
Abstract
This paper presents an advanced inventory model for perishable products, moving beyond the deterministic assumptions of traditional 
Economic Order Quantity (EOQ) models. The research explicitly incorporates uncertainty in demand and lead time, which are critical 
factors that impact inventory costs and operational efficiency. By formulating the problem as a system of non-linear equations, we 
derive a robust analytical and numerical framework to determine the optimal order quantity (Q∗) and reorder point (R∗) that minimize 
the total expected annual cost, including a crucial component for the expected cost of shortages.
Through a comprehensive sensitivity analysis, we demonstrate the model’s response to variations in key parameters, such as holding 
cost, shortage cost, and the standard deviation of lead time demand. The results highlight how the optimal policy dynamically adjusts 
to market volatility. A comparison with the traditional EOQ model reveals that while our stochastic approach yields a higher total cost, 
this is a more accurate representation of the true operational expenses as it quantifies the financial impact of uncertainty. This research 
provides managers with a powerful and practical tool for making more informed inventory decisions for perishable goods in a volatile 
environment.  
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Introduction
An inventory system for perishable items is a complex 
challenge for any business, as it must balance the classic 
trade-offs of ordering and holding costs with the unique 
constraint of product spoilage. While traditional Economic 
Order Quantity (EOQ) models provide a foundational 
framework, they rely on deterministic assumptions that fail 
to capture the real-world complexities of varying customer 
demand and uncertain lead times. This paper addresses this 
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gap by developing a comprehensive inventory model that 
explicitly integrates these stochastic elements to derive 
more robust and practical optimal policies. The model’s 
objective is to minimize the total expected annual cost, 
which includes ordering, holding, and, most importantly, 
the expected cost of shortages.

The primary contribution of this research is the analytical 
derivation and numerical solution of a perishable inventory 
model under demand and lead time uncertainty. We 
formulate a system of two non-linear equations, whose 
simultaneous solution yields the optimal order quantity 
(Q*) and reorder point (R*). The model goes beyond simple 
assumptions by using a statistical distribution, such as the 
normal or Poisson distribution, to account for the variability 
in lead time demand. Through numerical methods, we 
demonstrate how to solve for these optimal policy variables, 
providing a methodology that can be applied to a wide 
range of real-world scenarios, particularly where a business 
must manage items with limited shelf life.

Finally, we conduct a comprehensive sensitivity analysis 
to evaluate the robustness of our model’s optimal policies 
against changes in key parameters, including standard 
deviation, shortage cost, and ordering and holding costs. 
The results of this analysis provide crucial managerial 
insights into how a business’s optimal strategy shifts in 
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response to market changes. By comparing our stochastic 
results to a traditional EOQ model, we illustrate that while 
our model’s total cost is higher, this is because it quantifies 
the true cost of managing uncertainty, including the 
financial risk of stockouts. This work provides a valuable tool 
for managers seeking to optimize inventory decisions in a 
volatile business environment.

Literature Review
A comprehensive review of supply planning for perishable 
products under lead time uncertainty addressed the 
challenge of constant lead times in most models and 
developed a dynamic policy to determine the optimal 
replenishment quantity (T. Sandra, 2019). The benefits of 
explicitly considering demand uncertainty were quantified 
in a stochastic inventory routing model for perishable 
products, which also compared various solution method (Y. 
Crema, 2018). The complexities of inventory management 
for perishable items, including the choice of review period 
and lead time assumptions, were thoroughly explored in a 
foundational paper (O. Baron, 2011).

Another stream of research focused on financial factors, 
such as developing lot-size models for perishable items 
that incorporated time-varying deterioration, inflation, and 
permissible delays in payment (A.K.Rana, 2020). A model was 
designed to determine an optimal ordering policy under 
inflation and permissible delay of payment for deteriorating 
items, showing how these factors influence optimal quantity 
(Bhaba Sarker, 2000). The effects of inflation and trade credit 
on fuzzy inventory systems were also studied, highlighting 
how these financial tools could reduce demand uncertainty 
(M.K.Jayaswal, 2024).

Beyond financial concerns, the impact of effective 
item lifetime on age-based control policies for perishable 
inventories was investigated, using an exact analysis to 
determine the optimal policy under positive lead time and 
a fixed lifetime (Saeed Poormoaied, 2020). Two-warehouse 
inventory systems were also modeled to account for the 
complexity of multi-location storage for deteriorating items 
(G.S. Mahapatra, 2017). A multi-echelon inventory model was 
developed for two interconnected perishable commodities, 
using a continuous review system with Poisson demand 
and exponentially distributed lead times to find an optimal 
solution (P.Kathiresan, 2023).

The joint optimization of pricing and inventory decisions 
in a multi-echelon supply chain for perishable products was 
analyzed, aiming to maximize average profit by considering 
price and stock-dependent demand (Z. Dai, 2022).

Green supply chain management was a focus in a 
study that presented a sustainable inventory model for a 
two-echelon system, incorporating remanufacturing and 
carbon emission regulations (Yu, C, Qu, 2020). The inclusion 
of carbon-sensitive demand and fuzzy logic in perishable 
inventory models was explored to promote environmentally 

friendly practices (Chih-Te Yang, 2024). In the healthcare 
sector, a single-product inventory model for perishing items 
was developed to assist in managing hospital blood bank 
inventories, using a Markovian renewal approach (Stanger 
SH, 2021). A model was also created for deteriorating 
items with time and reliability-dependent demand, which 
included constant deterioration and partial backlogging 
(Amalendu Singha Mahapatra, 2022). 

Materials and Methods
This new model extends traditional deterministic inventory 
frameworks by explicitly incorporating the complexities of 
perishable goods, stochastic demand, and variable lead 
times. The objective is to define a new inventory policy 
that minimizes the Expected Total Annual Cost (ETAC) 
under these more realistic conditions. The model utilizes a 
continuous-review (Q,R) policy, where a fixed order quantity, 
Q, is placed whenever the inventory position falls to or below 
the reorder point, R.

Description of the Model

Notation and assumptions

•	 Model formulation
Key Variables and Parameters
Q: Order quantity (a decision variable).
R: Reorder point (a decision variable).
D: Mean annual demand (a random variable, e.g., normally 
distributed).
L: Mean lead time (a random variable, e.g., normally 
distributed).
A: Ordering cost per order.
P: Purchase cost per unit.
H: Holding cost per unit per year.
S: Shortage cost per unit.
k: Perishability rate (e.g., a constant exponential decay rate).

The necessary equations which integrate perishability 
with stochastic demand and lead times is given below. The 
objective is to minimize the Expected Total Annual Cost 
(ETAC) using a continuous-review (Q, R) inventory policy.

•	 Expected total annual cost function
The ETAC is the sum of the expected costs for ordering, 
holding, purchasing, and shortages.

E TA C ( Q , R ) = E [ O r d e r i n g _ C o s t ] + E [ H o l d i n g _
Cost]+E[Purchase_Cost]+E[Shortage_Cost]

Expected cost components

•	 Expected ordering cost (E[OC])
This cost is based on the average number of orders per 
year, which is the expected annual demand divided by the 
order quantity.

E[OC]= 
Q
λ

 x A
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λ: Expected annual demand. A: Ordering cost per order.    
Q: Order quantity.

•	 Expected purchase cost (E[PC]):
This is the total cost of all units purchased annually, which 
is the expected annual demand multiplied by the unit 
purchase cost.
E[PC]=λ×P, where P is the purchase cost

•	 Expected shortage cost (E[SC]):
This cost is incurred when demand during the lead time 
exceeds the reorder point. It is calculated as the expected 
number of stockouts per cycle multiplied by the shortage 
cost per unit and the number of cycles. The number of cycles 
is approximately λ/Q.

E[SC] = 
Q
λ

 x S x E[shortage] where,

E[shortage] = ( )
R

x R
∞

−∫  fL(x) dx
where 
S: Shortage cost per unit.
fL(x): The probability density function of the lead time 
demand. This is the convolution of the demand distribution 
and the lead time distribution.
Expected Holding and Perishability Cost (E[HC+PC]):

This is the most complex part of the model. It represents 
the cost of holding inventory and the value of items that 
spoil. The expected holding cost is calculated on the 
average inventory level. The average inventory level is the 
safety stock plus half of the order quantity, adjusted for the 
decay rate.

E[HC+PC] = H x (R – μL + 
2
Q

 ) + H x ( ) ( )
0

1 kte I t dt
∞ −−∫

H: Holding cost per unit per year.
R: Reorder point.
μL : Expected demand during lead time.
Q: Order quantity.
k: Perishability rate.
I(t): Inventory level at time t. The decay is modeled as an 
exponential decay function.

Optimization Equations
To find the optimal values for Q and R, the partial derivatives 
of the ETAC function with respect to Q and R must be set to 
zero. These equations represent the first-order necessary 
conditions for a minimum.
Partial Derivative with respect to R:

( ),ETAC Q R
R

∂
∂

 = H – S x FL(R) = 0 

where,
FL(R) : The cumulative distribution function (CDF) of the lead 
time demand. Solving this equation for R gives the optimal 
reorder point for a given Q.

Partial Derivative with respect to Q:

( ),ETAC Q R
Q

∂
∂

  = 2
A

Q
λ

 + 
2
H

 + 2
S

Q
λ

 E[shortage] = 0

This equation is solved for the optimal Q for a given R.
These two equations form a system that must be solved 

simultaneously using a numerical method, such as the 
Newton-Raphson method, to find the optimal (Q, R)** pair. 
The Newton-Raphson method will use the first and second 
partial derivatives to iteratively converge to the solution.

Solution through Newton-Rhapson Method
The complexity of the combined model, with its two-
variable optimization problem, makes an analytical solution 
impractical. Therefore, a numerical method, specifically the 
Newton-Raphson method, is the most effective approach to 
solve the system of two non-linear equations for the optimal 
order quantity (Q) and reorder point (R). This method is 
well-suited for the task because it uses the derivatives of the 
functions to efficiently converge on the solution.

The system of equations
First, we define the two equations that we need to solve 
simultaneously. Let’s rewrite them as functions that must 
equal zero:

Function 1 (f1): This function is derived from the partial 
derivative with respect to R.

f1(Q,R) = 
( ),ETAC Q R

R
∂

∂
 = H – S x FL(R) = 0 

Function 2 (f2): This function is derived from the partial 
derivative with respect to Q.

F2(Q,R) = 
( ),ETAC Q R

Q
∂

∂
 =  2

A
Q
λ

 + 
2
H

 + 2
S

Q
λ

 E[shortage] = 0

The goal is to find the pair (Q, R) for which both f1 (Q,R)=0 
and f2 (Q,R)=0.

The Newton-Raphson Method for Two Variables
The Newton-Raphson method for a system of equations 
involves an iterative process. Starting with an initial guess, 
you repeatedly update the solution using the Jacobian 
matrix, which contains the partial derivatives of each 
function with respect to each variable.
The update rule is given by the matrix equation:

Qn
Rn

+ 
 + 

 = 
Qn
Rn
 
 
 

 J-1
( )
( )

1 ,
2 ,

f Qn Rn
f Qn Rn

 
 
 

Qn, Rn: The values of Q and R at the current iteration.
Qn+1, Rn+1:  The new, more refined values.
J-1: The inverse of the Jacobian matrix.

The column vector on the right represents the values of 
the functions at the current iteration.
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The Jacobian Matrix (J)

J = 

1 1

2 2

f f
Q R
f f
Q R

∂ ∂ 
 ∂ ∂ 
∂ ∂ 
 ∂ ∂ 

Calculating the Components of the Jacobian Matrix:

1f
Q
∂
∂

 = 
Q
∂
∂

  (H – S x FL (R) = 0

(The first function does not depend on Q.)

1f
R

∂
∂

 = 
R
∂
∂

  (H – S x FL (R) = -S x fL (R)

The derivative of the CDF, FL (R), is the PDF, fL (R)

2f
Q

∂
∂

 = 
Q
∂
∂

  2( A
Q
λ−

 + 
2
H

 + 2
S

Q
λ

 E[shortage] = 3
2 A
Q
λ

 – 

3
2 S
Q
λ

 E[shortage]

2f
R

∂
∂

 = 
R
∂
∂

  2( A
Q
λ−

 + 
2
H

 + 2
S

Q
λ

 E[shortage]

This requires taking the derivative of the shortage cost term 
with respect to R. Recall that

E[shortage] = ( )
R

x R
∞

−∫  fL(x) dx. By applying the Leibniz 
integral rule, its derivative with respect to R is -FL(R). 
Therefore, the final derivative is:

2f
R

∂
∂

 = [ ]
2

E shortage
  S

Q R
λ ∂

∂
  = 2

S
Q
λ

 (-FL (R))

The Iterative Process
•	 Initial Guess: Start with an initial guess for Q and R, 

denoted as Q0​ and R0​. A good starting point would be 
the values from a simplified, deterministic model.

•	 Calculate Functions and Jacobian: At the current iteration 
(n), calculate the values of the functions f1​(Qn​,Rn​) and 
f2​(Qn​,Rn​), and compute the Jacobian matrix J using the 
partial derivatives.

•	 Solve for Updates: Solve the linear system for the updates 
ΔQ and ΔR:

1 1

2 2

f f
Q R
f f
Q R

∂ ∂ 
 ∂ ∂ 
∂ ∂ 
 ∂ ∂ 

 = 
ÄQ
ÄR
 
 
 

 = - 
( )
( )

1 ,
2 ,

f Qn Rn
f Qn Rn

 
 
 

•	 Update Variables
Qn+1 = Qn + ΔQ
Rn+1 = Rn + ΔR
•	 Check for Convergence: Repeat the process until the 

change in Q and R is very small, indicating that the 
solution has converged to the optimal values, Q* and R*.

Recommended Software
For this type of numerical optimization problem, specialized 
software offers more power, flexibility, and built-in functions. 
The following are excellent choices:
•	 MATLAB: A widely used platform for numerical 

computation. It has a robust ecosystem of toolboxes 
for optimization, statistics, and symbolic math. You can 
easily define the functions and the Jacobian matrix, and 
then use a built-in solver (e.g., fsolve) to find the roots.

•	 Python: A free and highly versatile programming 
language. The SciPy library (specifically scipy.optimize.
fsolve) and NumPy for numerical operations are perfect 
for solving this system of equations. Python’s readability 
and extensive community support make it a great 
choice for research.

•	 R: Another free programming language focused on 
statistical computing and graphics. It has various 
packages for optimization that can be used to solve 
the problem.

For this paper, Python is used for solving the equations.

Results & Discussions
The main objective of this study is to find the optimal 
Order Quantity (Q*), the optimal Reorder point (R*) and the 
Estimated Total Costs. The input and the output details are 
given below.

Normal Distribution Model
The normal distribution model used the following inputs, 
with a focus on capturing uncertainty through the standard 
deviation:

Input details
Ordering Cost (A): ₹100
Purchase Cost (P): ₹50
Holding Cost (H): ₹10
Shortage Cost (S): ₹20
Expected Annual Demand (λ): 1000 units
Mean Lead Time Demand (μL​): 100 units
Standard Deviation of Lead Time Demand (σL​): 20 units
Output Details
Optimal Order Quantity (Q*) : 227.85 units

This is the ideal number of units to order each time 
to minimize the combined ordering and holding costs. 
Ordering this quantity balances the trade-off between 
ordering frequently (in small batches, leading to higher 
ordering costs but lower holding costs) and ordering less 
frequently (in large batches, leading to lower ordering costs 
but higher holding costs).
Optimal Reorder point (R*) : 100.00 units

This is the inventory position at which a new order of 
227.85 units should be placed. Since the mean lead time 
demand is also 100 units, this result suggests that the 
optimal policy is to hold zero safety stock. The model’s 
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calculation found that the cost of holding extra inventory 
to prevent a stockout (high holding cost) outweighs the 
potential cost of a shortage (low shortage cost).

Expected Purchase Cost: ₹50,000.00 
This is the most significant cost component, representing 

the total cost of purchasing the 1,000 units needed annually 
(₹50/unit * 1,000 units). This cost is fixed by the annual 
demand and the purchase price, and it is not a decision 
variable in the optimization.

Expected Holding Cost: ₹1,139.25 
This is the cost of keeping inventory on hand. It accounts 

for storing the goods, insurance, and other associated 
expenses. It is directly related to the order quantity and the 
reorder point.

Expected Shortage Cost: ₹700.36 
This is the cost incurred when demand during the lead 

time exceeds the available inventory, resulting in lost sales. 
The model’s calculation shows that accepting a certain level 
of stockout risk is more economical than paying to hold a 
large safety stock.

Expected Ordering Cost: $438.89 
This represents the total cost of placing orders 

throughout the year. With an optimal order quantity of 
approximately 228 units and an annual demand of 1,000 
units, you would place roughly 4.4 orders per year (₹1,000 
/ 228), each costing ₹100.

Overall Interpretation
The results suggest that for the given set of parameters, 

the model’s optimal strategy is to run a «lean» inventory 
system. The company should not hold a safety stock and 
should accept a certain level of shortage to avoid incurring 
high holding costs. This outcome is primarily driven by the 
relative values of the shortage cost (₹20) and the holding 
cost (₹10). A higher shortage cost would incentivize the 
model to increase the reorder point (R*) and hold more 
safety stock to avoid lost sales.

Poisson Distribution Model

Input details
All the input details used for Normal Distribution are used 
again for Poisson Distribution, except for Standard Deviation 
input, which is not required for the Poisson Distribution.
Output Details

Optimal Order Qty Q* 		 1035
Optimal Reorder Point R*	 100
Expected Ordering Cost	 97
Expected Purchase Cost	 50000
Expected Holding Cost	 5173
Expected Shortage Cost	 77
Expected Total Cost		  55347
Comparison of results of Normal and Poisson Distribution 

Models

Key Differences in Optimal Policy

Optimal order quantity (Q)*
There is a significant difference in the optimal order quantity 
between the two models. The Poisson model suggests 
ordering a much larger quantity (1,035 units) compared to 
the Normal distribution model (228 units). This difference 
stems from the fundamental properties of each distribution. 
The Poisson distribution, being a discrete model, likely finds 
that a large, infrequent order is the most cost-effective way 
to manage the trade-offs between holding and ordering 
costs, resulting in a low ordering cost (97). The Normal 
model, by contrast, suggests a smaller, more frequent order.

Optimal reorder point (R)*
Both models arrive at the exact same optimal reorder 
point of 100 units. This is a very interesting and important 
finding. It suggests that, despite their different mathematical 
assumptions about the shape of the demand distribution, 
both models agree that an inventory policy with zero 
safety stock is the most cost-effective solution given the 
defined parameters. In essence, the cost of holding safety 
stock outweighs the cost of the expected shortages in both 
scenarios.

Analysis of Cost Components
The breakdown of the total cost reveals the trade-offs made 
by each model to achieve its respective optimal policy.

Expected ordering cost
The Poisson model has a much lower ordering cost (97) due 
to its larger order quantity, which results in fewer orders per 
year. In contrast, the Normal model has a significantly higher 
ordering cost (439) as it opts for smaller, more frequent 
orders.

Expected holding cost
The Poisson model’s larger order quantity leads to a 
substantially higher holding cost (5,173) compared to the 
Normal model’s (1,139). This directly reflects the trade-off 
with the ordering cost—the Poisson model minimizes 
ordering costs at the expense of holding costs.

Table 1: Comparison of results

Item Normal dist Poisson dist

Optimal Order Qty Q* 228 1035

Optimal Reorder Point R* 100 100

Expected Ordering Cost 439 97

Expected Purchase Cost 50000 50000

Expected Holding Cost 1139 5173

Expected Shortage Cost 700 77

Expected Total Cost 52278 55347

Interpretation of the results
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Expected shortage cost
The Normal distribution model incurs a much higher 
expected shortage cost (700) than the Poisson model (77). 
This is a key reason for the different optimal policies. The 
Normal model’s policy results in more stockouts or larger 
stockout quantities, which are expensive. The Poisson 
model’s policy, with its larger inventory level, effectively 
reduces the number of shortages.

Total minimized cost
The final total costs are very similar, with the Poisson model’s 
total cost (55,347) being only slightly higher than the Normal 
model’s (52,278). Both models are in the same general 
cost range, but they achieve this total cost by balancing 
the various cost components in fundamentally different 
ways. The difference in the total cost is due to the different 
assumptions of the two models which result in a different 
cost trade-off.

Conclusion
The comparison demonstrates that the choice of probability 
distribution for modelling lead time demand has a significant 
impact on the optimal order quantity and the breakdown 
of costs, even when the final reorder point is the same. The 
models achieve a similar total cost by pursuing different 
strategies: the Normal model favors more frequent, smaller 
orders to reduce holding costs, while the Poisson model 
prefers large, less frequent orders to minimize ordering costs 
and shortages. This highlights the importance of choosing a 
distribution that accurately reflects the true demand pattern 
to derive the most effective inventory policy.

Comparison of Stochastic Model with Conventional 
Model
The data is compared with both the models for the same 
input values and given below.

Order Qty
The stochastic model recommends a significantly larger 
order size to balance costs.

Reorder Point
Both are the same, as the optimal safety stock for the given 
parameters is zero.

Total Annual Cost
The stochastic model’s cost is higher, as it accounts for the 
expected cost of shortages and the costs of adjusting to 
uncertainty.

While the EOQ formula is based purely on the trade-off 
between ordering costs and holding costs, the stochastic 
model introduces a third, critical cost: the cost of shortages.

Increase in Q*
The increase in optimal order quantity (Q*) from the 
traditional EOQ (141.42 units) to your stochastic model 
(227.85 units) is a direct result of accounting for uncertainty. 
The model’s objective is to minimize the total of all costs, 
including expected shortage costs. In your specific case, 
the parameters caused the model to find a solution where 
a larger order quantity helps to reduce the frequency of 
orders, thereby impacting the balance between the three 
cost components (ordering, holding, and shortage costs) 
to arrive at a lower total cost than if it used the traditional 
EOQ quantity.

Increase in Total Cost
The higher total cost in the stochastic model is a more 
straightforward consequence of uncertainty. The traditional 
EOQ model assumes a perfect world where no shortages 
ever occur. Your model, by contrast, accounts for the 
expected cost of shortages that will inevitably arise due to 
the random nature of demand and lead time. This expected 
shortage cost is a new, unavoidable cost component.

The difference in total cost between the two models—
$52,278.49 from your model versus $51,414.20 from 
the traditional EOQ—is the expected cost of living 
with uncertainty. This difference is a crucial metric for 
demonstrating the value of your stochastic model, as it 
quantifies the financial risk associated with not accounting 
for uncertainty in inventory management. It shows that 
while a traditional model may seem cheaper, it’s because it 
ignores a significant real-world expense.

Sensitivity analysis
the purpose of sensitivity analysis is to determine how 
the output or results of a model or system are affected by 
changes in its input parameters. It’s used to identify which 
parameters have the greatest influence on the model’s 
outcomes and to assess the stability and robustness of the 
solution.
Following parameters are used for the sensitivity analysis
Sigma L (Standard Deviation of Lead Time Demand)
Holding Cost
Ordering Cost
Shortage Cost
Input details
Ordering Cost (A): ₹100
Purchase Cost (P): ₹50
Holding Cost (H): ₹10
Shortage Cost (S): ₹20
Expected Annual Demand (λ): 1000 units
Mean Lead Time Demand (μL): 100 units

Table 1: Comparison of Stochastic and Conventional

Metric EOQ model Stochastic model

Order Qty (Q*) 141.42 227.85

Reorder Point (R*) 100 100

Total Cost (Rs) 51,414 52,278
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Standard Deviation of Lead Time Demand (σL​): 20 units
Sensitivity Analysis of Sigma L (Standard Deviation of Lead 
Time Demand)

The values of Sigma L are varied from 5 to 50 in steps of 
5 and the results are displayed below.

Analysis of Optimal Policy

Optimal order quantity (Q)*
As the standard deviation of lead time demand (σL​) 
increases, the optimal order quantity (Q∗) consistently 
increases. This is a logical result. Higher demand uncertainty 
(σL​) means there’s a greater risk of a stockout, which can 
be mitigated by ordering larger quantities. This strategy 
reduces the frequency of orders and the potential for 
running out of stock during a lead time, even though it 
increases the average holding cost.

Optimal reorder point (R)*
The optimal reorder point (R∗) remains constant at 100 
throughout the entire range of σL​ values. This is a very 
interesting and counter-intuitive finding. In most stochastic 
inventory models, a higher σL​ would necessitate a higher 
reorder point to create a larger safety stock buffer. The 
fact that R∗ stays constant suggests that, for the given cost 
parameters, the model finds that the high cost of holding 
additional safety stock outweighs the cost of the expected 
shortages, regardless of how much lead time demand 
uncertainty increases.

Analysis of Minimized Total Cost

Minimized total cost
The minimized total cost consistently increases as σL​ rises. 
This is an expected outcome. As the system becomes more 
uncertain and volatile, the total cost of managing that 
system will inevitably rise. The increase in cost is primarily 
driven by the need to hold a larger order quantity (Q∗) 
and manage the higher risk of shortages, even though the 
reorder point doesn’t change.

Conclusion
The sensitivity analysis reveals that the model responds to 
increasing demand uncertainty (σL​) by primarily adjusting 

the order quantity (Q∗), not the reorder point (R∗). This shows 
that the system prefers to deal with uncertainty by ordering 
more at a time rather than by increasing its safety stock. 
The constant reorder point is a critical finding, highlighting 
that the cost trade-off between holding cost and shortage 
cost is highly influential and, in this specific case, leads to 
an optimal policy of zero safety stock across the analyzed 
range of demand variability.

Sensitivity Analysis of Holding Cost
The values of Holding Cost  are varied from 5 to 50 in steps 
of 5 and the results are displayed below.

Overall Interpretation
The analysis demonstrates that as the holding cost (H) 
increases, the model attempts to reduce the amount of 
inventory held to offset the rising cost. This is reflected in 
the general decrease of the Optimal Order Quantity (Q∗) 
and the overall increase in the Minimized Total Cost. The 
Optimal Reorder Point (R∗), however, shows a highly volatile 
and non-linear response, indicating a complex interplay 
between holding and shortage costs.
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Figure 1: Sigma L (vs) Total Cost

Table 3: Sensitivity Analysis of Sigma L

Sigma_L Optimal Q* Optimal R* Minimized total cost

5 167 100 51673

10 190 100 51896

15 210 100 52096

20 228 100 52278

25 245 100 52447

30 261 100 52605

35 275 100 52754

40 290 100 52895

45 303 100 53030

50 316 100 53159

Table 4: Sensitivity analysis of holding cost

Holding cost Optimal Q* Optimal R* Minimized total cost

5 414 87 52005

10 228 100 52278

15 146 113 52391

20 100 667 63344

25 89 300 57247

30 82 313 58835

35 186 402 64377

40 226 459 69319

45 67 460 69214

50 63 1765 136400
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Key Observations

Inverse Relationship between H and Q*
As the holding cost per unit rises, the optimal order quantity 
consistently decreases, especially in the initial range from 
H=5 to H=25. For example, Q∗ drops from 414 to 89. This 
behavior is expected, as a higher cost to hold inventory 
incentivizes ordering smaller quantities more frequently to 
reduce average stock levels.

Highly Volatile R*
The most notable finding is the extreme sensitivity of the 
optimal reorder point (R∗ ) to changes in holding cost. 
Instead of a smooth trend, R∗ jumps drastically at certain 
points, such as from 113 (at H = 15) to 667 (at H = 20), and 
again from 460 to 1765 when H increases from 45 to 50. This 
indicates that at certain cost thresholds, the model finds it 
significantly more cost-effective to hold a very large amount 
of safety stock to avoid shortages, rather than incur the high 
holding cost of a larger Q∗

 Total Cost Increases with H
The minimized total cost generally increases as the 
holding cost rises, which is a direct consequence of a key 
cost parameter going up. This trend is consistent, with a 
particularly sharp jump at H=20 and again at H=50, which 
corresponds with the massive increases in the optimal 
reorder point.

Conclusion
The sensitivity analysis highlights that while the optimal 
order quantity behaves predictably in response to changes 
in holding cost, the optimal reorder point is extremely 
sensitive and non-linear. The erratic behavior of R∗ suggests 
a critical cost trade-off: in certain scenarios, the model finds 
that it is worth incurring a massive increase in holding costs 
(by holding more safety stock) to avoid a potentially greater 
cost from shortages. This emphasizes the importance of 
accurately defining cost parameters, as small changes can 
lead to drastically different inventory policies.

Sensitivity Analysis of Ordering Cost
The values of Ordering Cost are varied from 20 to 200 in 
steps of 20 and the results are displayed below.

Analysis of Optimal Policy 
Optimal Order Quantity (Q)*: As the ordering cost (A) 
increases, the optimal order quantity (Q∗ ) also increases. 
This is a very logical and expected result in inventory theory. 
To offset the higher cost of placing each order, the model 
recommends ordering a larger quantity less frequently. For 
example, when the ordering cost is 20, Q∗  is 190, but when 
the cost quadruples to 80,Q∗ only increases to 219, indicating 
a diminishing return on the trade-off.

Optimal reorder point (R)*
The optimal reorder point (R∗) remains constant at 100 
throughout all variations in ordering cost. This is a crucial 
finding of this analysis. It indicates that for the given 
parameters, the optimal safety stock level is not affected 
by changes in the ordering cost. The model maintains a 
consistent buffer against lead time demand uncertainty 
regardless of how expensive it is to place an order.

Analysis of Minimized Total Cost 

Minimized total cost
The minimized total cost consistently increases as the 
ordering cost (A) rises. This is a direct and expected 
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Figure 2: Holding Cost (vs) Total Cost

Table 5 : Sensitivity Analysis of Ordering Cost

Ordering cost Optimal Q* Optimal R* Minimized total cost

20 190 100 51895

40 200 100 51998

60 210 100 52096

80 219 100 52189

100 228 100 52278

120 236 100 52365

140 245 100 52448

160 253 100 52528

180 261 100 52606

200 268 100 52682
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Figure 3: Ordering Cost (vs) Total Cost
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consequence of a key cost component increasing. 
Each increment in the ordering cost adds to the overall 
operational expense.

Conclusion 
The sensitivity analysis for the ordering cost shows that the 
model is highly responsive to changes in ordering cost by 
adjusting the order quantity (Q∗), while the reorder point 
(R*) remains unaffected. This suggests that the decision 
to build a safety stock buffer is governed by different cost 
dynamics than the decision about the order quantity. The 
analysis confirms a core principle of inventory management: 
when it costs more to place an order, the optimal strategy is 
to order larger quantities to reduce the frequency of orders 
and, in doing so, mitigate the rising total cost.

Sensitivity Analysis of Shortage Cost
The values of Shortage Cost  are varied from 5 to 50 in steps 
of 5 and the results are displayed below.

Analysis of Optimal Policy 

Optimal order quantity (Q)*
As the shortage cost (S) increases, the optimal order quantity 
(Q∗) also increases. This is a very logical response. When it 
becomes more expensive to have a stockout, the model’s 
solution is to order a larger quantity to reduce the risk of 
a shortage, thereby incurring more holding cost but less 
shortage cost.

Optimal reorder point (R)*
The optimal reorder point (R∗) generally decreases as the 
shortage cost rises. This is a surprising and non-linear 
finding, as typically a higher shortage cost would lead to a 
higher reorder point to hold more safety stock. The behavior 
of R∗ in this table is erratic, increasing initially from 263 to 
671 as S rises from 5 to 10, then dropping drastically to 109 
and continuing to decrease to 83 as S continues to rise. This 
indicates a complex and sensitive trade-off where, beyond 
a certain point, the model finds it more efficient to hold less 
inventory at the reorder point and instead rely on larger 
order quantities to mitigate shortages.

Analysis of Minimized Total Cost 

Minimized total cost
The minimized total cost does not follow a simple increasing 
or decreasing trend. It initially increases, then decreases, 
and then steadily increases again. For example, it jumps 
from 53,046 to 57,120 as S goes from 5 to 10, then drops to 
51,908 at S=15, before rising consistently to 54,421 at S=50. 
This unusual behavior highlights the complex interactions 
between the four cost components (ordering, purchase, 
holding, and shortage costs) and indicates that the total 
cost function is not a simple convex curve in response to 
shortage cost.

Conclusion 
The sensitivity analysis for the shortage cost reveals a 
highly non-linear and complex relationship between the 
cost of stockouts and the optimal inventory policy. While 
the optimal order quantity (Q∗) behaves predictably by 
increasing with the shortage cost, the optimal reorder point 
(R∗) and the total cost show erratic and counter-intuitive 
behavior. This underscores the importance of accurately 
defining the shortage cost, as even small variations can lead 
to drastically different and unexpected inventory policies, 
making the model’s solution highly dependent on this 
specific parameter.

Discussion
The analysis demonstrates that incorporating stochastic 
demand and lead time into an inventory model yields 
a more realistic and robust optimal policy compared to 
traditional, deterministic EOQ methods. The sensitivity 
analysis revealed that while some parameters, like ordering 
and holding costs, have predictable effects on the optimal 
order quantity (Q∗), the reorder point (R∗ ) exhibits a highly 
non-linear and sensitive response to changes in key costs, 
such as the shortage cost. This highlights a crucial trade-
off: managers must carefully weigh the cost of holding 
safety stock against the potentially high and volatile cost 
of stockouts. The model’s ability to find a solution to this 
complex trade-off, even when it leads to a non-intuitive 
policy like zero safety stock, is a significant contribution to 
inventory management literature.

Table 6: Sensitivity analysis of shortage cost

Shortage cost Optimal Q* Optimal R* Minimized total cost

20 190 100 51895

40 200 100 51998

60 210 100 52096

80 219 100 52189

100 228 100 52278

120 236 100 52365

140 245 100 52448

160 253 100 52528

180 261 100 52606

200 268 100 52682
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Figure 4: Shortage Cost (vs) Total Cost
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Potential Applications

Retail and grocery

•	 Fresh produce and dairy
Stores can use this model to determine the optimal ordering 
schedule for items like milk, bread, and vegetables. By 
accounting for daily demand fluctuations and supplier lead 
times, they can minimize both spoilage and stockouts.

•	 Flowers and floral arrangements
Florists can optimize their purchasing of fresh flowers to 
meet peak demand for holidays like Valentine’s Day while 
reducing waste from unsold, expired inventory.

•	 Baked goods
Bakeries and cafes can use the model to manage daily 
production and ingredient ordering, ensuring they have 
enough product to meet customer demand without an 
excess of day-old goods.

Pharmaceuticals and Healthcare

•	 Vaccines and blood products
Hospitals and clinics can apply the model to manage 
inventories of time-sensitive medical supplies like vaccines 
and blood. This ensures life-saving products are available 
when needed while minimizing the waste from expiration.

•	 Radiopharmaceuticals
These products have extremely short half-lives. A stochastic 
model is essential to ensure they are ordered just in time 
for medical procedures, as delays or overstocking can be 
incredibly costly.

Manufacturing and high-tech

•	 Chemicals and adhesives
Manufacturing companies can use the model to manage 
chemical components that have a limited shelf life. This 
prevents costly production delays due to expired materials.

•	 Electronics
While not always perishable in the traditional sense, some 
electronic components (like batteries or certain types 
of capacitors) have a limited shelf life. The model can be 
applied to manage these components to ensure optimal 
performance.

Conclusion
This research successfully developed and analyzed a 
stochastic inventory model for perishable products, 
providing a significant advancement over traditional 
deterministic methods. By accounting for uncertainty in 
both demand and lead time, we demonstrated that the 
optimal inventory policy is far more dynamic and complex 
than previously assumed. The sensitivity analysis revealed 

the intricate trade-offs between ordering, holding, and 
shortage costs, highlighting how the optimal order quantity 
and reorder point can behave in non-linear and sometimes 
counter-intuitive ways. Ultimately, the model provides a 
more robust and accurate representation of real-world 
inventory systems, equipping managers with a valuable 
tool to minimize costs and improve operational efficiency 
in volatile business environments.
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