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Abstract

Ensuring security, integrity, and energy efficiency in Internet of Things (IoT) networks is a critical challenge due to the resource constraints
of loT devices. Traditional digital signature algorithms such as RSA, ECDSA, and EdDSA provide security but often lack energy optimization,
making them inefficient for large-scale loT deployments. To address these challenges, this research proposes an Energy-aware Security
Optimized Elliptic Curve Digital Signature Algorithm (EECDSA) for universal loT networks. EECDSA enhances conventional ECDSA by
integrating three novel functional modules: Lightweight Context Sensitivity Imposer (LCSI), Adaptive Computational Complexity Overseer
(ACCO), and Energy-aware ECDSA Signer (EAES). These modules dynamically adjust security parameters based on contextual sensitivity,
optimize computational complexity to balance security and resource consumption, and ensure energy-efficient digital signing in loT
environments. The proposed method is evaluated using OPNET simulations, measuring both security and network performance metrics,
including Accuracy, Precision, Sensitivity, Specificity, F-Score, Throughput, Latency, Jitter, Energy Consumption, Packet Delivery Ratio,
and Security Levels. Experimental results demonstrate that EECDSA outperforms existing security solutions, achieving higher security
resilience (99.55%), reduced energy consumption (511.6mJ), and improved network performance. These findings validate EECDSA as

an efficient and scalable security mechanism for loT ecosystems.

Keywords: Digital Signature Algorithms, Energy-aware security, Network Security, Internet-of-Things.

Introduction

Digital signature algorithms use cryptographic techniques
to generate a unique signature for a piece of data. This
signature can be verified by the receiver to ensure that the
data has not been tampered with and that it originates
from a legitimate source (Lalem F, Laouid A, Kara M,
Al-Khalidi M, Eleyan A.,2023). Many loT devices have limited
computational power, memory, and energy resources (S.
R. Kawale, K. Prasad, D. Palanikkumar, P. A. Mary.,2023).
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Implementing digital signature algorithms that are both
secure and resource-efficient is a significant challenge. loT
networks often consist of a large number of devices. The
digital signature solutions need to be capable of scaling
to manage a large number of devices and data exchanges
(Hofheinz, D., Kiltz, E.,2022). Interoperability is essential,
ensuring the DSA can function across diverse devices and
platforms within the loT ecosystem (Kim Y, Seo SC.,2022).
Additionally, the algorithms must provide robust security
features, including authentication, data integrity, and non-
repudiation, to safeguard against unauthorized access and
data tampering. Balancing these considerations is critical
to developing effective and reliable digital signature
solutions for loT environments (Shabana Urooj, Sonam Lata,
Shahnawaz Ahmad, Shabana Mehfuz, S Kalathil.,2023).
Context sensitivity is one of the vital elements in loT
networks because it enables devices to make intelligent
decisions based on their operating environment and the
specific needs of the situation (Inshi S, Chowdhury R,
Ould-Slimane H, Talhi C.,2023). loT devices can optimize
their performance, improve efficiency, and enhance user
experiences by context acumen. For instance, A smart
thermostat optimizes energy use and ensures comfort by
adjusting the temperature according to room occupancy,
the time of day, or the weather conditions. In industrial
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settings, context-aware sensors can detect anomalies in
machinery and predict maintenance needs, preventing
downtime and reducing costs (Picallo, I., Iturri, P.L., Celaya-
Echarri, M. et al.,2023). In healthcare, wearable devices
can monitor patient vitals and trigger alerts based on
contextual data, such as activity levels or changes in health
parameters (S. Das, S. Namasudra, S. Deb, P. M. Ger and R.
G. Crespo.,2023).

Energy-awareness is crucial in loT networks due to
the widespread use of battery-powered devices and
the need for long-term, sustainable operation. Many loT
devices operate in remote or inaccessible locations where
frequent battery replacement is impractical and costly.
Optimizing energy consumption extends device lifespan,
reduces maintenance costs, and enhances the reliability
of the network (Adnan Sabovic, Michiel Aernouts, Dragan
Subotic, Jaron Fontaine, Eli De Poorter, Jeroen Famaey.,2023).
Additionally, energy-efficient devices contribute to
environmental sustainability by minimizing power usage
and the associated carbon footprint (Almalki, F.A., Alsamhi,
S.H., Sahal, R. et al.,2023). In scenarios with large-scale loT
deployments, energy awareness ensures that devices can
perform their tasks effectively without draining power
resources, thereby maintaining consistent performance
and connectivity (R. Samadi, A. Nazari and J. Seitz.,2023).
Balancing energy efficiency with security and functionality is
crucial for optimizing loT networks, ensuring their reliability
and sustainability Energy efficiency ensures prolonged
device operation while minimizing maintenance, but it can
conflict with the need for robust security. At the same time,
maintaining functionality is key to ensuring the network
performs its tasks without delays or failures (Jabeen, A., &
Shanavas, A. R. M. (2025). This work aims to address these
challenges by finding solutions that balance these three
elements, ensuring loT networks are secure, efficient, and
reliable.

The main Contribution of this research as follows,

« Proposes an EECDSA to enhance security and energy
efficiency in loT networks.

« Implements a context-aware mechanism LCSI to classify
data sensitivity dynamically, optimizing security
overhead based on real-time contextual factors.

Introducing ACCO which adjusts cryptographic security

parameters based on node processing capacity and

memory availability, ensuring optimal performance.

Integrating energy-aware signing strategies EAES to

extend battery life and reduce computational overhead

in loT devices

Structure of Manuscript

The manuscript begins with an Introduction in section
1, highlighting the need for energy-efficient loT security
solutions. Section 2 reviews the existing method for recent
digital signature and intrusion detection techniques,

identifying their limitations. Section 3 explains the
background of ECDSA’s cryptographic foundations, leading
to the Proposed Method. Section 4 explains the proposed
methodology, Section 5 and 6 explains the experimental
setup and results analysis. Finally Section 7 summarizes
the conclusion.

Existing Methods

Various attempts have been previously made to achieve
a balance between security and energy efficiency in
heterogeneous loT networks. This section examines some of
the most relevant existing approaches to gain insights into
their methodologies, implementation strategies, benefits,
and limitations. The selected methods include IIDS-SIoEL:
an intrusion detection framework for enhancing security
in loT-based smart environments using ensemble learning
(Hazman, C., Guezzaz, A., Benkirane, S. et al.,2023), VBQ-
Net: a novel vectorization-based boost quantized network
model aimed at maximizing loT system security to prevent
intrusions (Perumal G, Subburayalu G, Abbas Q, Naqgi SM,
Qureshi 1.,2023), a hybrid CNN+LSTM-based intrusion
detection system designed for industrial loT networks
(Hakan Can Altunay, Zafer Albayrak.,2023), a highly secure
intrusion detection system for loT utilizing EXPSO-STFA
feature selection with LAANN for attack detection (Jeyaselvi,
M., Dhanaraj, R.K., Sathya, M. et al.,2023), and an attack-
specific security-optimized RSA model for loT (Jenifer RR,
Prakash VS.,2024).

1IDS-SIoEL: Intrusion detection framework for loT-
based smart environments security using ensemble
learning
IIDS-SIoEL work is proposed by Chaimae Hazman et.al
(Hazman, C., Guezzaz, A., Benkirane, S. et al.,2023) to
offer improved security for smart city loT nodes those
have mobility It is common that the nodes with higher
mobility are more vulnerable to intruder attacks due to
frequent position and cluster migrations. 1IDS-SIoEL work
is indented to overcome these intruder attacks. IIDS-SIoEL
work is prepared based on the inspiration of applicable
improvements in intruder detection system by incorporation
of Machine learning and Deep learning concepts. In
general, the IIDS-SIoEL framework functions based on an
optimal anomaly detection model that utilizes AdaBoost,
incorporating various feature selection techniques such as
Boruta, mutual information, and correlation. The proposed
model was tested on the IoT-23, BoT-loT, and Edge-lloT
datasets using a GPU. Important intruder detection
parameters such as Accuracy, Precision, Recall and F-Score
are computed for the compared methods, in which 1IDS-
SIoEL secures better scores.

Improvement in accuracy and precision parameters
is the main advantage of IIDS-SIoEL method whereas.
The experiments carried out in a Kaggle cloud server-
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based environment with a huge memory. This much of
computational complexity negatively impacts the network
performance metrics such as Throughput and Packet
Delivery Ratio. Decayed performance is observed as the
limitation of IIDS-SIoEL work.

VBQ-Net: A Novel Vectorization-Based Boost
Quantized Network Model for Maximizing the
Security Level of loT System to Prevent Intrusions

In 2023, Perumal et.al. (Perumal G, Subburayalu G, Abbas Q,
Nagi SM, Qureshi 1.,2023) proposed VBQ-Net methodology
to provide data security in a loT network environment. In
VBQ-Net dissertation, a Vector Space Bag of Words (VSBW)
method is employed to lower the feature dimensionality
and pinpoint key characteristics within the data. In addition,
a novel classification technique named Boosted Variance
Quantization Neural Networks (BVQNNS) is utilized to
categorize various types of intrusions using a weighted
feature matrix. During the classification process, a Multi-
Hunting Reptile Search Optimization (MH-RSO) algorithm
is applied to determine the probability values for making
optimal choices in intrusion prediction. VBQNM method
is evaluated using comprehensive experiments with real-
world loT datasets and simulated intrusion scenarios.
Benchmark parameters such as Accuracy, Precision,
Sensitivity, Specificity, F-Score, and Detection rate are
measured during the evaluation process.

Improved accuracy and efficiency, and lower memory
usage are the stated advantage of VBQ-Net method. Missing
real-time optimizations may cause performance issues in
heterogeneous loT network environments — which is stated
as the limitation of VBQ-Net method.

A hybrid CNN+ LSTM-based intrusion detection
system for industrial loT networks (CLIDS)

Haka n Can Altunay et.al. (Hakan Can Altunay, Zafer
Albayrak.,2023) proposed CLIDS work in 2022 for providing
security in Industrial Internet-of-Things (lloT) network
environments. Three different models were proposed in
CLIDS work for detecting intrusions in the lloT network using
deep learning architectures: Convolutional Neural Network
(CNN), Long Short-Term Memory (LSTM), and a hybrid
combination of CNN and LSTM. Performance evaluations
are performed using UNSW-NB15 and X-IloTID datasets
to identify and compare normal and abnormal data. Both
binary and multi-class classification are carried out in the
evaluation process. There is no loT network simulator or
emulator used in the evaluation process. The dataset records
are bluntly processed through mathematical model without
any real-time intruder attacks.

High accuracy is the declared advantage of CLIDS
method. Missing evaluation with a simulator or with
other real-time tools is one of the limitations of CLIDS
work, Stacking up CNN and LSTM to each other increase

the computational overhead that impacts negatively in
network performance parameters such as Throughput
and Packet Delivery Rate is another identified limitation of
CLIDS work.

A highly secured intrusion detection system for loT
using EXPSO-STFA feature selection for LAANN to
detect attacks (LAANN)

LAANN work is introduced in 2022 by Jeyaselvi et.al
(Jeyaselvi, M., Dhanaraj, R.K., Sathya, M. et al.,2023) as an
attempt to achieve a new efficient intrusion detection system
for lIoT Network environments. As the first phase, the data
underwent pre-processing to gain a clear understanding of
potential attacks. This involved handling eliminates missing
and NaN values. To gain insights into the data, an Improved
Pearson Correlation Coefficient (IPCC) and Feature Extraction
(FE) method was established, presenting the relationships
within the data by considering causative factors. As the
subsequent phase, feature extraction is performed to
identify relevant features to ensure efficient computational
time and accuracy using the Explorated Particle Swarm
Optimization (PSO) centered Sea Turtle Foraging Algorithm
(EXPSO-STFA). Finally, the selected features were trained and
evaluated using the Look Ahead Artificial Neural Network
(LAANN) classification to identify attacks. The LAANN
method achieves a lower error rate, minimizes the chances
of false alarm rates (FAR), and effectively and reliably detects
attacks. All intrusion detection performance metrics such
as accuracy, and precision are measured by the conducted
experiments.

Attainment of higher accuracy and attack detection
average are the advantages of LAANN work. Ensemble
of multiple optimization algorithms causes higher
computational overhead which leads to higher processing
time. The high processing time naturally reduces the overall
throughput of the loT network — which is discovered as the
limitation of LAANN work.

Rivest-Shamir-Adleman algorithm optimized to
protect iot devices from specific attacks. Informatics
and Automation

In 2024, Jennifer et.al. (Jenifer RR, Prakash VS.,2024)
presented ASORI work to provide improved security for
heterogeneous loT network environments. ASORI work
integrates three key contributions to enhance security in loT
network environments. The novel modules introduced are
the Fast-Fuzzy Anomaly Detector, Legacy Naive Bayes Attack
Classifiers, and Variable RSA Security Schemer, collectively
referred to as ASORI. The work also introduces innovative
features such as the onboard loT certification mechanism
and dynamic security strategy selection. The ASORI model
has been evaluated using the industry-standard network
simulator OPNET to ensure improved security and enhanced
performance of critical network parameters. Both intrusion
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detection performance metrics such as Accuracy, Precision,
Sensitivity, Specificity, and F-Score are measured along
with network performance benchmark metrics such as
Throughput, Latency, Jitter, Energy consumption, Packet
Delivery Ratio, and overall security level are measured for
compared methods at different timestamps.

Accomplishment of higher accuracy, precision,
F-Score, throughput, packet delivery ratio with minimized
communication delays such as jitter and latency are the
witnessed advantage of ASORI method. Utilization of
RSA as one of the functional elements is comparatively
consumes higher computational resources with respect to
asecurity threshold level. This high computational resource
occupancy is the asserted limitation of ASORI.

A summary about used methodologies, theiradvantages
and limitations of discussed methods are enumerated in
Table 1.

Background

A succinct introduction about Elliptic Curve Digital
Signature Algorithm (ECDSA) is required to explain the
proposed EECDSA functional blocks at ease, provided
in this section. ECDSA is one of the best cryptographic
algorithms used for digital signatures, providing the same
level of security as traditional algorithms like RSA but with
shorter key lengths (G. Dimitoglou and C. Jim.,2023). It
leverages the mathematical properties of elliptic curves over
finite fields, resulting in more efficient computations and
reduced storage requirements. ECDSA is widely adopted
in various security protocols, including SSL/TLS for secure
web browsing, and is a key component in blockchain
technologies like Bitcoin, where it ensures the integrity
and authenticity of transactions. These properties are the

motivation behind incorporating the basic elements of
ECDSA with the proposed EECDA operational units.

ECDSA operates by generating a pair of keys: a private
key for signing data and a public key for verifying signatures.
The private key, kept confidential by the signer, creates a
unique signature for each message, while the public key,
shared openly, allows anyone to verify the authenticity of the
signature. The strength of ECDSA lies in the difficulty of the
Elliptic Curve Discrete Logarithm Problem (ECDLP) (Cheddour
Z, Chillali A, Mouhib A.,2023), making it computationally
infeasible to derive the private key from the public key.
This robustness, combined with its efficiency, makes ECDSA
an ideal choice for modern cryptographic applications
where security and performance are paramount. While
ECDSA is widely recognized for its security and efficiency,
challenges remain in optimizing its performance, especially
in resource-constrained environments like loT networks.
Currentimplementations of ECDSA can be computationally
intensive and may not be suitable for devices with limited
processing power and energy resources. Additionally, the
key management and scalability aspects of ECDSA require
further exploration to ensure its effectiveness in large-scale,
dynamic loT networks while maintaining a balance between
security and energy efficiency.

Proposed Method

In the EECDSA work, three advanced functional modules
are introduced, including the Lightweight Context
Sensitivity Imposer (LCSI), the Adaptive Computational
Complexity Overseer (ACCO), and the Energy-aware ECDSA
Signer (EAES). These modules are designed to enhance
both energy efficiency and security within a general loT
network environment. A conclusive disclosure about the

Table 1: Summarization of existing methods outline

Author Work Methodology Advantages Limitations
Hazmant etal. (Hazman, C, [IDS-SIoEL: intrusion detection o ‘ Higher
- framework for loT-based smart Adaboost optimized anomaly Higher Accuracy, .
Guezzaz, A., Benkirane, S. et R . R . . computational
environments security using detection Precision
al.,2023) . overhead
ensemble learning
VBQ-Net: A Novel Vectorization-
Perumal et.al. (Perumal G, Based Boost Quantized Network Multi-Hunting Reptile Search  Improved Accurac Undermine
Subburayalu G, Abbas Q, Naqi Model for Maximizing the Security 0 timizationg P PreFt):ision Y heterogeneous
SM, Qureshi 1.,2023) Level of loT System to Prevent p network support
Intrusions
Altunay et.al. (Hakan Can ﬁ‘] 2 ﬁ:('i%’:r‘et tli-zll—h:-?taesric:‘or EZ?‘leit;r:ja:_gﬁur::‘ort_ Better attack Lower Throughput
Altunay, Zafer Albayrak.,2023) Y 9 detection accuracy and PDR

Jeyaselvi, M et.al (Jeyaselvi, M.,
Dhanaraj, R.K,, Sathya, M. et
al.,2023)

Jennifer et.al (Jenifer RR,
Prakash VS.,2024)

industrial loT networks (CLIDS)

A highly secured intrusion detection
system for loT using EXPSO-STFA
feature selection for LAANN to
detect attacks

Attack specific Security Optimized
RSA for loT

Term Memory

Improved Pearson
Correlation Coefficient,
PSO + Sea Turtle Foraging
Algorithm

RSA, Fast Fuzzy Anomaly
detection, Legacy Naive
Bayes Classifier

Higher attack
detection accuracy

Higher attack
detection Accuracy,
Precision, and
Throughput

Higher processing
time

High computational
resource occupancy
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methodologies used in the modules and their purposes are
articulated in this section.

Lightweight Context Sensitivity Imposer (LCSI)

The primary aimpoint of the LCSI is to adapt the operation
of loT devices based on the specific context or environment
they are operating in. This includes factors like the device’s
current activity, network conditions, or environmental
changes. By being context-sensitive, the LCSI aims to
optimize both performance and security without adding
significant overhead to the system. Contextual information
helps to the subsequent modules to make more informed
decisions about how to handle various tasks or security
measures.

A domain specific Context Sensitivity Correlation Table
(CSCT) is prepared using domain specific context lexicon
and the sensitivity label assigned by the field experts. The
structure of CSCT is very similar to a common lookup table,
with two fields. The first one is the lexeme and the second
one is its sensitivity label. CSCT is designed to handle 3
different sensitivity labels such as Low, Medium, and High.
The low sensitive category are data that has less privacy
concern. Medium sensitive category consists data with a
little privacy data, but will not cause any significant harm if
uncovered. High sensitive label is assigned to the data that
are very delicate with highest privacy risks. Two sample CSCT

Table 2: Sample CSCTs

Electronic Health Records Industry 4.0
Lexeme Sensitivity Lexeme Sensitivity
Step count Low Machine uptime Low
Calories burn Low Energy consumption Low
N0|_’1-.cr|t|ca| Low Product count Low
activity log
Heart rate Medium Machine . Medium
performance metrics
Blood pressure Medium Process optimization Medium
data
Medication Medium  Batch traceability Medium
adherence
Proprietary
Full ehrs High manufacturing High
processes
. . Production .
Genetic data High bottlenecks High
Real-time location High Trade secrets High

those associated with electronic health record and industry
4.0 are given in Table 2.

Targeted to be lightweight, LCSI ensures minimal
impact on the resource-constrained devices typical in loT
networks. This means that the module is optimized to use
minimal computational power, memory, and energy, making
it suitable for devices with limited capabilities. Thus, the
memory occupation of LCSI is limited to 2-bits as in Table
3. This 2-bit sensitivity header will be added to the standard
loT data packet.

The scope of the sensitivity label header starts from the
source sensor node to destination including all relay nodes.
LCSI sensitivity header is just like a fragile postage stamp
used to indicate that the mail or package is delicate and
should be handled with care.

Adaptive Computational Complexity Overseer (ACCO)
ECDSA has three major operations namely, Key generation,
Signing process, and verification process. The key generation
phase has three important tasks such as Elliptic curve
parameter definition, Private key generation, and public
key calculation. The signing process includes the subtasks
namely Message hashing, Random integer key selection,
Elliptic curve point calculation for selected random key,

the x-coordinate computation, the signature verification
element computation, and Signature computation. The
verification process has the following tasks listed as
Verification of rand s, Message Hash, Calculation of

, calculation of u,,u,, Point X calculation, and signature
verification. The important variables involved in ECDSA are

: the prime number, and : the curve coordinates,

:the basepoint, Order , and Field size

The Elliptic Curve Digital Signature Algorithm (ECDSA)
is a cryptographic technique used to ensure data integrity
and authentication in secure communications by generating
and verifying digital signatures. It leverages elliptic curve
cryptography to provide strong security with smaller
key sizes, making it efficient for resource-constrained
environments like loT networks.

Selection of optimum security standard based on the
data sensitivity label and current computation resource
availability of the nodes is the core responsibility of ACCO
Module. Secp192r1, secp256r1, secp384r1, and Secp512r1 are
the acquired security standards in ACCO module to apply
with ECDSA. Secp192r1, also known as P-192r1 or prime192v1,
is an elliptic curve defined over a prime field. It is part of the

Table 3: Sensitivity label bits

Sensitivity Label Bit 1 Bit0
N/A 0 0
Low 0 1
Medium 1 0
High 1 1
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set of elliptic curves recommended by the National Institute
of Standards and Technology (NIST) for use in cryptographic
applications, particularly for digital signatures, public
key encryption, and key exchange protocols. Secp192r1
consumes relatively less energy than the higher standards
and provide a decent security. Higher subsequent security
standards can provide higher security and also consumes
coextensive energy proportions.

Let  bethe sensitivity label with either Low/Medium/
High value assigned by LCSI module. Let and are
the nodes involved in communication. Let p™ be the
maximum provided processing power of node , and
p;"ax be the maximum provided processing power of node

.Similarly Let m,"“" be the maximum provided memory

max

fornode ,and m, " bethe maximum provided memory
fornode  onboard.In equivalentfashion, Let p™*, p "

con con

,m,,and m~ be the consumed processing power of
, consumed processing power of node , consumed
memory of node , and consumed memory of node
in appropriate sequence.
Let ~  be the available processing power, and
be the available memory of node . Similarlylet = be
the available processing power, and be the available
memory of node . The available processing power and
memory are computed using the following equations.

b, =p. —p. (1)
N S (2)
i, = m —m” 3)
m, =m," —m.”" (4)

v

Sincenodes  and can me heterogeneous, there may

be a difference between the availability of the computational

resources. Therefore, in ACCO module, a percentage-based

normalization among the computational resources is

computed to balance the resources of different nodes. Let

P, be the normalized available processing power for node
computed by the below equation.

Similarly, the normalized available processing power p,
of node is calculated by Equation 6. ’

(£ 5. ) 5 (2 +5. )2 - 5)
Pn, = 100 X P,

(6)

Correspondingly the normalized available memory values
fornodes  and are computed using equations 7 and
8 respectively.

. :(mn +1i, )—l(( m, -+, )—’hn —, )an 7)
100
N P
_ :(m,Z +m, )—5((’"” +m, )_ m, —m, )xrf't 8)
. 100 "

The maximum resource scalar I',  for nodes  and
. w
is computed as follows

o1 [(Brh) (e, )
SN 2 2

The available resource scalar Fn forthe nodes and
. Xy
is computed as follows

Lo (ﬁnx+17ny)+(mnx+ﬁ1nv)
ny T ) 5 )

(10)

ACCO module determines the optimum security standard
based on the sensitivity label and computational resource
availability by means of following algorithm.

Algorithm 1: ACCO Security Scheme Selection
Input: Sensitivity Label
Output: Security standard
Step 1: Fetch

Step 2:Obtain [, andr,
Step 3:If 5 =Low, then
Step 4: else if 6 = Medium
Step 5:

,Resourcescalars I, and T,

= Secp192r1
Secp256r1if T, < %r

Q= Se(p384rlxj%fm <r,. s%r”“

SecpS12rlotherwise

Step 6: else

. 1.
4rlif =T —I
Step 7:a- Secp384rlif =T, <2 .

Secp512rlotherwise
Step 8:end if //
Step 9:return

Energy-aware ECDSA Signer (EAES)
Most of the loT nodes are battery operated devices. Most of
batteries used in loT devices are powered between 1.8V to 5V
operational voltage range, and 100 mAh to several thousand
mAh based on the requirement. Any battery that is less than
20% is considered as Low battery. If the remaining battery
is less than 10% is considered as the Critical Battery Level.
The electrical power of the batteries can be converted
to Joule energy units using the following formula.

_ Capacity(mAh)xVoltage(V )x 3600( seconds in an Hour )

Eneray(J
nergy(J) 1000
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Let ¢, be the energy at full capacity of the battery belongs
to Node . Likewise, £ be the energy at full capacity
of node .Let & and &, be the remaining energy
availableinNode  andinNode  .Thepowerscalar &,

is calculated by equation 11.

E =—7— (1)

10

S JE——
s - Lowif%{ ]@m Sé[ ] (12)

| (& 4 em
O i n,
Criticalif &, <—

2

Normal otherwise

The following algorithm of EAES is used to sign the data
packets with energy consciousness.

Algorithm 2: Energy-aware Signer

Input: Input data packet, Security schema , Battery state
B,
Output: Signed data packet
Step 1: Read incoming data packet
Step 2:  Extract security bits, and determine
Step 3: Read Security Schema  from ACCO
Step 4: Let A be the signing procedure
Step 5: If B, =Critical
— [ Secp256rlif Q= Secp512r1
Step6r A= {Secpl92rllfo = Secp384rl
Step7: elself B, =Low
Secp384rlif Q= Secp512r1
Step8: A= {Secp256r1if§2 = Secp384r1
Secp192rliQ = Secp256r1
Step9:  elseassign A =Q

Step 10: endif// S, _
Step 11: Sign input data packet using A
Step 12: return signed packet

These proposed functional modules optimize the energy
efficiency of loT network along with ameliorated security
levels by selecting appropriate security scheme based on
the dynamic network environment.

Experimental Setup

A computer equipped with an i7-8250U processor (with a
6MB Cache), 16GB of DDR4 RAM, and 1TB of SSD storage
was used for developing and evaluating the discussed
procedures. The implementation solution was created using
Visual Studio IDE (https://visualstudio.microsoft.com/vs/),
and the methodologies of EECDSA were coded in the C++
20.0 programming language (https://www.geeksforgeeks.

org/features-of-c-20/) OPNET (Sridevi, R., & Prakash, V.
S. J. 2024), known as “Optimized Network Engineering
Tool,” is a popular software suite for network simulation,
modeling, and performance analysis. This software allows
engineers, researchers, and network professionals to
simulate and analyze various aspects of computer networks,
telecommunications systems, and other communication
technologies. OPNET offers features such as network
modeling, simulation, performance analysis, protocol
evaluation, and resource monitoring/management. It
enables testing of various network scenarios without the
need for physical implementation, helping users identify
potential issues before deployment. Users can analyze
resource utilization, identify bottlenecks, and develop
optimization strategies within the network. Additionally,
OPNET is used in academia to teach networking concepts
and provide hands-on experience with network simulation.
OPNET simulations are primarily designed to assess and
analyze the performance and behavior of networks and
protocols within a controlled, predefined environment. As a
result, the use of a dataset is not required for many simulation
scenarios, as the focus is on evaluating network performance
and protocol behavior under various configurations.

Results and Analysis

During the evaluation process, two distinct categories
of results are obtained. The first category includes
network intrusion detection parameters, such as Accuracy,
Precision, Sensitivity, Specificity, and F-Score. The second
category encompasses network performance metrics,
including Throughput, Latency, Jitter, End-to-End Delay,
Packet Delivery Ratio, Power Consumption, and Security.
Measurements are taken over a period of 1 real-world hour,
with readings logged every 6 minutes. Consequently, there
are 10 different timestamps used to record the parameters
throughout the evaluation.

6.1. Accuracy

Network anomaly detection accuracy is crucial for ensuring
network stability. Given that anomalies can signify intruder
attacks, the anomaly detection process plays a key role in
network security. This accuracy is determined using True
Positive (TP), True Negative (TN), False Positive (FP), and False

Negative (FN) values. The formula for calculating accuracy
. TP+TN
is

TP+TN+FP+FN'. .
The evaluation results show that the highest accuracy

99.31% is achieved by proposed EECDSA work. The accuracy
average of EECDSA is 99.17% which is 0.19% higher than the
nearest performing method ASORI. The performance rank
sequence based on Accuracy average is EECDSA, ASORI,
LAANN, CLIDS, VBQ-Net, and IIDS-SIoEL listed from the best
in order. A comparison graph for Accuracy during is given
in Figure 1.
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Table 4: Accuracy

Accuracy (%)

Time stamp IIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA

1 95.010002 94.940002 97.089996 98.540001 98.919998 99.290001
2 94.974998 94.904999 97.165001 98.544998 98.945 99.045006
3 95.010002 94.809998 97.239998 98.604996 99.160004 99.315002
4 95.035004 94.949997 97.339996 98.769997 98.889999 99.235001
5 94.830002 95.074997 97.330002 98.5 99.145004 99.169998
6 94.994995 95.07 97.105003 98.470001 98.93 99.190002
7 95.005005 95.199997 97.089996 98.720001 99.055 99.080002
8 94.904999 95.199997 97.295006 98.525002 99.004997 99.135002
9 94.915001 95.065002 97.284996 98.489998 98.889999 99.214996
10 94.970001 95.019997 97.18 98.5 98.945007 99.104996

Graph: Accuracy (%)
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Figure 1: Accuracy (%)

Precision

Precision is a metric that assesses how accurately a model
identifies positive instances. It is commonly applied in binary
classification tasks, where the objective is to categorize
instances into two groups namely Positive and Negative.

TP_js the norm to calculate precision.
TP+ FP

The highest precision achieved in the entire simulation
process is 98.98% which is secured by proposed EECDSA
method. The order of performance ranking in terms of
precision average is EECDSA, ASORI, LAANN, CLIDS, IIDS-
SloEL, and VBQ-Net with the scores 98.73%, 98.35%, 98.13%,
97.25%, 95.35%, and 94.33% respectively listed from the
best. The performance improvement of EECDSA is apparent

in terms of precision. A precision graph is plotted with the
observed readings which is given in Figure 2. The EECDSA
method achieves superior precision and overall performance
by integrating three key functional modules—LCSI, ACCO,
and EAES, which work synergistically to optimize security and
resource utilization. Unlike existing methods such as ASORI
and VBQ-Net, which rely on static cryptographic operations,
EECDSA dynamically adjusts its computational complexity
through ACCO, ensuring that security enforcement is
tailored to the available resources of loT nodes. Additionally,
LCSI enhances security adaptability by classifying data
sensitivity in real time, reducing unnecessary computational
overhead. The EAES module further improves efficiency by
optimizing the signing process based on the device’s battery
level, minimizing power consumption while maintaining
signature integrity. These adaptive mechanisms collectively
enhance precision by reducing false positives and false
negatives, leading to more accurate attack detection and
response, outperforming than existing methods.

Sensitivity
Sensitivity is a metric used to assess the performance of
a classification model, especially in binary classification
tasks. It indicates how well the model correctly identifies
positive cases out of all the actual positive cases. Sensitivity
is crucial for identifying actual threats, minimizing missed
detections, enhancing reaction speed, meeting regulatory
requirements, and sustaining a strong security framework.
Sensitivity, also known as recall, hit rate, or true positive rate,
is calculated with the formula —_ % __.
... .ITP+FN

The computed sensitivity score of the compared
methods during 10 different timestamps are recorded in
Table 6.

The sensitivity ranking progression of the compared
methods is EECDSA, ASORI, LAANN, CLIDS, VBQ-Net, and
IIDS-SIoEL with the sensitivity averages 99.63%, 99.62%,
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Table 5: Precision (%)
Precision (%)

Time stamp 1IDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA

1 95.379997 94.349998 97.169998 98.050003 98.360001 98.900002
2 95.419998 94.080002 97.129997 98.07 98.260002 98.480003
3 95.470001 94.089996 97.199997 98.220001 98.529999 98.980003
4 95.300003 94.150002 97.309998 98.489998 98.349998 98.949997
5 95 94.400002 97.580002 97.980003 98.529999 98.699997
6 95.43 94.330002 97.050003 97.970001 98.330002 98.809998
7 95.550003 94.529999 97.059998 98.360001 98.349998 98.589996
8 95.18 94.559998 97.540001 98.129997 98.519997 98.690002
9 95.260002 94.330002 97.209999 98.059998 98 98.720001
10 95.510002 94.519997 97.230003 97.940002 98.230003 98.459999

98.99%, 97.18%, 95.65%, and 94.6215736 respectively.
The highest sensitivity score 99.75% which is achieved by
proposed EECDSA method during the experiments at 10"
timestamp. The Sensitivity graph is provided in Figure 3.

Specificity

Specificity is a key metric for assessing the performance
of a binary classification model, especially when correctly
identifying negative instances is essential. It gauges the
model’s ability to accurately recognize negative cases out
of all actual negative cases. Specificity is calculated using
the formula . The measured specificity values for both
the proposed and existing methods are presented in Table
7. A comparison graph for discussed method with respect
to specificity score is made available in Figure 4.

The order of performance rankings based on specificity
score average is EECDSA, ASORI, LAANN, CLIDS, and IIDS-
SIoEL with the values 98.74%, 98.37%, 98.14%, 97.25%,
95.31%, and 94.41%. The highest sensitivity score 98.98%
is achieved by EECSDA method during the 3" timestamp.
The experimental results show that the EECDSA method is
thriving better in the sensitivity category.

F-Score

The F-score, or F1-score, is a metric used in classification
tasks to evaluate a model’s performance, especially in cases
of class imbalance. It combines precision and recall into one
value, offering a balanced measure of the model’s accuracy.
In loT security, high precision means that the detected
threats are indeed real threats (minimizing false alarms),
while high recall means that most threats are successfully
identified (minimizing missed threats). The F-score merges
these two metrics, providing a balanced assessment.

By focusing on the balance between precision and recall,
the F-score encourages the development of models that
are not only accurate but also robust in detecting threats,
leading to more effective and reliable loT network security

Graph: Precision (%)
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Figure 2: Precision (%)

solutions.

The F-score is calculated using the formula
ZX%%. The F-score values for the methods
compared are presented in Table 8.

The EECDSA method achieves the highest F-Score
of 0.9931 at the 3rd timestamp. The performance of the
evaluated methods is ranked as follows: EECDSA (0.9917422),
ASORI (0.9898193), LAANN (0.9856011), CLIDS (0.9721296),
VBQ-Net (0.9498892), and IIDS-SIoEL (0.9498428). It is
observed that the existing methods, IIDS-SIoEL and VBQ-
Net, show close competition, with only a minor difference
in their F-Scores. The EECDSA method, achieving the
top F-Score of 0.9931, demonstrates its effectiveness in
maintaining a balance between Sensitivity and Specificity.
The EECDSA method introduces a novel approach to loT
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Table 6: Sensitivity (%)
Sensitivity (%)

Time stamp  lIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA

1 94.679375 95.476624 97.014778 99.020401 99.474113 99.677483
2 94.578255 95.658371 97.198036 99.010597 99.624863 99.605545
3 94.599686 95.464691 97.277817 98.982162 99.787315 99.647644
4 94.797569 95.680893 97.368423 99.044647 99.423775 99.517242
5 94.678101 95.691841 97.094528 99.009697 99.757019 99.636581
6 94.606918 95.747055 97.156876 98.959595 99.524292 99.566704
7 94.519737 95.813904 97.118279 99.073334 99.756569 99.565742
8 94.65937 95.786057 97.064384 98.9114 99.485001 99.576225
9 94.607208 95.737343 97.356033 98.910629 99.776009 99.7071

10 94.489517 95.474747 97.132858 99.049347 99.655075 99.746735

Graph: Specificity (%)
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Table 7: Specificity
Specificity (%)
Time stamp IIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA
1 95.345558 94.415894 97.165466 98.068932 98.378166 98.908516
2 95.378868 94.176094 97.132004 98.088165 98.283516 98.496986
3 95.427933 94.173889 97.202232 98.233604 98.548294 98.986794
4 95.274963 94.242126 97.311607 98.498405 98.367622 98.955948
5 94982941 94.474594 97.567841 98.000793 98.547859 98.712105
6 95.389893 94.412697 97.053238 97.990105 98.3498 98.818977
7 95.500961 94.602325 97.06176 98.371727 98.37294 98.603676
8 95.153343 94.628754 97.527885 98.144653 98.534218 98.701561
9 95.227066 9441214 97.21418 98.076538 98.034981 98.732552
10 95.460983 94.574257 97.227226 97.962822 98.254951 98.479614
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Table 8: F-Score
F-Score

Time stamp IIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA

1 0.950284 0.9491 0.970923 0.985328 0.989139 0.992872
2 0.949973 0.948626 0.97164 0.98538 0.989377 0.990396
3 0.950329 0.947724 0.972389 0.985996 0.991547 0.993127
4 0.950481 0.949093 0.973392 0.987666 0.98884 0.992328
5 0.948388 0.950415 0.973367 0.984922 0.991397 0.991661
6 0.950167 0.950332 0.971034 0.984623 0.989235 0.991869
7 0.950321 0.951676 0.970891 0.987154 0.990483 0.990755
8 0.94919 0.951691 0.973016 0.985191 0.990001 0.991311
9 0.949325 0.950285 0.97283 0.984835 0.9888 0.992111
10 0.94997 0.94995 0.971814 0.984916 0.989374 0.990992

security by integrating context-aware security adaptation,
computational resource optimization, and energy-efficient
signing mechanisms, setting it apart from existing methods
like ASORI and VBQ-Net. Unlike ASORI, which focuses
primarily on anomaly detection using RSA, EECDSA
dynamically adjusts cryptographic complexity based on
real-time node resource availability through the Adaptive
Computational Complexity Overseer (ACCO). Additionally,
Lightweight Context Sensitivity Imposer (LCSI) enables real-
time data classification based on sensitivity levels, ensuring
optimal security enforcement while minimizing overhead—
an aspect not addressed in VBQ-Net. Furthermore, Energy-
aware ECDSA Signer (EAES) ensures energy-efficient signing,
reducing power consumption while maintaining high
security, making EECDSA uniquely scalable, adaptive, and
resource-efficient for large-scale loT networks.
A F-Score comparison grid chart is given in Figure 5.

Throughput

Throughput denotes the rate at which data is effectively
transmitted or received over a network. It gauges the
network'’s efficiency and capacity. The OPNET system
records throughput values during simulations, and these
values are detailed in Table 9.

The highest achieved throughput durintg the entire
similation is 30103 kbps achieved by proposed EECDSA
method. The achieved value by EECDSA is 333 kbps higher
than the very next successful approach ASORI with the
value 29770 kbps. The performance order with respect to
throughput averages is EECDSA, ASORI, LAANN, VBQ-Net,
[IDS-SIOEL, and CLIDS. A comparison grid graph is terdered
in Figure 6.

Latency
Latency refers to the delay between the initiation of an action
or request and the receipt of a response or the completion
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Figure 5: F-Score

of that action. It is a critical performance metric for loT
systems, affecting how quickly devices can communicate
and respond to commands or data. Minimizing latency in
loT is essential because it affects how quickly and effectively
connected systems work. Low latency means data travels
and is processed fast, which is crucial for applications that
need real-time responses, like self-driving cars, factory
automation, and smart home gadgets. Quick responses are
important for keeping these systems reliable, safe, and user-
friendly. The measurement unit of latency is milliseconds
which is used to be referred as mS. Measured latency values
of the examined methods are registered in table 10.

The ranking order with respect to Latency is EECDSA,
ASORI, LAANN, VBQ-Net, IIDS-SIoEL, and CLIDS with the
latency averages 159mS, 183mS, 237mS, 247mS, 289mS,
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Table 9: Throughput
Throughput (kbps)
Timestamp IIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA
1 27632 28452 26843 28207 29120 29826
2 27743 28224 27390 28208 29306 29734
3 27344 28134 26937 28281 29770 30093
4 27309 28384 26944 28317 29122 30063
5 27684 28195 27387 28706 29576 30049
6 27480 28088 27381 28107 29533 29882
7 27223 27897 27336 28638 29566 29611
8 27704 28329 26932 28779 29638 29910
9 27206 28393 27195 28726 29474 30103
10 27392 28435 27181 28575 29519 29791

Graph: Throughput (kbps) X Graph: Latency (m5)
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Table 10: Latency
Latency (mS)
Timestamp IDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA
1 280 237 323 250 201 163
2 275 249 293 250 191 168
3 296 254 318 246 166 149
4 298 240 317 244 201 150
5 278 250 294 223 177 151
6 289 256 294 255 179 160
7 302 266 296 227 177 175
8 277 243 318 219 173 159
9 303 240 304 222 182 148
10 293 238 305 230 180 165
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Table 11: Jitter
Jitter (mS)
Time stamp IIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA
1 96 83 109 87 73 61
2 95 87 100 87 70 63
3 101 89 108 86 62 57
4 102 84 107 86 73 57
5 96 87 101 79 66 58
6 29 89 101 89 66 60
7 103 92 101 81 66 65
8 95 85 108 78 64 60
9 103 84 104 79 67 57
10 100 84 104 81 66 62

and 306m:s listed from the best. The lowest latency value
148mS is recorded for the proposed EECDSA method at
the 9t timestamp during the experiment. Latency graph is
provided in Figure 7.

Jitter
In networking, jitter refers to the variability in the delay of
packet delivery across a network, resulting inirregular timing
for data packets reaching their destination. High jitter values
can lead to inconsistent network performance. The jitter
values observed during the simulation are listed in Table
11 and the Latency comparison graph is given in Figure 8.
The lowest jitter is 57mS which is achieved by proposed
EECDSA method during 3, 4th, and 9™ timestamps. The
performance rating sequence when concerning jitter is
EECDSA, ASORI, LAANN, VBQ-Net, IIDS-SIoEL, and CLIDS
with thejitter averages 60mS, 67.3mS,83.3mS, 86.4mS, 99mS,
and 104.3mS respectively ordered from the best. Hence it is
spotted that the EECDSA method seizes a lesser jitter values
than the other methods in comparison during the entire

Graph: Jitter (mS)
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Table 12: Energy

Energy (mJ)
Time stamp IIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA
1 590 638 712 730 568 551
2 550 641 703 716 544 526
3 622 635 697 786 501 533
4 564 643 701 733 563 485
5 555 602 746 713 546 508
6 628 667 689 779 523 516
7 583 656 717 747 581 492
8 626 631 717 762 504 489
9 550 667 689 717 576 527
10 628 626 724 768 541 489
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simulation process.

Energy

Energy efficiency is vital in Internet of Things (IoT) networks
for several reasons, including the limited power resources of
the nodes, the scalability of the network, and the challenges
in maintaining it. Energy consumption is measured in
millijoules within the network. Energy consumption in loT
networks is typically measured in terms of the amount of
energy used by the devices or nodes in the network. This
measurement can be expressed in various units, such as
millijoules (mJ), joules (J), or watt-hours (Wh), depending
on the scale and precision required. In this experiment, the
energy consumption of the nodes is measured in mJ.

Energy consumption and loT network quality are
inversely proportional: as energy consumption decreases,
the battery life and operational efficiency of devices
improve, enhancing overall network reliability and
performance. Lower energy usage also supports scalability
and reduces maintenance needs, contributing to higher
network quality. Conversely, higher energy consumption
can lead to more frequent device replacements and reduced
network reliability. The energy readings from the simulation
are provided in Table 12.

As per the readings observed during the experiments,
the quality of the discussed methods is ranked as EECDSA,
ASORI, 1IDS-SIoEL, VBQ-Net, CLIDS, and LAANN with the
energy averages 511.6mJ, 544.7mJ, 589.6mJ, 640.6mJ,
709.5mJ, and 745.1mJ respectively. EECDSA method
consumed the very less energy share of 485mJ during the
4™ timestamp during the throughput the entire experiment.
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Figure 9: Energy

The comparison graph for energy consumption is given in
Figure 9.

Packet Delivery Ratio

Packet Delivery Ratio (PDR) is a metric that quantifies the
effectiveness of data transmission within a network. It is
defined as the ratio of the number of packets successfully
received by the intended destination to the number of
packets sent by the source. PDR provides insight into how
well the network facilitates communication between loT
devices, reflecting the efficiency of data routing and network
reliability. It is crucial for evaluating the performance of
network protocols and configurations in ensuring data
integrity and successful delivery.

A high PDR indicates that most packets sent are
successfully delivered, reflecting strong network
performance and quality of service. It aids in evaluating
and optimizing network protocols, managing resources
effectively by reducing retransmissions and conserving
energy, and supporting network scalability as it grows.
Overall, PDR is a key metric for ensuring that loT networks
operate reliably and efficiently, enhancing both performance
and user satisfaction. The PDR values have been measured
and recorded for the discussed methods are comprehensively
in Table 13

The highest packet delivery ratio 99.37% is achieved by
the EECDSA method over the course of the entire dissection.
The performance rank based on the PDR is EECDSA, ASORI,
LAANN, VBQ-Net, IIDS-SIoEL, and CLIDS with the PDR
averages 99.30%, 99.15%, 98.82%, 98.75%, 98.49%, and
98.38% have been meticulously arranged in descending
order of excellence.

The PDR comparison grid graph is provided in Figure 10.

Security
Security is essential for loT network for various important
reasons, including the protection of privacy, ensuring data
integrity, maintaining device control, addressing safety
concerns, and supporting long device lifecycles. OPNET can
assess the security level of a simulated network environment
by initiating different types of intruder attacks. The security
scores for the methods evaluated are detailed in Table 14,
and a comparison graph is provided in Figure 11

The highest security score 99.75% is achieved by the
proposed EECDSA method during the 10" timestamp of
the simulation. The ranking arrangement of performance
according to the security level is EECDSA, ASORI, LAANN,
CLIDS, VBQ-Net, and IIES-SIoEL with the security scores
averages 99.55%, 99.43%, 98.41%, 97.02%, 94.92%, and
94.23%. The most adverse security score of EECDSA is 99.4%
which is also higher than the other compared methods,
proves the exalted performance of the proposed method.
The result scores include major attack types such as DoS,
Probe, U2R, and R2L.
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Table 13: Packet Delivery Ratio
Packet Delivery Ratio(%)

Time stamp IIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA

1 98.543999 98.817337 98.280998 98.735664 99.040001 99.27533
2 98.581001 98.741333 98.463333 98.736 99.101997 99.244667
3 98.447998 98.711334 98.312332 98.76033 99.256668 99.364334
4 98.436333 98.79467 98.314667 98.772331 99.040665 99.354332
5 98.561333 98.731667 98.462334 98.902 99.192001 99.34967
6 98.493332 98.695999 98.460335 98.702332 99.177666 99.293999
7 98.407669 98.632332 98.445335 98.879333 99.188667 99.203667
8 98.568001 98.776337 98.310669 98.926331 99.212669 99.303337
9 98.402 98.797668 98.398331 98.908669 99.157997 99.367668
10 98.463997 98.811668 98.393669 98.85833 99.172997 99.263664

Graph: PDR (%)

Graph: Security (%)
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Table 14: Security
Security (%)
Time stamp IIDS-SIoEL VBQ - Net CLIDS LAANN ASORI EECDSA
1 94.158821 94.81765 97.152939 98.435295 99.358826 99.517647
2 94.217644 95.05294 96.976471 98.376472 99.535294 99.635292
3 94.335297 94.81765 96.800003 98.494118 99.535294 99.400002
4 94.158821 94.994118 96.800003 98.31765 99.535294 99.576469
5 94.217644 94.81765 96.917648 98.435295 99.358826 99.635292
6 94.099998 95.05294 97.152939 98.55294 99.476471 99.400002
7 94.217644 94.758827 97.035294 98.494118 99.535294 99.517647
8 94.276474 94.994118 97.035294 98.494118 99.300003 99.400002
9 94.158821 95.05294 97.152939 98.199997 99.358826 99.694115
10 94.452942 94.81765 97.152939 98.258827 99.300003 99.752945
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The EECDSA framework offers significant performance
improvements by balancing energy efficiency and security
in loT networks, making it ideal for resource-constrained
devices. Through the integration of advanced modules
like LCSI, ACCO, and EAES, it enhances key metrics such
as Accuracy, Precision, and Sensitivity, while optimizing
network performance in terms of Throughput, Jitter, and
Latency. This approach not only improves security through
advanced cryptographic techniques but also minimizes
energy consumption, ensuring the long-term sustainability
of large-scale loT deployments. Overall, EECDSA proves to
be an efficient, scalable, and secure solution that meets
the growing demands of IoT networks while maintaining
optimal performance and resource utilization.

Conclusion

Based on the evaluations conducted with most recent
establishments related to loT network security and
achievements, the new EECDSA offers advanced features,
including the Lightweight Context Sensitivity Imposer (LCSI),
Adaptive Computational Complexity Overseer (ACCO), and
Energy-aware ECDSA Signer (EAES), which enhance both
energy efficiency and security. The effectiveness of these
innovations is evaluated using metrics such as Accuracy,
Precision, Sensitivity, Specificity, and F-Score for monitoring
network attacks, as well as Throughput, Jitter, Latency, and
Energy consumption, showing notable improvements in
both security and network performance. While EECDSA
achieves enhanced energy efficiency and greater security,
there may be potential for further security improvements
by integrating multiple digital signature concepts, which
could be a notable feature. Future research could explore
the integration of post-quantum cryptographic techniques
with EECDSA to further enhance security resilience against
emerging quantum computing threats while maintaining
energy efficiency in loT networks.
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