
Abstract
Ensuring security, integrity, and energy efficiency in Internet of Things (IoT) networks is a critical challenge due to the resource constraints 
of IoT devices. Traditional digital signature algorithms such as RSA, ECDSA, and EdDSA provide security but often lack energy optimization, 
making them inefficient for large-scale IoT deployments. To address these challenges, this research proposes an Energy-aware Security 
Optimized Elliptic Curve Digital Signature Algorithm (EECDSA) for universal IoT networks. EECDSA enhances conventional ECDSA by 
integrating three novel functional modules: Lightweight Context Sensitivity Imposer (LCSI), Adaptive Computational Complexity Overseer 
(ACCO), and Energy-aware ECDSA Signer (EAES). These modules dynamically adjust security parameters based on contextual sensitivity, 
optimize computational complexity to balance security and resource consumption, and ensure energy-efficient digital signing in IoT 
environments. The proposed method is evaluated using OPNET simulations, measuring both security and network performance metrics, 
including Accuracy, Precision, Sensitivity, Specificity, F-Score, Throughput, Latency, Jitter, Energy Consumption, Packet Delivery Ratio, 
and Security Levels. Experimental results demonstrate that EECDSA outperforms existing security solutions, achieving higher security 
resilience (99.55%), reduced energy consumption (511.6mJ), and improved network performance. These findings validate EECDSA as 
an efficient and scalable security mechanism for IoT ecosystems.
Keywords: Digital Signature Algorithms, Energy-aware security, Network Security, Internet-of-Things.
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Introduction
Digital signature algorithms use cryptographic techniques 
to generate a unique signature for a piece of data. This 
signature can be verified by the receiver to ensure that the 
data has not been tampered with and that it originates 
from a legitimate source (Lalem F, Laouid A, Kara M, 
Al-Khalidi M, Eleyan A.,2023). Many IoT devices have limited 
computational power, memory, and energy resources (S. 
R. Kawale, K. Prasad, D. Palanikkumar, P. A. Mary.,2023). 
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Implementing digital signature algorithms that are both 
secure and resource-efficient is a significant challenge. IoT 
networks often consist of a large number of devices. The 
digital signature solutions need to be capable of scaling 
to manage a large number of devices and data exchanges 
(Hofheinz, D., Kiltz, E.,2022). Interoperability is essential, 
ensuring the DSA can function across diverse devices and 
platforms within the IoT ecosystem (Kim Y, Seo SC.,2022). 
Additionally, the algorithms must provide robust security 
features, including authentication, data integrity, and non-
repudiation, to safeguard against unauthorized access and 
data tampering. Balancing these considerations is critical 
to developing effective and reliable digital signature 
solutions for IoT environments (Shabana Urooj, Sonam Lata, 
Shahnawaz Ahmad, Shabana Mehfuz, S Kalathil.,2023).

Context sensitivity is one of the vital elements in IoT 
networks because it enables devices to make intelligent 
decisions based on their operating environment and the 
specific needs of the situation (Inshi S, Chowdhury R, 
Ould-Slimane H, Talhi C.,2023). IoT devices can optimize 
their performance, improve efficiency, and enhance user 
experiences by context acumen. For instance, A smart 
thermostat optimizes energy use and ensures comfort by 
adjusting the temperature according to room occupancy, 
the time of day, or the weather conditions. In industrial 
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settings, context-aware sensors can detect anomalies in 
machinery and predict maintenance needs, preventing 
downtime and reducing costs (Picallo, I., Iturri, P.L., Celaya-
Echarri, M. et al.,2023). In healthcare, wearable devices 
can monitor patient vitals and trigger alerts based on 
contextual data, such as activity levels or changes in health 
parameters (S. Das, S. Namasudra, S. Deb, P. M. Ger and R. 
G. Crespo.,2023).

Energy-awareness is crucial in IoT networks due to 
the widespread use of battery-powered devices and 
the need for long-term, sustainable operation. Many IoT 
devices operate in remote or inaccessible locations where 
frequent battery replacement is impractical and costly. 
Optimizing energy consumption extends device lifespan, 
reduces maintenance costs, and enhances the reliability 
of the network (Adnan Sabovic, Michiel Aernouts, Dragan 
Subotic, Jaron Fontaine, Eli De Poorter, Jeroen Famaey.,2023).  
Additionally, energy-efficient devices contribute to 
environmental sustainability by minimizing power usage 
and the associated carbon footprint (Almalki, F.A., Alsamhi, 
S.H., Sahal, R. et al.,2023). In scenarios with large-scale IoT 
deployments, energy awareness ensures that devices can 
perform their tasks effectively without draining power 
resources, thereby maintaining consistent performance 
and connectivity (R. Samadi, A. Nazari and J. Seitz.,2023). 
Balancing energy efficiency with security and functionality is 
crucial for optimizing IoT networks, ensuring their reliability 
and sustainability Energy efficiency ensures prolonged 
device operation while minimizing maintenance, but it can 
conflict with the need for robust security. At the same time, 
maintaining functionality is key to ensuring the network 
performs its tasks without delays or failures (Jabeen, A., & 
Shanavas, A. R. M. (2025). This work aims to address these 
challenges by finding solutions that balance these three 
elements, ensuring IoT networks are secure, efficient, and 
reliable.
The main Contribution of this research as follows,
•	 Proposes an EECDSA to enhance security and energy 

efficiency in IoT networks.
•	 Implements a context-aware mechanism LCSI to classify 

data sensitivity dynamically, optimizing security 
overhead based on real-time contextual factors.

•	 Introducing ACCO which adjusts cryptographic security 
parameters based on node processing capacity and 
memory availability, ensuring optimal performance.

•	 Integrating energy-aware signing strategies EAES to 
extend battery life and reduce computational overhead 
in IoT devices

Structure of Manuscript
The manuscript begins with an Introduction in section 
1, highlighting the need for energy-efficient IoT security 
solutions. Section 2 reviews the existing method for recent 
digital signature and intrusion detection techniques, 

identifying their limitations. Section 3 explains the 
background of ECDSA’s cryptographic foundations, leading 
to the Proposed Method. Section 4 explains the proposed 
methodology, Section 5 and 6 explains the experimental 
setup and results analysis. Finally Section 7 summarizes 
the conclusion.

Existing Methods
Various attempts have been previously made to achieve 
a balance between security and energy efficiency in 
heterogeneous IoT networks. This section examines some of 
the most relevant existing approaches to gain insights into 
their methodologies, implementation strategies, benefits, 
and limitations. The selected methods include lIDS-SIoEL: 
an intrusion detection framework for enhancing security 
in IoT-based smart environments using ensemble learning 
(Hazman, C., Guezzaz, A., Benkirane, S. et al.,2023), VBQ-
Net: a novel vectorization-based boost quantized network 
model aimed at maximizing IoT system security to prevent 
intrusions (Perumal G, Subburayalu G, Abbas Q, Naqi SM, 
Qureshi I.,2023), a hybrid CNN+LSTM-based intrusion 
detection system designed for industrial IoT networks 
(Hakan Can Altunay, Zafer Albayrak.,2023), a highly secure 
intrusion detection system for IoT utilizing EXPSO-STFA 
feature selection with LAANN for attack detection (Jeyaselvi, 
M., Dhanaraj, R.K., Sathya, M. et al.,2023), and an attack-
specific security-optimized RSA model for IoT (Jenifer RR, 
Prakash VS.,2024).

IIDS-SIoEL: Intrusion detection framework for IoT-
based smart environments security using ensemble 
learning
lIDS-SIoEL work is proposed by Chaimae Hazman et.al 
(Hazman, C., Guezzaz, A., Benkirane, S. et al.,2023) to 
offer improved security for smart city IoT nodes those 
have mobility It is common that the nodes with higher 
mobility are more vulnerable to intruder attacks due to 
frequent position and cluster migrations. lIDS-SIoEL work 
is indented to overcome these intruder attacks. lIDS-SIoEL 
work is prepared based on the inspiration of applicable 
improvements in intruder detection system by incorporation 
of Machine learning and Deep learning concepts. In 
general, the lIDS-SIoEL framework functions based on an 
optimal anomaly detection model that utilizes AdaBoost, 
incorporating various feature selection techniques such as 
Boruta, mutual information, and correlation. The proposed 
model was tested on the IoT-23, BoT-IoT, and Edge-IIoT 
datasets using a GPU. Important intruder detection 
parameters such as Accuracy, Precision, Recall and F-Score 
are computed for the compared methods, in which lIDS-
SIoEL secures better scores. 

Improvement in accuracy and precision parameters 
is the main advantage of lIDS-SIoEL method whereas. 
The experiments carried out in a Kaggle cloud server-
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based environment with a huge memory. This much of 
computational complexity negatively impacts the network 
performance metrics such as Throughput and Packet 
Delivery Ratio. Decayed performance is observed as the 
limitation of lIDS-SIoEL work.  

VBQ-Net: A Novel Vectorization-Based Boost 
Quantized Network Model for Maximizing the 
Security Level of IoT System to Prevent Intrusions
In 2023, Perumal et.al. (Perumal G, Subburayalu G, Abbas Q, 
Naqi SM, Qureshi I.,2023) proposed VBQ-Net methodology 
to provide data security in a IoT network environment. In 
VBQ-Net dissertation, a Vector Space Bag of Words (VSBW) 
method is employed to lower the feature dimensionality 
and pinpoint key characteristics within the data. In addition, 
a novel classification technique named Boosted Variance 
Quantization Neural Networks (BVQNNs) is utilized to 
categorize various types of intrusions using a weighted 
feature matrix. During the classification process, a Multi-
Hunting Reptile Search Optimization (MH-RSO) algorithm 
is applied to determine the probability values for making 
optimal choices in intrusion prediction.  VBQNM method 
is evaluated using comprehensive experiments with real-
world IoT datasets and simulated intrusion scenarios. 
Benchmark parameters such as Accuracy, Precision, 
Sensitivity, Specificity, F-Score, and Detection rate are 
measured during the evaluation process.

Improved accuracy and efficiency, and lower memory 
usage are the stated advantage of VBQ-Net method. Missing 
real-time optimizations may cause performance issues in 
heterogeneous IoT network environments – which is stated 
as the limitation of VBQ-Net method.

A hybrid CNN+ LSTM-based intrusion detection 
system for industrial IoT networks (CLIDS)
Haka n Can Altunay et.al. (Hakan Can Altunay, Zafer 
Albayrak.,2023) proposed CLIDS work in 2022 for providing 
security in Industrial Internet-of-Things (IIoT) network 
environments. Three different models were proposed in 
CLIDS work for detecting intrusions in the IIoT network using 
deep learning architectures: Convolutional Neural Network 
(CNN), Long Short-Term Memory (LSTM), and a hybrid 
combination of CNN and LSTM. Performance evaluations 
are performed using UNSW-NB15 and X-IIoTID datasets 
to identify and compare normal and abnormal data. Both 
binary and multi-class classification are carried out in the 
evaluation process. There is no IoT network simulator or 
emulator used in the evaluation process. The dataset records 
are bluntly processed through mathematical model without 
any real-time intruder attacks. 

High accuracy is the declared advantage of CLIDS 
method. Missing evaluation with a simulator or with 
other real-time tools is one of the limitations of CLIDS 
work, Stacking up CNN and LSTM to each other increase 

the computational overhead that impacts negatively in 
network performance parameters such as Throughput 
and Packet Delivery Rate is another identified limitation of 
CLIDS work.   

A highly secured intrusion detection system for IoT 
using EXPSO-STFA feature selection for LAANN to 
detect attacks (LAANN)
LAANN work is introduced in 2022 by Jeyaselvi et.al 
(Jeyaselvi, M., Dhanaraj, R.K., Sathya, M. et al.,2023) as an 
attempt to achieve a new efficient intrusion detection system 
for IoT Network environments. As the first phase, the data 
underwent pre-processing to gain a clear understanding of 
potential attacks. This involved handling eliminates missing 
and NaN values. To gain insights into the data, an Improved 
Pearson Correlation Coefficient (IPCC) and Feature Extraction 
(FE) method was established, presenting the relationships 
within the data by considering causative factors. As the 
subsequent phase, feature extraction is performed to 
identify relevant features to ensure efficient computational 
time and accuracy using the Explorated Particle Swarm 
Optimization (PSO) centered Sea Turtle Foraging Algorithm 
(EXPSO-STFA). Finally, the selected features were trained and 
evaluated using the Look Ahead Artificial Neural Network 
(LAANN) classification to identify attacks. The LAANN 
method achieves a lower error rate, minimizes the chances 
of false alarm rates (FAR), and effectively and reliably detects 
attacks. All intrusion detection performance metrics such 
as accuracy, and precision are measured by the conducted 
experiments. 

Attainment of higher accuracy and attack detection 
average are the advantages of LAANN work. Ensemble 
of multiple optimization algorithms causes higher 
computational overhead which leads to higher processing 
time. The high processing time naturally reduces the overall 
throughput of the IoT network – which is discovered as the 
limitation of LAANN work. 

Rivest-Shamir-Adleman algorithm optimized to 
protect iot devices from specific attacks. Informatics 
and Automation
In 2024, Jennifer et.al. (Jenifer RR, Prakash VS.,2024) 
presented ASORI work to provide improved security for 
heterogeneous IoT network environments. ASORI work 
integrates three key contributions to enhance security in IoT 
network environments. The novel modules introduced are 
the Fast-Fuzzy Anomaly Detector, Legacy Naïve Bayes Attack 
Classifiers, and Variable RSA Security Schemer, collectively 
referred to as ASORI. The work also introduces innovative 
features such as the onboard IoT certification mechanism 
and dynamic security strategy selection. The ASORI model 
has been evaluated using the industry-standard network 
simulator OPNET to ensure improved security and enhanced 
performance of critical network parameters. Both intrusion 
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detection performance metrics such as Accuracy, Precision, 
Sensitivity, Specificity, and F-Score are measured along 
with network performance benchmark metrics such as 
Throughput, Latency, Jitter, Energy consumption, Packet 
Delivery Ratio, and overall security level are measured for 
compared methods at different timestamps. 

Accomplishment of higher accuracy, precision, 
F-Score, throughput, packet delivery ratio with minimized 
communication delays such as jitter and latency are the 
witnessed advantage of ASORI method. Utilization of 
RSA as one of the functional elements is comparatively 
consumes higher computational resources with respect to 
a security threshold level. This high computational resource 
occupancy is the asserted limitation of ASORI. 

A summary about used methodologies, their advantages 
and limitations of discussed methods are enumerated in 
Table 1.

Background
A succinct introduction about Elliptic Curve Digital 
Signature Algorithm (ECDSA) is required to explain the 
proposed EECDSA functional blocks at ease, provided 
in this section. ECDSA is one of the best cryptographic 
algorithms used for digital signatures, providing the same 
level of security as traditional algorithms like RSA but with 
shorter key lengths (G. Dimitoglou and C. Jim.,2023). It 
leverages the mathematical properties of elliptic curves over 
finite fields, resulting in more efficient computations and 
reduced storage requirements. ECDSA is widely adopted 
in various security protocols, including SSL/TLS for secure 
web browsing, and is a key component in blockchain 
technologies like Bitcoin, where it ensures the integrity 
and authenticity of transactions. These properties are the 

motivation behind incorporating the basic elements of 
ECDSA with the proposed EECDA operational units.

ECDSA operates by generating a pair of keys: a private 
key for signing data and a public key for verifying signatures. 
The private key, kept confidential by the signer, creates a 
unique signature for each message, while the public key, 
shared openly, allows anyone to verify the authenticity of the 
signature. The strength of ECDSA lies in the difficulty of the 
Elliptic Curve Discrete Logarithm Problem (ECDLP) (Cheddour 
Z, Chillali A, Mouhib A.,2023), making it computationally 
infeasible to derive the private key from the public key. 
This robustness, combined with its efficiency, makes ECDSA 
an ideal choice for modern cryptographic applications 
where security and performance are paramount. While 
ECDSA is widely recognized for its security and efficiency, 
challenges remain in optimizing its performance, especially 
in resource-constrained environments like IoT networks. 
Current implementations of ECDSA can be computationally 
intensive and may not be suitable for devices with limited 
processing power and energy resources. Additionally, the 
key management and scalability aspects of ECDSA require 
further exploration to ensure its effectiveness in large-scale, 
dynamic IoT networks while maintaining a balance between 
security and energy efficiency.

Proposed Method
In the EECDSA work, three advanced functional modules 
are introduced, including the Lightweight Context 
Sensitivity Imposer (LCSI), the Adaptive Computational 
Complexity Overseer (ACCO), and the Energy-aware ECDSA 
Signer (EAES). These modules are designed to enhance 
both energy efficiency and security within a general IoT 
network environment. A conclusive disclosure about the 

Table 1: Summarization of existing methods outline

Author Work Methodology Advantages Limitations

Hazmant et.al. (Hazman, C., 
Guezzaz, A., Benkirane, S. et 
al.,2023)

lIDS-SIoEL: intrusion detection 
framework for IoT-based smart 
environments security using 
ensemble learning

Adaboost optimized anomaly 
detection

Higher Accuracy, 
Precision

Higher 
computational 
overhead

Perumal et.al. (Perumal G, 
Subburayalu G, Abbas Q, Naqi 
SM, Qureshi I.,2023)

VBQ-Net: A Novel Vectorization-
Based Boost Quantized Network 
Model for Maximizing the Security 
Level of IoT System to Prevent 
Intrusions

Multi-Hunting Reptile Search 
Optimization

Improved Accuracy, 
Precision

Undermine 
heterogeneous 
network support

Altunay et.al. (Hakan Can 
Altunay, Zafer Albayrak.,2023)

A hybrid CNN+ LSTM-based 
intrusion detection system for 
industrial IoT networks (CLIDS)

Convolutional Neural 
Network and Long Short-
Term Memory

Better attack 
detection accuracy

Lower Throughput 
and PDR

Jeyaselvi, M et.al (Jeyaselvi, M., 
Dhanaraj, R.K., Sathya, M. et 
al.,2023)

A highly secured intrusion detection 
system for IoT using EXPSO-STFA 
feature selection for LAANN to 
detect attacks

Improved Pearson 
Correlation Coefficient, 
PSO + Sea Turtle Foraging 
Algorithm

Higher attack 
detection accuracy 

Higher processing 
time

Jennifer et.al (Jenifer RR, 
Prakash VS.,2024)

Attack specific Security Optimized 
RSA for IoT

RSA, Fast Fuzzy Anomaly 
detection, Legacy Naïve 
Bayes Classifier

Higher attack 
detection Accuracy, 
Precision, and 
Throughput

High computational 
resource occupancy
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methodologies used in the modules and their purposes are 
articulated in this section.

Lightweight Context Sensitivity Imposer (LCSI)
The primary aimpoint of the LCSI is to adapt the operation 
of IoT devices based on the specific context or environment 
they are operating in. This includes factors like the device’s 
current activity, network conditions, or environmental 
changes. By being context-sensitive, the LCSI aims to 
optimize both performance and security without adding 
significant overhead to the system. Contextual information 
helps to the subsequent modules to make more informed 
decisions about how to handle various tasks or security 
measures.

A domain specific Context Sensitivity Correlation Table 
(CSCT) is prepared using domain specific context lexicon 
and the sensitivity label assigned by the field experts. The 
structure of CSCT is very similar to a common lookup table, 
with two fields. The first one is the lexeme and the second 
one is its sensitivity label. CSCT is designed to handle 3 
different sensitivity labels such as Low, Medium, and High. 
The low sensitive category are data that has less privacy 
concern. Medium sensitive category consists data with a 
little privacy data, but will not cause any significant harm if 
uncovered. High sensitive label is assigned to the data that 
are very delicate with highest privacy risks. Two sample CSCT 

those associated with electronic health record and industry 
4.0 are given in Table 2.

Targeted to be lightweight, LCSI ensures minimal 
impact on the resource-constrained devices typical in IoT 
networks. This means that the module is optimized to use 
minimal computational power, memory, and energy, making 
it suitable for devices with limited capabilities. Thus, the 
memory occupation of LCSI is limited to 2-bits as in Table 
3. This 2-bit sensitivity header will be added to the standard 
IoT data packet.

The scope of the sensitivity label header starts from the 
source sensor node to destination including all relay nodes. 
LCSI sensitivity header is just like a fragile postage stamp 
used to indicate that the mail or package is delicate and 
should be handled with care.

Adaptive Computational Complexity Overseer (ACCO)
ECDSA has three major operations namely, Key generation, 
Signing process, and verification process. The key generation 
phase has three important tasks such as Elliptic curve 
parameter definition, Private key generation, and public 
key calculation. The signing process includes the subtasks 
namely Message hashing, Random integer key selection, 
Elliptic curve point calculation for selected random key,   
the x-coordinate computation,  the signature verification 
element computation, and Signature computation. The 
verification process has the following tasks listed as 
Verification of   r and s , Message Hash, Calculation of 
, calculation of 1 2,u u , Point X calculation, and signature 
verification. The important variables involved in ECDSA are 

:  the prime number,  and :  the curve coordinates, 
: the basepoint, Order , and Field size . 
The Elliptic Curve Digital Signature Algorithm (ECDSA) 

is a cryptographic technique used to ensure data integrity 
and authentication in secure communications by generating 
and verifying digital signatures. It leverages elliptic curve 
cryptography to provide strong security with smaller 
key sizes, making it efficient for resource-constrained 
environments like IoT networks.

Selection of optimum security standard based on the 
data sensitivity label and current computation resource 
availability of the nodes is the core responsibility of ACCO 
Module. Secp192r1, secp256r1, secp384r1, and Secp512r1 are 
the acquired security standards in ACCO module to apply 
with ECDSA.  Secp192r1, also known as P-192r1 or prime192v1, 
is an elliptic curve defined over a prime field. It is part of the 

Table 2: Sample CSCTs

Electronic Health Records Industry 4.0

Lexeme Sensitivity Lexeme Sensitivity

Step count Low Machine uptime Low

Calories burn Low Energy consumption Low

Non-critical 
activity log Low Product count Low

. . . .

. . . .

. . . .

Heart rate Medium Machine 
performance metrics Medium

Blood pressure Medium Process optimization 
data Medium

Medication 
adherence Medium Batch traceability Medium

. . . .

. . . .

. . . .

Full ehrs High
Proprietary 
manufacturing 
processes

High

Genetic data High Production 
bottlenecks High

Real-time location High Trade secrets High

Table 3: Sensitivity label bits

Sensitivity Label Bit 1 Bit 0

N/A 0 0

Low 0 1

Medium 1 0

High 1 1
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set of elliptic curves recommended by the National Institute 
of Standards and Technology (NIST) for use in cryptographic 
applications, particularly for digital signatures, public 
key encryption, and key exchange protocols. Secp192r1 
consumes relatively less energy than the higher standards 
and provide a decent security. Higher subsequent security 
standards can provide higher security and also consumes 
coextensive energy proportions.

Let  be the sensitivity label with either Low/Medium/
High value assigned by LCSI module. Let  and  are 
the nodes involved in communication. Let max

np  be the 
maximum provided processing power of node , and 

max
np  be the maximum provided processing power of node 
. Similarly Let max

nm  be the maximum provided memory 
for node , and max

nm  be the maximum provided memory 
for node  onboard. In equivalent fashion, Let con

np , con
np

, con
nm , and con

nm  be the consumed processing power of  
, consumed processing power of  node , consumed 

memory of node , and consumed memory of node  
in appropriate sequence.

Let ˆ  be the available processing power, and ˆ  
be the available memory of node . Similarly let ˆ  be 
the available processing power, and ˆ  be the available 
memory of node . The available processing power and 
memory are computed using the following equations.

ˆ
x x x

max con
n n np p p= − 				    (1)

ˆ
y y y

max con
n n np p p= − 				    (2)

ˆ
x x x

max con
n n nm m m= − 				    (3)

ˆ
y y y

max con
n n nm m m= − 				    (4)

Since nodes  and  can me heterogeneous, there may 
be a difference between the availability of the computational 
resources. Therefore, in ACCO module, a percentage-based 
normalization among the computational resources is 
computed to balance the resources of different nodes. Let 

xnp  be the normalized available processing power for node 
 computed by the below equation.

( ) ( )( )ˆ ˆ ˆ ˆ ˆ ˆ1
2

10
ˆ

0
x y x y x y

x x

n n n n n n

n n

p p p p p p
p p

+ − + − −
= × 	 	 (5)

Similarly, the normalized available processing power 
ynp  

of node  is calculated by Equation 6. 

( ) ( )( )ˆ ˆ ˆ ˆ ˆ ˆ1
2

10
ˆ

0
x y x y x y

y y

n n n n n n

n n

p p p p p p
p p

+ − + − −
= × 		  (6)

Correspondingly the normalized available memory values 
for nodes  and  are computed using equations 7 and 
8 respectively.

( ) ( )( )ˆ ˆ ˆ ˆ ˆ ˆ1
2

10
ˆ

0
x y x y x y

x x

n n n n n n

n n

m m m m m m
m m

+ − + − −
= × 	  (7)

( ) ( )( )ˆ ˆ ˆ ˆ ˆ ˆ1
2

10
ˆ

0
x y x y x y

y y

n n n n n n

n n

m m m m m m
m m

+ − + − −
= × 	 (8)

The maximum resource scalar ˆ
xynΓ  for nodes  and  

is computed as follows

( ) ( )ˆ ˆ ˆ ˆ
ˆ 1

2 2 2
x y x y

xy

n n n n
n

p p m m + +
 Γ = × +
 
 

	
	 	  (9)

The available resource scalar 
xynΓ  for the nodes  and  

is computed as follows 

( ) ( )1
2 2 2

x y x y

xy

n n n n
n

p p m m + +
 Γ = × +
 
 

		  (10)

ACCO module determines the optimum security standard 
based on the sensitivity label and computational resource 
availability  by means of following algorithm.

Algorithm 1: ACCO Security Scheme Selection
Input: Sensitivity Label , Resource scalars ˆ

xynΓ  and 
xynΓ

Output: Security standard 
Step 1: Fetch 
Step 2: Obtain ˆ

xynΓ  and 
xynΓ

Step 3: If Lowδ = , then  = Secp192r1
Step 4: else if Mediumδ =
Step 5:   			     

1256 1                   
3

1 2384 1  
3 3

512 1                      

ˆ

ˆ ˆ

     

xy xy

xy xy xy

n n

n n n

Secp r if

Secp r if

Secp r otherwise

 Γ ≤ Γ

Ω = Γ < Γ ≤ Γ




    

Step 6: else

Step 7: 
1384 1  
2

512 1               

ˆ
xy xyn nSecp r if

Secp r otherwise

 = Γ < ΓΩ = 


Step 8: end if // 
Step 9: return  

Energy-aware ECDSA Signer (EAES)
Most of the IoT nodes are battery operated devices. Most of 
batteries used in IoT devices are powered between 1.8V to 5V 
operational voltage range, and 100 mAh to several thousand 
mAh based on the requirement. Any battery that is less than 
20% is considered as Low battery. If the remaining battery 
is less than 10% is considered as the Critical Battery Level. 

The electrical power of the batteries can be converted 
to Joule energy units using the following formula.

( ) ( ) ( ) ( ) 3600    
1000

Capacity mAh Voltage V seconds inan Hour
Energy J

× ×
=
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Let max
nε  be the energy at full capacity of the battery belongs 

to Node . Likewise, max
nε  be the energy at full capacity 

of node . Let rem
nε  and rem

nε  be the remaining energy 
available in Node  and in Node . The power scalar 

xynε  
is calculated by equation 11.

2
x y

xy

rem rem
n n

n

ε ε
ε

+
= 				    (11)

The battery state 
xynβ  is determined as in equation 12

1  
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1 1 
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x y

xy

x y x y

xy xy

max max
n n

n

max max max max
n n n n

n n
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Normal otherwise
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ε

ε ε ε ε
β ε

  +
  ≤

   
    + +    = < ≤        






		
	 (12)

The following algorithm of EAES is used to sign the data 
packets with energy consciousness.

Algorithm 2: Energy-aware Signer
Input: Input data packet, Security schema , Battery state 

xynβ

Output: Signed data packet
Step 1:   Read incoming data packet
Step 2:    Extract security bits, and determine 
Step 3:    Read Security Schema  from ACCO
Step 4:    Let ∆  be the signing procedure
Step 5:    If 

xyn Criticalβ =

Step 6:        
256 1  512 1
192 1  384 1

Secp r if Secp r
Secp r if Secp r

Ω =
∆ =  Ω =

  

Step 7:     else If 
xyn Lowβ =  

Step 8:        
384 1  512 1
256 1  384 1
192 1  256 1

Secp r if Secp r
Secp r if Secp r
Secp r if Secp r

Ω =
∆ = Ω =
 Ω =

		
	
Step 9:	 else assign ∆ = Ω
Step 10:     end if // 

xynβ
Step 11:   Sign input data packet using ∆
Step 12: return signed packet

These proposed functional modules optimize the energy 
efficiency of IoT network along with ameliorated security 
levels by selecting appropriate security scheme based on 
the dynamic network environment. 

Experimental Setup
A computer equipped with an i7-8250U processor (with a 
6MB Cache), 16GB of DDR4 RAM, and 1TB of SSD storage 
was used for developing and evaluating the discussed 
procedures. The implementation solution was created using 
Visual Studio IDE (https://visualstudio.microsoft.com/vs/), 
and the methodologies of EECDSA were coded in the C++ 
20.0 programming language (https://www.geeksforgeeks.

org/features-of-c-20/) OPNET (Sridevi, R., & Prakash, V. 
S. J. 2024), known as “Optimized Network Engineering 
Tool,” is a popular software suite for network simulation, 
modeling, and performance analysis. This software allows 
engineers, researchers, and network professionals to 
simulate and analyze various aspects of computer networks, 
telecommunications systems, and other communication 
technologies. OPNET offers features such as network 
modeling, simulation, performance analysis, protocol 
evaluation, and resource monitoring/management. It 
enables testing of various network scenarios without the 
need for physical implementation, helping users identify 
potential issues before deployment. Users can analyze 
resource utilization, identify bottlenecks, and develop 
optimization strategies within the network. Additionally, 
OPNET is used in academia to teach networking concepts 
and provide hands-on experience with network simulation. 
OPNET simulations are primarily designed to assess and 
analyze the performance and behavior of networks and 
protocols within a controlled, predefined environment. As a 
result, the use of a dataset is not required for many simulation 
scenarios, as the focus is on evaluating network performance 
and protocol behavior under various configurations.

Results and Analysis
During the evaluation process, two distinct categories 
of results are obtained. The first category includes 
network intrusion detection parameters, such as Accuracy, 
Precision, Sensitivity, Specificity, and F-Score. The second 
category encompasses network performance metrics, 
including Throughput, Latency, Jitter, End-to-End Delay, 
Packet Delivery Ratio, Power Consumption, and Security. 
Measurements are taken over a period of 1 real-world hour, 
with readings logged every 6 minutes. Consequently, there 
are 10 different timestamps used to record the parameters 
throughout the evaluation.

6.1. Accuracy
Network anomaly detection accuracy is crucial for ensuring 
network stability. Given that anomalies can signify intruder 
attacks, the anomaly detection process plays a key role in 
network security. This accuracy is determined using True 
Positive (TP), True Negative (TN), False Positive (FP), and False 
Negative (FN) values. The formula for calculating accuracy 
is TP TN

TP TN FP FN
+

+ + + .
The evaluation results show that the highest accuracy 

99.31% is achieved by proposed EECDSA work. The accuracy 
average of EECDSA is 99.17% which is 0.19% higher than the 
nearest performing method ASORI. The performance rank 
sequence based on Accuracy average is EECDSA, ASORI, 
LAANN, CLIDS, VBQ-Net, and IIDS-SIoEL listed from the best 
in order. A comparison graph for Accuracy during is given 
in Figure 1.  
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Table 4: Accuracy

Accuracy (%)

Time stamp lIDS-SIoEL VBQ – Net CLIDS LAANN ASORI EECDSA

1 95.010002 94.940002 97.089996 98.540001 98.919998 99.290001

2 94.974998 94.904999 97.165001 98.544998 98.945 99.045006

3 95.010002 94.809998 97.239998 98.604996 99.160004 99.315002

4 95.035004 94.949997 97.339996 98.769997 98.889999 99.235001

5 94.830002 95.074997 97.330002 98.5 99.145004 99.169998

6 94.994995 95.07 97.105003 98.470001 98.93 99.190002

7 95.005005 95.199997 97.089996 98.720001 99.055 99.080002

8 94.904999 95.199997 97.295006 98.525002 99.004997 99.135002

9 94.915001 95.065002 97.284996 98.489998 98.889999 99.214996

10 94.970001 95.019997 97.18 98.5 98.945007 99.104996

Figure 1: Accuracy (%)

Precision
Precision is a metric that assesses how accurately a model 
identifies positive instances. It is commonly applied in binary 
classification tasks, where the objective is to categorize 
instances into two groups namely Positive and Negative. 

TP
TP FP+

 is the norm to calculate precision.

The highest precision achieved in the entire simulation 
process is 98.98% which is secured by proposed EECDSA 
method. The order of performance ranking in terms of 
precision average is EECDSA, ASORI, LAANN, CLIDS, IIDS-
SIoEL, and VBQ-Net with the scores 98.73%, 98.35%, 98.13%, 
97.25%, 95.35%, and 94.33% respectively listed from the 
best. The performance improvement of EECDSA is apparent 

in terms of precision. A precision graph is plotted with the 
observed readings which is given in Figure 2. The EECDSA 
method achieves superior precision and overall performance 
by integrating three key functional modules—LCSI, ACCO, 
and EAES, which work synergistically to optimize security and 
resource utilization. Unlike existing methods such as ASORI 
and VBQ-Net, which rely on static cryptographic operations, 
EECDSA dynamically adjusts its computational complexity 
through ACCO, ensuring that security enforcement is 
tailored to the available resources of IoT nodes. Additionally, 
LCSI enhances security adaptability by classifying data 
sensitivity in real time, reducing unnecessary computational 
overhead. The EAES module further improves efficiency by 
optimizing the signing process based on the device’s battery 
level, minimizing power consumption while maintaining 
signature integrity. These adaptive mechanisms collectively 
enhance precision by reducing false positives and false 
negatives, leading to more accurate attack detection and 
response, outperforming than existing methods.

Sensitivity
Sensitivity is a metric used to assess the performance of 
a classification model, especially in binary classification 
tasks. It indicates how well the model correctly identifies 
positive cases out of all the actual positive cases. Sensitivity 
is crucial for identifying actual threats, minimizing missed 
detections, enhancing reaction speed, meeting regulatory 
requirements, and sustaining a strong security framework. 
Sensitivity, also known as recall, hit rate, or true positive rate, 
is calculated with the formula TP

TP FN+
. 

The computed sensitivity score of the compared 
methods during 10 different timestamps are recorded in 
Table 6.  

The sensitivity ranking progression of the compared 
methods is EECDSA, ASORI, LAANN, CLIDS, VBQ-Net, and 
IIDS-SIoEL with the sensitivity averages 99.63%, 99.62%, 
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98.99%, 97.18%, 95.65%, and 94.6215736 respectively. 
The highest sensitivity score 99.75% which is achieved by 
proposed EECDSA method during the experiments at 10th 
timestamp. The Sensitivity graph is provided in Figure 3.

Specificity
Specificity is a key metric for assessing the performance 
of a binary classification model, especially when correctly 
identifying negative instances is essential. It gauges the 
model’s ability to accurately recognize negative cases out 
of all actual negative cases. Specificity is calculated using 
the formula TN

TN FP+
. The measured specificity values for both 

the proposed and existing methods are presented in Table 
7. A comparison graph for discussed method with respect 
to specificity score is made available in Figure 4.

The order of performance rankings based on specificity 
score average is EECDSA, ASORI, LAANN, CLIDS, and IIDS-
SIoEL with the values 98.74%, 98.37%, 98.14%, 97.25%, 
95.31%, and 94.41%. The highest sensitivity score 98.98% 
is achieved by EECSDA method during the 3rd timestamp. 
The experimental results show that the EECDSA method is 
thriving better in the sensitivity category.

F-Score
The F-score, or F1-score, is a metric used in classification 
tasks to evaluate a model’s performance, especially in cases 
of class imbalance. It combines precision and recall into one 
value, offering a balanced measure of the model’s accuracy. 
In IoT security, high precision means that the detected 
threats are indeed real threats (minimizing false alarms), 
while high recall means that most threats are successfully 
identified (minimizing missed threats). The F-score merges 
these two metrics, providing a balanced assessment. 

By focusing on the balance between precision and recall, 
the F-score encourages the development of models that 
are not only accurate but also robust in detecting threats, 
leading to more effective and reliable IoT network security 

Table 5: Precision (%)

Precision (%)

Time stamp lIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA

1 95.379997 94.349998 97.169998 98.050003 98.360001 98.900002

2 95.419998 94.080002 97.129997 98.07 98.260002 98.480003

3 95.470001 94.089996 97.199997 98.220001 98.529999 98.980003

4 95.300003 94.150002 97.309998 98.489998 98.349998 98.949997

5 95 94.400002 97.580002 97.980003 98.529999 98.699997

6 95.43 94.330002 97.050003 97.970001 98.330002 98.809998

7 95.550003 94.529999 97.059998 98.360001 98.349998 98.589996

8 95.18 94.559998 97.540001 98.129997 98.519997 98.690002

9 95.260002 94.330002 97.209999 98.059998 98 98.720001

10 95.510002 94.519997 97.230003 97.940002 98.230003 98.459999

Figure 2: Precision (%)

solutions.
The F-score is  calculated using the formula 

 2 Precision Sensitivity
Precision Sensitivity

×
×

+ . The F-score values for the methods 
compared are presented in Table 8.

The EECDSA method achieves the highest F-Score 
of 0.9931 at the 3rd timestamp. The performance of the 
evaluated methods is ranked as follows: EECDSA (0.9917422), 
ASORI (0.9898193), LAANN (0.9856011), CLIDS (0.9721296), 
VBQ-Net (0.9498892), and IIDS-SIoEL (0.9498428). It is 
observed that the existing methods, IIDS-SIoEL and VBQ-
Net, show close competition, with only a minor difference 
in their F-Scores. The EECDSA method, achieving the 
top F-Score of 0.9931, demonstrates its effectiveness in 
maintaining a balance between Sensitivity and Specificity. 
The EECDSA method introduces a novel approach to IoT 
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Table 6: Sensitivity (%)

Sensitivity (%)

Time stamp lIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA

1 94.679375 95.476624 97.014778 99.020401 99.474113 99.677483

2 94.578255 95.658371 97.198036 99.010597 99.624863 99.605545

3 94.599686 95.464691 97.277817 98.982162 99.787315 99.647644

4 94.797569 95.680893 97.368423 99.044647 99.423775 99.517242

5 94.678101 95.691841 97.094528 99.009697 99.757019 99.636581

6 94.606918 95.747055 97.156876 98.959595 99.524292 99.566704

7 94.519737 95.813904 97.118279 99.073334 99.756569 99.565742

8 94.65937 95.786057 97.064384 98.9114 99.485001 99.576225

9 94.607208 95.737343 97.356033 98.910629 99.776009 99.7071

10 94.489517 95.474747 97.132858 99.049347 99.655075 99.746735

Figure 3: Sensitivity (%)

Table 7: Specificity

Specificity (%)

Time stamp lIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA

1 95.345558 94.415894 97.165466 98.068932 98.378166 98.908516

2 95.378868 94.176094 97.132004 98.088165 98.283516 98.496986

3 95.427933 94.173889 97.202232 98.233604 98.548294 98.986794

4 95.274963 94.242126 97.311607 98.498405 98.367622 98.955948

5 94.982941 94.474594 97.567841 98.000793 98.547859 98.712105

6 95.389893 94.412697 97.053238 97.990105 98.3498 98.818977

7 95.500961 94.602325 97.06176 98.371727 98.37294 98.603676

8 95.153343 94.628754 97.527885 98.144653 98.534218 98.701561

9 95.227066 94.41214 97.21418 98.076538 98.034981 98.732552

10 95.460983 94.574257 97.227226 97.962822 98.254951 98.479614

Figure 4: specificity



4755	 Elliptic Curve Digital Signature Algorithm

Table 8: F-Score

F-Score

Time stamp lIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA

1 0.950284 0.9491 0.970923 0.985328 0.989139 0.992872

2 0.949973 0.948626 0.97164 0.98538 0.989377 0.990396

3 0.950329 0.947724 0.972389 0.985996 0.991547 0.993127

4 0.950481 0.949093 0.973392 0.987666 0.98884 0.992328

5 0.948388 0.950415 0.973367 0.984922 0.991397 0.991661

6 0.950167 0.950332 0.971034 0.984623 0.989235 0.991869

7 0.950321 0.951676 0.970891 0.987154 0.990483 0.990755

8 0.94919 0.951691 0.973016 0.985191 0.990001 0.991311

9 0.949325 0.950285 0.97283 0.984835 0.9888 0.992111

10 0.94997 0.94995 0.971814 0.984916 0.989374 0.990992

Figure 5: F-Score

security by integrating context-aware security adaptation, 
computational resource optimization, and energy-efficient 
signing mechanisms, setting it apart from existing methods 
like ASORI and VBQ-Net. Unlike ASORI, which focuses 
primarily on anomaly detection using RSA, EECDSA 
dynamically adjusts cryptographic complexity based on 
real-time node resource availability through the Adaptive 
Computational Complexity Overseer (ACCO). Additionally, 
Lightweight Context Sensitivity Imposer (LCSI) enables real-
time data classification based on sensitivity levels, ensuring 
optimal security enforcement while minimizing overhead—
an aspect not addressed in VBQ-Net. Furthermore, Energy-
aware ECDSA Signer (EAES) ensures energy-efficient signing, 
reducing power consumption while maintaining high 
security, making EECDSA uniquely scalable, adaptive, and 
resource-efficient for large-scale IoT networks.

A F-Score comparison grid chart is given in Figure 5.

Throughput
Throughput denotes the rate at which data is effectively 
transmitted or received over a network. It gauges the 
network’s efficiency and capacity. The OPNET system 
records throughput values during simulations, and these 
values are detailed in Table 9.

The highest achieved throughput durintg the entire 
similation is 30103 kbps achieved by proposed EECDSA 
method. The achieved value by EECDSA is 333 kbps higher 
than the very next successful approach ASORI with the 
value 29770 kbps. The performance order with respect to 
throughput averages is EECDSA, ASORI, LAANN, VBQ-Net, 
IIDS-SIoEL, and CLIDS. A comparison grid graph is terdered 
in Figure 6.

Latency
Latency refers to the delay between the initiation of an action 
or request and the receipt of a response or the completion 

of that action. It is a critical performance metric for IoT 
systems, affecting how quickly devices can communicate 
and respond to commands or data. Minimizing latency in 
IoT is essential because it affects how quickly and effectively 
connected systems work. Low latency means data travels 
and is processed fast, which is crucial for applications that 
need real-time responses, like self-driving cars, factory 
automation, and smart home gadgets. Quick responses are 
important for keeping these systems reliable, safe, and user-
friendly. The measurement unit of latency is milliseconds 
which is used to be referred as mS. Measured latency values 
of the examined methods are registered in table 10.

The ranking order with respect to Latency is EECDSA, 
ASORI, LAANN, VBQ-Net, IIDS-SIoEL, and CLIDS with the 
latency averages 159mS, 183mS, 237mS, 247mS, 289mS, 
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Table 9: Throughput

Throughput (kbps)

Timestamp lIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA

1 27632 28452 26843 28207 29120 29826

2 27743 28224 27390 28208 29306 29734

3 27344 28134 26937 28281 29770 30093

4 27309 28384 26944 28317 29122 30063

5 27684 28195 27387 28706 29576 30049

6 27480 28088 27381 28107 29533 29882

7 27223 27897 27336 28638 29566 29611

8 27704 28329 26932 28779 29638 29910

9 27206 28393 27195 28726 29474 30103

10 27392 28435 27181 28575 29519 29791

Figure 6: Throughput

Table 10: Latency

Latency (mS)

Timestamp lIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA

1 280 237 323 250 201 163

2 275 249 293 250 191 168

3 296 254 318 246 166 149

4 298 240 317 244 201 150

5 278 250 294 223 177 151

6 289 256 294 255 179 160

7 302 266 296 227 177 175

8 277 243 318 219 173 159

9 303 240 304 222 182 148

10 293 238 305 230 180 165

Figure 7: Latency
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Table 11: Jitter

Jitter (mS)

Time stamp lIDS-SIoEL VBQ – Net CLIDS LAANN ASORI EECDSA

1 96 83 109 87 73 61

2 95 87 100 87 70 63

3 101 89 108 86 62 57

4 102 84 107 86 73 57

5 96 87 101 79 66 58

6 99 89 101 89 66 60

7 103 92 101 81 66 65

8 95 85 108 78 64 60

9 103 84 104 79 67 57

10 100 84 104 81 66 62

Figure 8: Jitter

Table 12: Energy

Energy (mJ)

Time stamp lIDS-SIoEL VBQ – Net CLIDS LAANN ASORI EECDSA

1 590 638 712 730 568 551

2 550 641 703 716 544 526

3 622 635 697 786 501 533

4 564 643 701 733 563 485

5 555 602 746 713 546 508

6 628 667 689 779 523 516

7 583 656 717 747 581 492

8 626 631 717 762 504 489

9 550 667 689 717 576 527

10 628 626 724 768 541 489

and 306ms listed from the best. The lowest latency value 
148mS is recorded for the proposed EECDSA method at 
the 9th timestamp during the experiment. Latency graph is 
provided in Figure 7.

Jitter
In networking, jitter refers to the variability in the delay of 
packet delivery across a network, resulting in irregular timing 
for data packets reaching their destination. High jitter values 
can lead to inconsistent network performance. The jitter 
values observed during the simulation are listed in Table 
11 and the Latency comparison graph is given in Figure 8.

The lowest jitter is 57mS which is achieved by proposed 
EECDSA method during 3rd, 4th, and 9th timestamps. The 
performance rating sequence when concerning jitter is 
EECDSA, ASORI, LAANN, VBQ-Net, IIDS-SIoEL, and CLIDS 
with the jitter averages 60mS, 67.3mS,83.3mS, 86.4mS, 99mS, 
and 104.3mS respectively ordered from the best. Hence it is 
spotted that the EECDSA method seizes a lesser jitter values 
than the other methods in comparison during the entire 
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simulation process. 

Energy
Energy efficiency is vital in Internet of Things (IoT) networks 
for several reasons, including the limited power resources of 
the nodes, the scalability of the network, and the challenges 
in maintaining it. Energy consumption is measured in 
millijoules within the network. Energy consumption in IoT 
networks is typically measured in terms of the amount of 
energy used by the devices or nodes in the network. This 
measurement can be expressed in various units, such as 
millijoules (mJ), joules (J), or watt-hours (Wh), depending 
on the scale and precision required. In this experiment, the 
energy consumption of the nodes is measured in mJ. 

Energy consumption and IoT network quality are 
inversely proportional: as energy consumption decreases, 
the battery life and operational efficiency of devices 
improve, enhancing overall network reliability and 
performance. Lower energy usage also supports scalability 
and reduces maintenance needs, contributing to higher 
network quality. Conversely, higher energy consumption 
can lead to more frequent device replacements and reduced 
network reliability. The energy readings from the simulation 
are provided in Table 12.

As per the readings observed during the experiments, 
the quality of the discussed methods is ranked as EECDSA, 
ASORI, IIDS-SIoEL, VBQ-Net, CLIDS, and LAANN with the 
energy averages 511.6mJ, 544.7mJ, 589.6mJ, 640.6mJ, 
709.5mJ, and 745.1mJ respectively. EECDSA method 
consumed the very less energy share of 485mJ during the 
4th timestamp during the throughput the entire experiment.  

The comparison graph for energy consumption is given in 
Figure 9. 

Packet Delivery Ratio
Packet Delivery Ratio (PDR) is a metric that quantifies the 
effectiveness of data transmission within a network. It is 
defined as the ratio of the number of packets successfully 
received by the intended destination to the number of 
packets sent by the source. PDR provides insight into how 
well the network facilitates communication between IoT 
devices, reflecting the efficiency of data routing and network 
reliability. It is crucial for evaluating the performance of 
network protocols and configurations in ensuring data 
integrity and successful delivery.

A high PDR indicates that most packets sent are 
successfully delivered, ref lecting strong network 
performance and quality of service. It aids in evaluating 
and optimizing network protocols, managing resources 
effectively by reducing retransmissions and conserving 
energy, and supporting network scalability as it grows. 
Overall, PDR is a key metric for ensuring that IoT networks 
operate reliably and efficiently, enhancing both performance 
and user satisfaction. The PDR values have been measured 
and recorded for the discussed methods are comprehensively 
in Table 13

The highest packet delivery ratio 99.37% is achieved by 
the EECDSA method over the course of the entire dissection. 
The performance rank based on the PDR is EECDSA, ASORI, 
LAANN, VBQ-Net, IIDS-SIoEL, and CLIDS with the PDR 
averages 99.30%, 99.15%, 98.82%, 98.75%, 98.49%, and 
98.38% have been meticulously arranged in descending 
order of excellence. 

The PDR comparison grid graph is provided in Figure 10.

Security
Security is essential for IoT network for various important 
reasons, including the protection of privacy, ensuring data 
integrity, maintaining device control, addressing safety 
concerns, and supporting long device lifecycles. OPNET can 
assess the security level of a simulated network environment 
by initiating different types of intruder attacks. The security 
scores for the methods evaluated are detailed in Table 14, 
and a comparison graph is provided in Figure 11

The highest security score 99.75% is achieved by the 
proposed EECDSA method during the 10th timestamp of 
the simulation. The ranking arrangement of performance 
according to the security level is EECDSA, ASORI, LAANN, 
CLIDS, VBQ-Net, and IIES-SIoEL with the security scores 
averages 99.55%, 99.43%, 98.41%, 97.02%, 94.92%, and 
94.23%. The most adverse security score of EECDSA is 99.4% 
which is also higher than the other compared methods, 
proves the exalted performance of the proposed method. 
The result scores include major attack types such as DoS, 
Probe, U2R, and R2L. 

Figure 9: Energy
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Table 13: Packet Delivery Ratio

Packet Delivery Ratio(%)

Time stamp lIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA

1 98.543999 98.817337 98.280998 98.735664 99.040001 99.27533

2 98.581001 98.741333 98.463333 98.736 99.101997 99.244667

3 98.447998 98.711334 98.312332 98.76033 99.256668 99.364334

4 98.436333 98.79467 98.314667 98.772331 99.040665 99.354332

5 98.561333 98.731667 98.462334 98.902 99.192001 99.34967

6 98.493332 98.695999 98.460335 98.702332 99.177666 99.293999

7 98.407669 98.632332 98.445335 98.879333 99.188667 99.203667

8 98.568001 98.776337 98.310669 98.926331 99.212669 99.303337

9 98.402 98.797668 98.398331 98.908669 99.157997 99.367668

10 98.463997 98.811668 98.393669 98.85833 99.172997 99.263664

Figure 10: Packet Delivery Ratio

Table 14: Security

Security (%)

Time stamp lIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA

1 94.158821 94.81765 97.152939 98.435295 99.358826 99.517647

2 94.217644 95.05294 96.976471 98.376472 99.535294 99.635292

3 94.335297 94.81765 96.800003 98.494118 99.535294 99.400002

4 94.158821 94.994118 96.800003 98.31765 99.535294 99.576469

5 94.217644 94.81765 96.917648 98.435295 99.358826 99.635292

6 94.099998 95.05294 97.152939 98.55294 99.476471 99.400002

7 94.217644 94.758827 97.035294 98.494118 99.535294 99.517647

8 94.276474 94.994118 97.035294 98.494118 99.300003 99.400002

9 94.158821 95.05294 97.152939 98.199997 99.358826 99.694115

10 94.452942 94.81765 97.152939 98.258827 99.300003 99.752945

Figure 11: Security
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The EECDSA framework offers significant performance 
improvements by balancing energy efficiency and security 
in IoT networks, making it ideal for resource-constrained 
devices. Through the integration of advanced modules 
like LCSI, ACCO, and EAES, it enhances key metrics such 
as Accuracy, Precision, and Sensitivity, while optimizing 
network performance in terms of Throughput, Jitter, and 
Latency. This approach not only improves security through 
advanced cryptographic techniques but also minimizes 
energy consumption, ensuring the long-term sustainability 
of large-scale IoT deployments. Overall, EECDSA proves to 
be an efficient, scalable, and secure solution that meets 
the growing demands of IoT networks while maintaining 
optimal performance and resource utilization.

Conclusion
Based on the evaluations conducted with most recent 
establishments related to IoT network security and 
achievements, the new EECDSA offers advanced features, 
including the Lightweight Context Sensitivity Imposer (LCSI), 
Adaptive Computational Complexity Overseer (ACCO), and 
Energy-aware ECDSA Signer (EAES), which enhance both 
energy efficiency and security. The effectiveness of these 
innovations is evaluated using metrics such as Accuracy, 
Precision, Sensitivity, Specificity, and F-Score for monitoring 
network attacks, as well as Throughput, Jitter, Latency, and 
Energy consumption, showing notable improvements in 
both security and network performance. While EECDSA 
achieves enhanced energy efficiency and greater security, 
there may be potential for further security improvements 
by integrating multiple digital signature concepts, which 
could be a notable feature. Future research could explore 
the integration of post-quantum cryptographic techniques 
with EECDSA to further enhance security resilience against 
emerging quantum computing threats while maintaining 
energy efficiency in IoT networks.
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