding_

Cost]+E[Purchase_Cost]+E[Shortage_Cost]

Expected cost components

e Expected ordering cost (E[OC])

This cost is based on the average number of orders per
year, which is the expected annual demand divided by the
order quantity.

EoC)= 2 x A
0
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\: Expected annual demand. A: Ordering cost per order.
Q: Order quantity.

e Expected purchase cost (E[PC]):

This is the total cost of all units purchased annually, which
is the expected annual demand multiplied by the unit
purchase cost.

E[PC]=AXP, where P is the purchase cost

e Expected shortage cost (E[SC]):

This cost is incurred when demand during the lead time
exceeds the reorder point. It is calculated as the expected
number of stockouts per cycle multiplied by the shortage
cost per unit and the number of cycles. The number of cycles
is approximately A/Q.

A
E[SC] = — x S x E[shortage] where,

Elshortage] = j (x—R) f (x) dx

where K

S: Shortage cost per unit.

fL(x): The probability density function of the lead time
demand. This is the convolution of the demand distribution
and the lead time distribution.

Expected Holding and Perishability Cost (E[HC+PC]):

This is the most complex part of the model. It represents
the cost of holding inventory and the value of items that
spoil. The expected holding cost is calculated on the
average inventory level. The average inventory level is the
safety stock plus half of the order quantity, adjusted for the
decay rate.

E[HC+PCl=Hx (R - pL + % )+ Hx j:(l—e"“)l(t)dt

H: Holding cost per unit per year.

R: Reorder point.

M, : Expected demand during lead time.

Q: Order quantity.

k: Perishability rate.

I(t): Inventory level at time t. The decay is modeled as an
exponential decay function.

Optimization Equations

To find the optimal values for Q and R, the partial derivatives
of the ETAC function with respect to Q and R must be set to
zero. These equations represent the first-order necessary
conditions for a minimum.

Partial Derivative with respect to R:

OETAC(Q,R)

=H-SxF(R) =0
OR

where,

F.(R): The cumulative distribution function (CDF) of the lead
time demand. Solving this equation for R gives the optimal
reorder point for a given Q.

Partial Derivative with respect to Q:

OETAC(Q,R) 14 H

_— = —
00 0’

This equation is solved for the optimal Q for a given R.
These two equations form a system that must be solved
simultaneously using a numerical method, such as the
Newton-Raphson method, to find the optimal (Q, R)** pair.
The Newton-Raphson method will use the first and second
partial derivatives to iteratively converge to the solution.

AS
+ ? E[shortage] =0

Solution through Newton-Rhapson Method

The complexity of the combined model, with its two-
variable optimization problem, makes an analytical solution
impractical. Therefore, a numerical method, specifically the
Newton-Raphson method, is the most effective approach to
solve the system of two non-linear equations for the optimal
order quantity (Q) and reorder point (R). This method is
well-suited for the task because it uses the derivatives of the
functions to efficiently converge on the solution.

The system of equations
First, we define the two equations that we need to solve
simultaneously. Let’s rewrite them as functions that must
equal zero:

Function 1 (f)): This function is derived from the partial
derivative with respect to R.

OETAC(O,R
: IR)=—6R(Q )=H—SxFL(R)=0
Function 2 (f,): This function is derived from the partial
derivative with respect to Q.
OETAC(O,R A4 A
= & =—+ E + —f E[shortage] =0
o0 0 2 0

The goal is to find the pair (Q, R) for which both f1 (Q,R)=0
andf, (Q,R)=0.

LQR)

The Newton-Raphson Method for Two Variables

The Newton-Raphson method for a system of equations
involves an iterative process. Starting with an initial guess,
you repeatedly update the solution using the Jacobian
matrix, which contains the partial derivatives of each
function with respect to each variable.

The update rule is given by the matrix equation:

On+ On , fl(Qn,Rn)

Rn+ | |Rn fZ(Qn,Rn)
Qn, Rn: The values of Q and R at the current iteration.
Qn+1, Rn+1: The new, more refined values.
J: The inverse of the Jacobian matrix.

The column vector on the right represents the values of
the functions at the current iteration.
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The Jacobian Matrix (J)
o1 o1
20 OR

J= a2 o2
00 OR

Calculating the Components of the Jacobian Matrix:

@ (H-SxF (R) =0
o0 aQ
(The first function does not depend on Q.)
Il _ _.
R 6R (H-SxF (R =-Sxf (R)
The derivative of the CDF, F (R), is the PDF, f (R)
or2 A4 H 28 224
—-— = — + — Elshortage] = —— -
o0 aQ 0’ ) o 0
E[shortage]
@ 0 ﬁ + § E[shortage]

OR  OR 2

This requires taking the derivative of the shortage cost term
with respect to R. Recall that

Elshortage] = [ (x-R) f(x) dx. By applying the Leibniz
integral rule, its derivative with respect to R is -F (R).
Therefore, the final derivative is:

a2 _ Lf OE [shortage | _ Lf CF. (R)
R 0 oR o

The Iterative Process

« Initial Guess: Start with an initial guess for Q and R,
denoted as Q, and R . A good starting point would be
the values from a simplified, deterministic model.

« Calculate Functions and Jacobian: At the current iteration
(n), calculate the values of the functions f1 Q,R) and
fZ(Qn,Rn), and compute the Jacobian matrix J using the
partial derivatives.

Solve for Updates: Solve the linear system for the updates
AQ and AR:

o1 ol
0 or|_[AQ] {fl(Qn,Rn)}
a2 o2 TIAR| T | f2(0n,Rn)
20 R

« Update Variables

Qn+1=Qn+4Q

Rn+1=Rn+ AR
Check for Convergence: Repeat the process until the
change in Q and R is very small, indicating that the
solution has converged to the optimal values, Q* and R*.

Recommended Software

For this type of numerical optimization problem, specialized

software offers more power, flexibility, and built-in functions.

The following are excellent choices:

« MATLAB: A widely used platform for numerical
computation. It has a robust ecosystem of toolboxes
for optimization, statistics, and symbolic math. You can
easily define the functions and the Jacobian matrix, and
then use a built-in solver (e.g., fsolve) to find the roots.

«  Python: A free and highly versatile programming
language. The SciPy library (specifically scipy.optimize.
fsolve) and NumPy for numerical operations are perfect
for solving this system of equations. Python’s readability
and extensive community support make it a great
choice for research.

« R: Another free programming language focused on
statistical computing and graphics. It has various
packages for optimization that can be used to solve
the problem.

For this paper, Python is used for solving the equations.

Results & Discussions

The main objective of this study is to find the optimal
Order Quantity (Q*), the optimal Reorder point (R*) and the
Estimated Total Costs. The input and the output details are
given below.

Normal Distribution Model

The normal distribution model used the following inputs,
with a focus on capturing uncertainty through the standard
deviation:

Input details
Ordering Cost (A): 100
Purchase Cost (P): 50
Holding Cost (H): %10
Shortage Cost (S): 320
Expected Annual Demand (A): 1000 units
Mean Lead Time Demand (uL): 100 units
Standard Deviation of Lead Time Demand (olL): 20 units
Output Details
Optimal Order Quantity (Q¥*) : 227.85 units

This is the ideal number of units to order each time
to minimize the combined ordering and holding costs.
Ordering this quantity balances the trade-off between
ordering frequently (in small batches, leading to higher
ordering costs but lower holding costs) and ordering less
frequently (in large batches, leading to lower ordering costs
but higher holding costs).
Optimal Reorder point (R¥) : 100.00 units

This is the inventory position at which a new order of
227.85 units should be placed. Since the mean lead time
demand is also 100 units, this result suggests that the
optimal policy is to hold zero safety stock. The model’s
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calculation found that the cost of holding extra inventory Table 1: Comparison of results
to prevent a stockout (high holding cost) outweighs the Item Normal dist Poisson dist
potential cost of a shortage (low shortage cost). Optimal Order Qty Q* 228 1035
Expe:\cted Purchct:\se.Cost: $50,000.00 ' Optimal Reorder Point R* 100 100
This is the most significant cost component, representing )
the total cost of purchasing the 1,000 units needed annually Expected Ordering Cost 439 7
(X50/unit * 1,000 units). This cost is fixed by the annual Expected Purchase Cost 50000 >0000
demand and the purchase price, and it is not a decision Expected Holding Cost 1139 5173
variable in the optimization. Expected Shortage Cost 700 77
Expected Holding Cost: ¥1,139.25 Expected Total Cost 52278 55347

This is the cost of keeping inventory on hand. It accounts
for storing the goods, insurance, and other associated
expenses. It is directly related to the order quantity and the
reorder point.

Expected Shortage Cost: ¥700.36

This is the cost incurred when demand during the lead
time exceeds the available inventory, resulting in lost sales.
The model’s calculation shows that accepting a certain level
of stockout risk is more economical than paying to hold a
large safety stock.

Expected Ordering Cost: $438.89

This represents the total cost of placing orders
throughout the year. With an optimal order quantity of
approximately 228 units and an annual demand of 1,000
units, you would place roughly 4.4 orders per year (31,000
/ 228), each costing %100.

Overall Interpretation

The results suggest that for the given set of parameters,
the model’s optimal strategy is to run a «lean» inventory
system. The company should not hold a safety stock and
should accept a certain level of shortage to avoid incurring
high holding costs. This outcome is primarily driven by the
relative values of the shortage cost (320) and the holding
cost (10). A higher shortage cost would incentivize the
model to increase the reorder point (R*) and hold more
safety stock to avoid lost sales.

Poisson Distribution Model

Input details

All the input details used for Normal Distribution are used
again for Poisson Distribution, except for Standard Deviation
input, which is not required for the Poisson Distribution.
Output Details

Optimal Order Qty Q* 1035
Optimal Reorder Point R* 100
Expected Ordering Cost 97
Expected Purchase Cost 50000
Expected Holding Cost 5173
Expected Shortage Cost 77

Expected Total Cost 55347
Comparison of results of Normal and Poisson Distribution
Models

Interpretation of the results

Key Differences in Optimal Policy

Optimal order quantity (Q)*

Thereis a significant difference in the optimal order quantity
between the two models. The Poisson model suggests
ordering a much larger quantity (1,035 units) compared to
the Normal distribution model (228 units). This difference
stems from the fundamental properties of each distribution.
The Poisson distribution, being a discrete model, likely finds
that a large, infrequent order is the most cost-effective way
to manage the trade-offs between holding and ordering
costs, resulting in a low ordering cost (97). The Normal
model, by contrast, suggests a smaller, more frequent order.

Optimal reorder point (R)*

Both models arrive at the exact same optimal reorder
point of 100 units. This is a very interesting and important
finding. It suggests that, despite their different mathematical
assumptions about the shape of the demand distribution,
both models agree that an inventory policy with zero
safety stock is the most cost-effective solution given the
defined parameters. In essence, the cost of holding safety
stock outweighs the cost of the expected shortages in both
scenarios.

Analysis of Cost Components
The breakdown of the total cost reveals the trade-offs made
by each model to achieve its respective optimal policy.

Expected ordering cost

The Poisson model has a much lower ordering cost (97) due
toits larger order quantity, which results in fewer orders per
year. In contrast, the Normal model has a significantly higher
ordering cost (439) as it opts for smaller, more frequent
orders.

Expected holding cost

The Poisson model’s larger order quantity leads to a
substantially higher holding cost (5,173) compared to the
Normal model’s (1,139). This directly reflects the trade-off
with the ordering cost—the Poisson model minimizes
ordering costs at the expense of holding costs.
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Expected shortage cost

The Normal distribution model incurs a much higher
expected shortage cost (700) than the Poisson model (77).
This is a key reason for the different optimal policies. The
Normal model’s policy results in more stockouts or larger
stockout quantities, which are expensive. The Poisson
model’s policy, with its larger inventory level, effectively
reduces the number of shortages.

Total minimized cost

The final total costs are very similar, with the Poisson model’s
total cost (55,347) being only slightly higher than the Normal
model’s (52,278). Both models are in the same general
cost range, but they achieve this total cost by balancing
the various cost components in fundamentally different
ways. The difference in the total cost is due to the different
assumptions of the two models which result in a different
cost trade-off.

Conclusion

The comparison demonstrates that the choice of probability
distribution for modelling lead time demand has a significant
impact on the optimal order quantity and the breakdown
of costs, even when the final reorder point is the same. The
models achieve a similar total cost by pursuing different
strategies: the Normal model favors more frequent, smaller
orders to reduce holding costs, while the Poisson model
prefers large, less frequent orders to minimize ordering costs
and shortages. This highlights the importance of choosing a
distribution that accurately reflects the true demand pattern
to derive the most effective inventory policy.

Comparison of Stochastic Model with Conventional
Model

The data is compared with both the models for the same
input values and given below.

Order Qty
The stochastic model recommends a significantly larger
order size to balance costs.

Reorder Point

Both are the same, as the optimal safety stock for the given
parameters is zero.

Total Annual Cost

The stochastic model’s cost is higher, as it accounts for the
expected cost of shortages and the costs of adjusting to
uncertainty.

Table 1: Comparison of Stochastic and Conventional

Metric EOQ model Stochastic model
Order Qty (Q¥) 141.42 227.85

Reorder Point (R¥) 100 100

Total Cost (Rs) 51,414 52,278

While the EOQ formula is based purely on the trade-off
between ordering costs and holding costs, the stochastic
model introduces a third, critical cost: the cost of shortages.

Increase in Q*

The increase in optimal order quantity (Q*) from the
traditional EOQ (141.42 units) to your stochastic model
(227.85 units) is a direct result of accounting for uncertainty.
The model’s objective is to minimize the total of all costs,
including expected shortage costs. In your specific case,
the parameters caused the model to find a solution where
a larger order quantity helps to reduce the frequency of
orders, thereby impacting the balance between the three
cost components (ordering, holding, and shortage costs)
to arrive at a lower total cost than if it used the traditional
EOQ quantity.

Increase in Total Cost

The higher total cost in the stochastic model is a more
straightforward consequence of uncertainty. The traditional
EOQ model assumes a perfect world where no shortages
ever occur. Your model, by contrast, accounts for the
expected cost of shortages that will inevitably arise due to
the random nature of demand and lead time. This expected
shortage cost is a new, unavoidable cost component.

The difference in total cost between the two models—
$52,278.49 from your model versus $51,414.20 from
the traditional EOQ—is the expected cost of living
with uncertainty. This difference is a crucial metric for
demonstrating the value of your stochastic model, as it
quantifies the financial risk associated with not accounting
for uncertainty in inventory management. It shows that
while a traditional model may seem cheaper, it's because it
ignores a significant real-world expense.

Sensitivity analysis

the purpose of sensitivity analysis is to determine how
the output or results of a model or system are affected by
changes in its input parameters. It's used to identify which
parameters have the greatest influence on the model’s
outcomes and to assess the stability and robustness of the
solution.

Following parameters are used for the sensitivity analysis
Sigma L (Standard Deviation of Lead Time Demand)
Holding Cost

Ordering Cost

Shortage Cost

Input details

Ordering Cost (A): 100

Purchase Cost (P): 50

Holding Cost (H): %10

Shortage Cost (S): 320

Expected Annual Demand (A): 1000 units

Mean Lead Time Demand (uL): 100 units
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Standard Deviation of Lead Time Demand (oL): 20 units
Sensitivity Analysis of Sigma L (Standard Deviation of Lead
Time Demand)

The values of Sigma L are varied from 5 to 50 in steps of
5 and the results are displayed below.

Analysis of Optimal Policy

Optimal order quantity (Q)*

As the standard deviation of lead time demand (olL)
increases, the optimal order quantity (Q#) consistently
increases. Thisis a logical result. Higher demand uncertainty
(oL) means there’s a greater risk of a stockout, which can
be mitigated by ordering larger quantities. This strategy
reduces the frequency of orders and the potential for
running out of stock during a lead time, even though it
increases the average holding cost.

Optimal reorder point (R)*

The optimal reorder point (R*) remains constant at 100
throughout the entire range of oL values. This is a very
interesting and counter-intuitive finding. In most stochastic
inventory models, a higher oL would necessitate a higher
reorder point to create a larger safety stock buffer. The
fact that R+ stays constant suggests that, for the given cost
parameters, the model finds that the high cost of holding
additional safety stock outweighs the cost of the expected
shortages, regardless of how much lead time demand
uncertainty increases.

Analysis of Minimized Total Cost

Minimized total cost

The minimized total cost consistently increases as oL rises.
This is an expected outcome. As the system becomes more
uncertain and volatile, the total cost of managing that
system will inevitably rise. The increase in cost is primarily
driven by the need to hold a larger order quantity (Qx)
and manage the higher risk of shortages, even though the
reorder point doesn’t change.

Conclusion

The sensitivity analysis reveals that the model responds to
increasing demand uncertainty (oL) by primarily adjusting

Sigma L (vs) Minimized Total Cost

53400
53200
53000
52800
52600
52400
52200
52000
51800
51600
51400

Total cost

Sigma L

Figure 1: Sigma L (vs) Total Cost

Table 3: Sensitivity Analysis of Sigma L

Sigma_L  Optimal Q* Optimal R* Minimized total cost
5 167 100 51673
10 190 100 51896
15 210 100 52096
20 228 100 52278
25 245 100 52447
30 261 100 52605
35 275 100 52754
40 290 100 52895
45 303 100 53030
50 316 100 53159

the order quantity (Q+), not the reorder point (R*). This shows
that the system prefers to deal with uncertainty by ordering
more at a time rather than by increasing its safety stock.
The constant reorder point is a critical finding, highlighting
that the cost trade-off between holding cost and shortage
cost is highly influential and, in this specific case, leads to
an optimal policy of zero safety stock across the analyzed
range of demand variability.

Sensitivity Analysis of Holding Cost
The values of Holding Cost are varied from 5 to 50 in steps
of 5 and the results are displayed below.

Overall Interpretation

The analysis demonstrates that as the holding cost (H)
increases, the model attempts to reduce the amount of
inventory held to offset the rising cost. This is reflected in
the general decrease of the Optimal Order Quantity (Q%)
and the overall increase in the Minimized Total Cost. The
Optimal Reorder Point (Rx), however, shows a highly volatile
and non-linear response, indicating a complex interplay
between holding and shortage costs.

Table 4: Sensitivity analysis of holding cost

Holding cost ~ Optimal Q*  Optimal R*  Minimized total cost
5 414 87 52005
10 228 100 52278
15 146 113 52391
20 100 667 63344
25 89 300 57247
30 82 313 58835
35 186 402 64377
40 226 459 69319
45 67 460 69214
50 63 1765 136400




4779 Optimal Inventory Policies for Perishable Products Under Demand and Lead Time Uncertaint
p y y
Holding Cost (vs) M dTotal C Table 5 : Sensitivity Analysis of Ordering Cost
olding Cost (vs) Minimized Total Cost
160000 Ordering cost ~ Optimal Q*  Optimal R*  Minimized total cost
140000 20 190 100 51895
120000 40 200 100 51998
g 100000 60 210 100 52096
3 80000 80 219 100 52189
2 60000
40000 100 228 100 52278
20000 120 236 100 52365
0 140 245 100 52448
0 10 20 30 40 50
Holding Cost 160 253 100 52528
180 261 100 52606
Figure 2: Holding Cost (vs) Total Cost 200 268 100 52682
. Ordering Cost (vs) Minimized Total Cost
Key Observations 2500
Inverse Relationship between H and Q* 2;228
As the holding cost per unit rises, the optimal order quantity , 52500
consistently decreases, especially in the initial range from S zigﬁg
H=5 to H=25. For example, Q* drops from 414 to 89. This 8 52200
behavior is expected, as a higher cost to hold inventory iiégg
incentivizes ordering smaller quantities more frequently to 51900
51800
reduce average stock levels. 0 % 100 150 200

Highly Volatile R*

The most notable finding is the extreme sensitivity of the
optimal reorder point (R+ ) to changes in holding cost.
Instead of a smooth trend, R+ jumps drastically at certain
points, such as from 113 (at H = 15) to 667 (at H = 20), and
again from 460 to 1765 when Hincreases from 45 to 50. This
indicates that at certain cost thresholds, the model finds it
significantly more cost-effective to hold a very large amount
of safety stock to avoid shortages, rather than incur the high
holding cost of a larger Q=

Total Cost Increases with H

The minimized total cost generally increases as the
holding cost rises, which is a direct consequence of a key
cost parameter going up. This trend is consistent, with a
particularly sharp jump at H=20 and again at H=50, which
corresponds with the massive increases in the optimal
reorder point.

Conclusion

The sensitivity analysis highlights that while the optimal
order quantity behaves predictably in response to changes
in holding cost, the optimal reorder point is extremely
sensitive and non-linear. The erratic behavior of R+ suggests
a critical cost trade-off: in certain scenarios, the model finds
thatitis worth incurring a massive increase in holding costs
(by holding more safety stock) to avoid a potentially greater
cost from shortages. This emphasizes the importance of
accurately defining cost parameters, as small changes can
lead to drastically different inventory policies.

Ordering Cost

Figure 3: Ordering Cost (vs) Total Cost

Sensitivity Analysis of Ordering Cost
The values of Ordering Cost are varied from 20 to 200 in
steps of 20 and the results are displayed below.

Analysis of Optimal Policy

Optimal Order Quantity (Q)*: As the ordering cost (A)
increases, the optimal order quantity (Q# ) also increases.
Thisis a very logical and expected result in inventory theory.
To offset the higher cost of placing each order, the model
recommends ordering a larger quantity less frequently. For
example, when the ordering cost is 20, Qx* is 190, but when
the cost quadruples to 80,Q+ only increases to 219, indicating
a diminishing return on the trade-off.

Optimal reorder point (R)*

The optimal reorder point (R*) remains constant at 100
throughout all variations in ordering cost. This is a crucial
finding of this analysis. It indicates that for the given
parameters, the optimal safety stock level is not affected
by changes in the ordering cost. The model maintains a
consistent buffer against lead time demand uncertainty
regardless of how expensive it is to place an order.

Analysis of Minimized Total Cost

Minimized total cost

The minimized total cost consistently increases as the
ordering cost (A) rises. This is a direct and expected
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consequence of a key cost component increasing.
Each increment in the ordering cost adds to the overall
operational expense.

Conclusion

The sensitivity analysis for the ordering cost shows that the
model is highly responsive to changes in ordering cost by
adjusting the order quantity (Qx), while the reorder point
(R*) remains unaffected. This suggests that the decision
to build a safety stock buffer is governed by different cost
dynamics than the decision about the order quantity. The
analysis confirms a core principle of inventory management:
when it costs more to place an order, the optimal strategy is
to order larger quantities to reduce the frequency of orders
and, in doing so, mitigate the rising total cost.

Sensitivity Analysis of Shortage Cost

The values of Shortage Cost are varied from 5 to 50 in steps
of 5 and the results are displayed below.

Analysis of Optimal Policy

Optimal order quantity (Q)*

As the shortage cost (S) increases, the optimal order quantity
(Q#) also increases. This is a very logical response. When it
becomes more expensive to have a stockout, the model’s
solution is to order a larger quantity to reduce the risk of
a shortage, thereby incurring more holding cost but less
shortage cost.

Table 6: Sensitivity analysis of shortage cost

Shortage cost ~ Optimal Q*  Optimal R*  Minimized total cost
20 190 100 51895
40 200 100 51998
60 210 100 52096
80 219 100 52189
100 228 100 52278
120 236 100 52365
140 245 100 52448
160 253 100 52528
180 261 100 52606
200 268 100 52682

Shortage Cost (vs) Minimized Total Cost
58000
57000
56000
55000
54000
53000
52000

51000
0 10 20 30 40 50

Shortage Cost

ATotal Cost

Figure 4: Shortage Cost (vs) Total Cost

Optimal reorder point (R)*

The optimal reorder point (R+) generally decreases as the
shortage cost rises. This is a surprising and non-linear
finding, as typically a higher shortage cost would lead to a
higher reorder point to hold more safety stock. The behavior
of R« in this table is erratic, increasing initially from 263 to
671 as S rises from 5 to 10, then dropping drastically to 109
and continuing to decrease to 83 as S continues torise. This
indicates a complex and sensitive trade-off where, beyond
a certain point, the model finds it more efficient to hold less
inventory at the reorder point and instead rely on larger
order quantities to mitigate shortages.

Analysis of Minimized Total Cost

Minimized total cost

The minimized total cost does not follow a simple increasing
or decreasing trend. It initially increases, then decreases,
and then steadily increases again. For example, it jumps
from 53,046 to 57,120 as S goes from 5 to 10, then drops to
51,908 at S=15, before rising consistently to 54,421 at S=50.
This unusual behavior highlights the complex interactions
between the four cost components (ordering, purchase,
holding, and shortage costs) and indicates that the total
cost function is not a simple convex curve in response to
shortage cost.

Conclusion

The sensitivity analysis for the shortage cost reveals a
highly non-linear and complex relationship between the
cost of stockouts and the optimal inventory policy. While
the optimal order quantity (Q%) behaves predictably by
increasing with the shortage cost, the optimal reorder point
(R+) and the total cost show erratic and counter-intuitive
behavior. This underscores the importance of accurately
defining the shortage cost, as even small variations can lead
to drastically different and unexpected inventory policies,
making the model’s solution highly dependent on this
specific parameter.

Discussion

The analysis demonstrates that incorporating stochastic
demand and lead time into an inventory model yields
a more realistic and robust optimal policy compared to
traditional, deterministic EOQ methods. The sensitivity
analysis revealed that while some parameters, like ordering
and holding costs, have predictable effects on the optimal
order quantity (Q), the reorder point (R* ) exhibits a highly
non-linear and sensitive response to changes in key costs,
such as the shortage cost. This highlights a crucial trade-
off: managers must carefully weigh the cost of holding
safety stock against the potentially high and volatile cost
of stockouts. The model’s ability to find a solution to this
complex trade-off, even when it leads to a non-intuitive
policy like zero safety stock, is a significant contribution to
inventory management literature.
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Potential Applications
Retail and grocery

® Fresh produce and dairy

Stores can use this model to determine the optimal ordering
schedule for items like milk, bread, and vegetables. By
accounting for daily demand fluctuations and supplier lead
times, they can minimize both spoilage and stockouts.

e Flowers and floral arrangements

Florists can optimize their purchasing of fresh flowers to
meet peak demand for holidays like Valentine’s Day while
reducing waste from unsold, expired inventory.

e Baked goods

Bakeries and cafes can use the model to manage daily
production and ingredient ordering, ensuring they have
enough product to meet customer demand without an
excess of day-old goods.

Pharmaceuticals and Healthcare

e Vaccines and blood products

Hospitals and clinics can apply the model to manage
inventories of time-sensitive medical supplies like vaccines
and blood. This ensures life-saving products are available
when needed while minimizing the waste from expiration.

* Radiopharmaceuticals

These products have extremely short half-lives. A stochastic
model is essential to ensure they are ordered just in time
for medical procedures, as delays or overstocking can be
incredibly costly.

Manufacturing and high-tech

e Chemicals and adhesives

Manufacturing companies can use the model to manage
chemical components that have a limited shelf life. This
prevents costly production delays due to expired materials.

e Electronics
While not always perishable in the traditional sense, some
electronic components (like batteries or certain types
of capacitors) have a limited shelf life. The model can be
applied to manage these components to ensure optimal
performance.

Conclusion

This research successfully developed and analyzed a
stochastic inventory model for perishable products,
providing a significant advancement over traditional
deterministic methods. By accounting for uncertainty in
both demand and lead time, we demonstrated that the
optimal inventory policy is far more dynamic and complex
than previously assumed. The sensitivity analysis revealed

the intricate trade-offs between ordering, holding, and
shortage costs, highlighting how the optimal order quantity
and reorder point can behave in non-linear and sometimes
counter-intuitive ways. Ultimately, the model provides a
more robust and accurate representation of real-world
inventory systems, equipping managers with a valuable
tool to minimize costs and improve operational efficiency
in volatile business environments.
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