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Abstract

To determine and emphasize the importance of Internet of Things (IoT)-enabled investment in an inventory model confronted with
shortages, storage costs, and deterioration of goods, this study focuses on maximizing maximum stock level while minimizing overall
inventory-related expenditures. Conventional inventory models frequently ignore the effect of digital evaluation on sustaining inventory
levels and preventing deterioration, resulting in inefficient decision-making. An enhanced inventory model is offered, which uses
internet of things (loT) technology to track inventory factors in real time, hence lowering degradation, shortages and holding costs. To
account for the influence of demand fluctuation, three distinct demand structures are investigated: (i) linear price and stock-dependent
demand, (ii) a price function with a negative power of a constant, and (iii) an exponential function of price. These demand structures
explain several competitive scenarios in which demand is influenced by costs and availability of inventory. To assess the efficacy of
the developed loT-based model, a comparative investigation is carried out under these three demand situations. Secondary data from
Abu Hashan Md Mashud'’s research are used to support the numerical analysis. Results shows that the maximum inventory level per
cycle for the Cases |, Il and Ill are 188.584482, 402.584988, 303.434275 and the total costs for the Cases |, Il and Il are $1108.00326,
$786.214411, $1373.11204 respectively. Amongst the three demand variations, the demand model that involves raising the price to a
negative power of a constant outperforms the others, resulting in the highest optimum stock levels. The numerical research’s findings
reveal that loT integration not only improves operational effectiveness, but also leads to a substantial rise in maximum stock level every
cycle.The research’s key innovation resides in its integration of loT technology with inventory models in a variety of demand situations,
an approach that has yet to be completely explored in the existing literature. The findings indicate that loT-based inventory models
are exceptionally successful at controlling stock, reducing degradation, and enhancing profitability, particularly when demand follows
nonlinear patterns such as the negative power form.
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Introduction
Inventory management is essential for ensuring supply

Conventional inventory strategies that balance purchase
and storage expenses can often be insufficient to address

chain efficacy, adaptation, and sustainability in the present
rapidly changing and highly competitive marketplace.
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issues such as shortages, product deterioration, and shifting
demand patterns. A evaluation was performed on inventory
models optimized for controlling decaying products
(Freddy Perez et al., 2020). With the fast development of
technological advances, globalization, and unanticipated
client behavior, organizations have to develop new
inventory strategies intended for optimizing stock levels,
reducing cost ineffectiveness, and increasing overall
profitability. One of the most essential components of
practical inventory models is decay, which is the gradual
decline in product value or utility. This is especially crucial
in industries that manage perishable products, high-value
commodities with deteriorating quality, and time-critical
merchandise. A survey was performed on solutions for
inventory management for deteriorating products (Mahdi
Karim, 2025). An EOQ model was developed that integrates
carbon emissions and rising prices for degrading products
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of defective quality due to the learning effect (Osama
Abdulaziz Alamri, et al., 2022). Neglecting deterioration
often leads to undervalued costs, inaccurate demand
forecasts, and wasted resource allocation. Several research
studies have examined inventory models in various
demand circumstances, such as shortages, price changes,
and carbon emission constraints. A model for the best
allocation in preservation technology was developed
under fluctuating demand, combining trade credit and
shortage situations (Mrudul Y. Jani et al., 2021). An EOQ-
driven inventory framework was created that incorporates
nonlinear costs of holding dependent on inventory level,
nonlinear need impacted by stock availability, and trade
credit concerns (Leopoldo Eduardo Cardenas-Barron et al.,
2020). An EOQ-based degrading inventory structure has
been built, accounting for various demand patterns and
entirely backlogged shortages (Abu Hashan Md Mashud,
2020). However, little emphasis has been placed on using
newly developed technologies such as the Internet of Things
(IoT) to maximize stock levels while cutting prices in varied
demand patterns. A literature assessment was undertaken
on automatic inventory management systems that integrate
loT to improve stock maximization and save carrying costs
(Friday Ugbebor et al., 2024).

loT technology enables continuous tracking, analysis
of trends, and automated inventory modifications.
loT adoption reduces holding and degrading costs by
monitoring product qualities, warehouse conditions, and
demand changes. A literature review was conducted on the
effect of the Internet of Things (IoT) on the management of
inventory (Yasaman Mashayekhy et al., 2022). The Internet
of Things (loT) was investigated in the retail industry as
a means of connecting supply and demand (Felipe Caro
et al., 2019). Despite its transformative potential, the role
of loT in maximizing the greatest quantity of inventory
every cycle under diverse demand models has yet to be
completely examined. An examination has been given on
smartinventory management solutions that use the Internet
of Things (Souvik Paul, et al., 2019). loT provides small-scale
stock tracking, allowing for real-time management of
shortage costs, storage expenses, and degradation rates.
Additionally, incorporating IoT into inventory structures
allows stakeholders to maintain larger levels of inventory
while lowering the risk of overproduction or waste, ensuring
an equilibrium between availability and effectiveness.
Incorporating loT into inventory models enhances
demand response. Real-time data collection provides
valuable insights into client purchasing behavior, enabling
businesses to adjust pricing strategies, replenishment
plans, and stockholding policies in reaction to market
developments. This is especially important in complex
demand circumstances, such as price-based or inventory-
dependent demand structures, where traditional models
usually fail to represent dynamic variations. Businesses

that combine choices regarding inventory with internet-
of-things based intelligence can decrease operational risks
while enhancing profitability. However, there is a major
gap in the literature for examining loT-driven inventory
management models using different demand models.
Prior research has mostly concentrated on single demand
patterns or traditional technical solutions, ignoring the
comparable impact of several demand-side features when
paired with loT.

To bridge this gap and demonstrate the unpredictable
nature of market-driven consumer demand, the current
work develops an loT-enabled inventory model under
three distinct demand structures: (i) Demand fluctuating
linearly with price and stock accessibility; (i) Demand is
represented as a negative power function of price; and
(iii) Demand is expressed as an exponentially increasing
function of price. These demand forms represent a wide
range of client responses to price and product availability in
real-world circumstances. Under these demand situations,
the proposed technique evaluates how continuous digital
monitoring could optimize inventory levels while lowering
deterioration, holding, and shortage-related costs by
incorporating loT technology into inventory. The results of
this study show that, among the three demand types, the
negative power function of price surpasses the linear and
exponential demand models, resulting in higher maximum
stock levels and more lucrative outcomes. This underscores
the significance of demand patterns in assessing the
impact of loT-facilitated models, and it provides a new
insight by combining variation in demand analysis with
loT use in inventory models. By carefully integrating loT
technologies into inventory frameworks with shortages and
deterioration, this study contributes to the bridge between
traditional inventory models and digitally improved
supply chain management. The findings offer important
recommendations to decision-makers and supervisors for
using Internet of Things (loT)-based solutions to optimize
stock levels, reduce inefficiencies, and ensure long-term
viability in unpredictable markets.

Methodology

A unified inventory model is developed that employs
internet of things (IoT) technology to monitor inventory
conditions in real time, reducing shortage costs, holding
charges, and deterioration while raising optimal stock
levels. To evaluate the model’s efficiency under various
market conditions, three demand patterns are considered: (i)
demand varies linearly with price and availability of stocks (ii)
demand expressed as a negative power function of price and
(iii) demand defined by an exponential function of price. This
study develops an Internet of Things-based inventory model
and compares the three demand situations to determine
their relative effectiveness in achieving equilibrium stock
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levels and lowering costs. The model describes how the
adoption of loT impacts inventory storage, degradation, and
shortfall costs in different demand scenarios. Secondary data
from Abu Hashan Md Mashud (2020) on degrading inventory
models is used to supplement the numerical investigation.
A computational example is provided to demonstrate
the usefulness of the loT-based approach, demonstrating
how it allows for higher optimum stock levels and higher
profit margins than traditional inventory techniques. The
findings indicate that the pricing function with a negative
power of a constant surpasses the other two demand
trends in terms of inventory optimization and revenue. The
notations, assumptions, and mathematical formulations
used to develop the proposed loT-based inventory model
are detailed in the sections below.

Notations:

The notation in this paper is as follows:

Notations Descriptions
cost incurred per replenishment order
unit purchasing cost
cost of holding one unit per unit time
cost of shortage per unit per unit time
deterioration rate
maximum inventory level per cycle
price of sale
maximum stock out level

X (1)
TC(t,,L)

level ofinventoryattime ,where <¢<T
the total cost per unit time

time when inventory depletes to zero
time length of the replenishment cycle
amount of capital investment on 10T
effectiveness of IOT in lowering the costs
proportion of costs after investments in
10T

Assumptions:

« Replenishment occurs instantly, and the lead time is
considered as negligible.
+ In this study, we consider three distinct demand rates.

D(s):{a_stfCX(f) when X ()20

a—bs when X (1) <0

i.e.when x(r)>0 demand depends on both the selling price
and the stock and when x(r)<0 demand is only dependent
on the selling expense.

D(s)=as™’
D(s)= as(FJ

« Theinventory procedure’s planning horizon is indefinite.

- This study focuses on shortages, which are currently
fully backlogged.

« The organization employs Internet of Things (loT)
technology to enable ongoing surveillance, analytical
forecasting, and scheduled inventory changes
across the system. This digital integration reduces
shortages, excess inventory, and deterioration by
constantly monitoring product attributes and demand
fluctuations. The proportion of of average shortage
cost, holding cost, and deterioration reduction achieved
by loT adoption is represented by F=¢&(1-e™) where
&,m, I are defined in the notation section reflects the
incorporation of loT results in a more effective, adaptive,
and long-term inventory management system by
raising inventory levels, maximizing resource allocation,
and enhancing decision transparency.

Mathematical Formulation

The proposed three inventory models are based on
three different demand functions, developed under the
assumptions stated above. Initially, it is believed that a
firm acquired commodities in (4+B) units for all three
models. The stock is decreased owing to client demand
and deterioration within the interval[0,]. At time =1, the
stock equals zero. The shortfall occurs during [#,L]and is
entirely backlogged.

Case I: Inventory model for price and stock
dependent demand:

dX (t <
df )+0X(t):—[a—bs+cX(t)] <tst (1
dX(t)=—(a—bs) t <t<L (2)
dt
From equation (1) we have
_a=bs ey _ 1<t
X(0)="— fe 1} <t< (3)

Using the condition X (r)=0at =7 and X ()= 4at
we obtain

q=2hs {er -1} (4)
O+c
From equation (2) we have

X(t)=(a—bs)(t,—1)
Using the condition X (¢)=0at t=¢ and X(t)=-B at
t = L we get

B:—(a—bs)(tl—L) (6)

t <t<L (5)

The overall expense per unit of time for the inventory model
comprises the following elements:
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« Ordering expense per replenishment cycle = From equation (11) we have
«  The cost of holding inventories per cycle = &, UO X(f)df}
(0+c)} | h(a=bs)t s. (afbs)(L—t,z)

h (a—bs r“+pk(a—bs){L+ }r + 17

2., C(—2)|:e(t9+0)t1 —(9+C)[1 _1:| (7) TC,(1,,L)= 2 > 2 2 ( )
(6+c) After investing in |OT the total cost TC, (1, L) becomes

+  Purchasing expense incurred in a cycle vl s lambo)(itt
= p.(4+B) 8) H"[ (o2, L ’( D ge)r (18)

Cost associated with inventory shortages =s, UL —X(t)dt}

ie., :%sc(a—bs)(L_tl)z ?

Hence, Total inventory cost (Y;)= <ordering cost> +
<purchase cost> + <holding cost> + <shortage cost>

i'e"ler0+pc(A+B)+Chol+Cshu (10)
Therefore, the corresponding constrained optimization
problem can be formulated as follows:

Problem 1: Minimize 7, (4,L)= ¥ (11
L

Subjectto <t<L
Here, the computation of Problem 1 based on the
demand function is elaborated below.

a—bs+cX(t) when X(t)ZO

D(s):{

a—bs when X (1)< 0

4=a7hs {1} Usi . . (B+c)

frc , Using a Taylor series expansion for e ,
while omitting the higher-order terms we get,

0+

A=(a—bs){tl+( zc)tf} (12)

_ hc (a_bs) (6+c) (1 3)

h{)[—W[e —(0+C)tl—l:|
h (a—bs)t

C, = % (14)

Substituting all the terms into equation (10), we obtain

Ve in (afbs)|:L+(0+20)t'Z } h.(a —zbs)tf . sr(a—bsz)(L—t,Z) (15)

Now to determine the value of
.
ot

, it's necessary to put

s L
1 p(0+c)+h, +s, h

N

c

where /1= pc(9+c)+hc+s(‘

Substituting the value of  in equation (18), we get

IR P (19)

1+ pa 4:\){1_

O+c) 70| b (a=bs) L .
( ‘2)1 } (a Z")\ (1—;(14’

76 (1) =

L

R B e R L e S | TP

2

In order to determine the optimum total cost value,

necessary and sufficient conditions are aTC‘T(L"’L):o and the
optimal value of is given by
1o 2, +1) 21

P (0+)a—bs) 17 +h (a=bs) £ (1-& (1= ) +5,(abs)(1- ) (1-¢(1-¢™))

Substituting the value of
we have
TC‘(I‘.I.):[)‘(afbs)+\/2r”:p‘(9+()(afhs)/f+h,(afbv)/,:(lfﬁ(lfe'”"))Jrsk(afbs)(lf/‘)g(lff(lfe'""))}+I (22)

in equation (20) and solving,

For any positive value of , the optimum solution of s

found from%&’“”:ﬂhe solution for is
« 1 1+ 1+2m2rS (23)
I = qp| N NP0 \/200
m m'r,&P

Where P=(a=bs)(hsP+5.(0-£)), O=p,(0+c)(a=bs) [, 5,=0+P(1-¢).

Case IlI: Inventory model with respect to the demand
function D =qas’

ax (1) +0X(t)=-as" <1<t (24)
ax (1) =—as "t <t<L (25)
dt

From equation (24) we have

X (1) =%s-/’ fe?n1h <1<t (26)
Using the condition X (r)=0 at t=¢ and X (¢)=4at
we obtain
a
A=—s"1e" -1 (27)
55 1" -1
From equation (25) we have

X(t)=as”(y,—t)t <t<L (28)
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Using the condition x (1)=0 at ¢t = and X()=-Batr=L
we get

B=-as"’ (tl —L) (29)

The overall expense per unit of time for the inventory model
comprises the following elements:

Ordering expense per replenishment cycle =

The cost of holding inventories per cycle = h‘vU:X(t)dt}

i.e., };—Zas’ﬂ [em, — 01— 1} (30)

« Purchasing expense incurred in a cycle
= p.(4+B) 31)
« Cost associated with inventory shortages

=s, U: —X(t)dt}

he., - %Sﬂs—ﬂ (L-1,) (32)

Hence, Total inventory cost (¥,) = <ordering cost> +
<purchase cost> + <holding cost> + <shortage cost>

ie., Y2 =1, +tp, (A + B) + Chol + Csho (33)

Therefore, the corresponding constrained optimization
problem can be formulated as follows:

Problem 2: Minimize 7€, (t,,L)=% (34)

Subjectto <r<L

Here, the computation of Problem 2 based on the demand
function is elaborated below.

The demand functionis p =gs™”

as™” o . . . .
4=={¢" -1}, Using a Taylor series expansion for , while
omitting the higher-order terms we get,

A=as ﬂ{tl+gtf} (35)
2
has™
Co == [ —01, 1] (36)
_ﬁ 2
c, =has (37)

2
Substituting all the terms into equation (33), we obtain

2 b2 sasP(L-t
Y,=r +pas?’ {L+%}+hﬁaz by g ! ) (38)

Now to determine the value of
v,

ar,

, it's necessary to put

s.L 39
f=———= flL ( )
p.O+h +s,
where /1~ y
p.O+h +s,
From equation (34) we have
2 B2 —— _ 42
r,+pas” |:L+94}+7h“as o e \Eh) (£-s) (40)
2 2 2
TC, (t,L) =

L
After investing in IOT the total cost TC, (1, L) becomes

e @)

7, + pas ﬁ{LJr%'z}rih‘a;ﬁl‘z (1*5(17@ ””))+

e, (1,1)= ;

Substituting the value of  in equation (41), we get

. 0L has” 0 ), sas P (1= ) ot 2
r,+p.as ”{L+ f‘z ] 4 zf {1—5(1—e )} S48 2( 1) (175(173 ))+I (4 )
TG, (1, L) =

L

TCz(l,,L)=%+%+pkas’ﬂ+{%+h’ﬂ%ﬂ/‘c(l—5(lfg’”"))+M+m(],§(],e""l)) L (43)

In order to determine the optimum total cost value,

necessary and sufficient conditions are achai(Lt"L):o and the

optimal value of is given by
_ 2(r,+1)
t Vpﬂa.v’ﬂff +hla.v’ﬂ/f(l—f(l—e”’"))fv(m’ﬂ -5y (175(178""')) (44)

Substituting the value of
we have
7C,(t,L)= p,as /?+\/2r0{p(0ax 7 f2 +has /;flz(l—.f(l—e ""))+xﬁs ”(]—fl)l(l—f(l—e ”"))}+1 (45)

in equation (43) and solving,

For any positive value of , the optimum solution of is

found from 97G,(4.L) _ . The solution for s
o

2
[*=_1ln[1+«/1+2m }’"S"] 46)

m mzi’"fP

Where P=as” (hf+s.(1-1)), Q= pbas”[ , S, =0+P(1-¢).

Case lll: Inventory model with respect to the demand
function ae{%} :

d);t(t)+0)((t):—ae_[;j <t<t (47)
dx (¢ 15

() __ i) <i<t e

dt
From equation (47) we have
X(t):%e{%] fe?i-1) <t <t (49)
Using the condition X(t) =0atf=¢ and X(t) =4 at
we obtain
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Substituting all the terms into equation (56), we obtain

S
a 7H o
A==¢ P/ le" 1 (50) . {2 17 2
P2 { } Y :r”ercae{;) {LJri’lz}rhc“e (u),lz e [ﬂ](L—tl ) 61)
From equation (48) we have ) 2 2 2
13 Now to determine the value of , it’s necessary to put
X(t)zae [ﬁ](tl—t)t <t<LL (51) AL 'Si - fL y(62|;)
*a,—fnfemc +s, !
Using the condition X (¢)=0at #=f and X (f)=-B at  \here f=— "
t=L weget pO+h +s,
[S] From equation (57) we have
B=-ae " (t,-L) (52)

P (5
s 5, 15 2
" +ptaei(;] {L+%‘Z}rh‘ue \/;Jt( +s(ae Lﬁ’(L—tl )

2 2 (63)

The overall expense per unit of time for the inventory model 1, (1,1 =
comprises the following elements: o L
« Ordering expense per replenishment cycle =

. The cost of holding inventories per cycle = # Uﬂ"x(z)dt] After investing in 10T the total cost 7¢, (1,,L) becomes

h a _[i] r+;ae{ﬂ +Ltf +hkae{j]zf _e(1—e s.ae [ﬁ‘(L—lf) (1 e)s
e Ve -on-1] 6 e [ e S ) (64)

L

ie.,

200
. Purchasing expense incurred in a cycle Substifiing the value of  in equation (64), we get

= pc (A + B) (54) 1{2) 22 mj[/’\l‘,\ P22 sae ‘7‘ 201- £V
00 g 7108 e DA (lfg(anw")) e TEUA 1 g(1-e+))er - (65)
Cost associated with inventory shortages =s. U‘L*X(f)dt] 0.7 e @ . l
5 T(,',(l‘,l_):%+£+p(ae‘7"+ ”"q"”z mr h‘““;"ff(lf.g(lfe"")) Sae lz(lf'f‘)rf\lfg(lfe”")){L (66)

ie., =%scae (”J(L—zl)z (55)..
Optimization of an Advanced Integrated Inventory Model Considering Shortages and

Hence, Total inventory cost (Y3 ) = <ordering cost> + Deterioration across Varying Demand Functions

<purchase cost> + <holding cost> + <shortage cost>

ie., Y3 =7 +p, (A + B) + Chal + Cshg (56) Table 1. Inventory parameters value for each inventory model
: . o Parameters Casel Case II Case III
Therefore, the corresponding constrained optimization
problem can be formulated as follows: r 200 200 200
Problem 2: Minimize TC,(t,L) =% 5% a 150 150 200
b 0.7

Subjectto <t<L
Here, the computation of Problem 2 based on the demand i 0.1 30
function is elaborated below. The demand function is

, ¢ 0.5
D=aei“ﬂ
{3) P, 4 4 4
A:%{e”" -1}, Using a Taylor series expansion for ~ , while
omitting the higher-order terms we get, h, 0.5 0.5 0.5
13 0 10 5, 5 5 5
A=ae (ﬁj {tl+—t12i| (58) ‘
2 0 0.01 0.01 0.02
h aei(; , (5Y65 s 10 10 15
Cpop ==& =01, —1]
¢ m 0.65 0.65 0.65
h ae [E]tz £ 0.35 0.35 0.35
C, = - (6®.35




4729 Advanced Integrated Inventory Model across Varying Demand Functions

Table 2: Optimal solutions are obtained for the loT-facilitated inventory framework under three demand variations, namely linear price-stock
dependent demand, negative power demand, and exponential price demand, in order to evaluate their effectiveness in maximizing stock
levels and reducing costs

Cases TC,(1,,L)

Casell 188.584482 79.4028852 0.809869907 1.22128382 4.67402433 1108.00326
Caselll 402.584988 42.9418038 2.50280226 2.77310490 479153914 786.214411
Case lll 303.434275 18.8491994 24417703 2.59715568 4.36461054 1373.11204

In order to determine the optimum total cost value,
necessary and sufficient conditions are 6chai(L’vL):oand the
optimal value of  is given by

2(r,+1)

o — -
\/p( cQaeiJJf,Z + h(aei[ﬂf,2 (1 —§(1 —e ))+s( aei[ﬂ (1 -5 )z (1 - 5(1 —e )) (67)

Substituting the value of
we have

in equation (66) and solving,

TCI(Z‘.L):p‘aei“/ﬂ+\/Zr,,{pﬂae"‘/‘%]f,z+h,ae’“’7\]]flz(l—.§(l—e'”"))+51ae"‘/ﬂ(l—f,):(laf(l—e’""))}+1 (68)

For any positive value of , the optimum solution of is
found from %(]"’L):o. The solution for is

f:_lmr+w+m#maj (69)
m

mzraéP

where P:ae’[\%)(hrfﬁw(1-f,)2), 0= poac gz, S =Q+P(1=¢),

Numerical illustrations and comparison

To validate the models, we presented three numerical
examples for each demand function:

Result
A numerical study was conducted with parameter values
taken from Abu Hashan Md Mashud (2020) to examine the
efficacy of loT-facilitated inventory management across
three diverse demand structures: (i) Linear price and stock-
related demand, (ii) negative power demand, and (iii)
exponential cost-based demand. The model employs loT-
powered continuous observation and changes to optimize
the optimal stock level every cycle while minimizing
shortage, holding, and deterioration costs.
Table 2 shows the efficiency of the suggested paradigm.
By adopting the recommended loT-enabled inventory
model with shortage handling and demand variability
analysis allows businesses to coordinate their operations for
real-time versatility, increase optimum stock levels, reduce
holding and deterioration costs, and improve decision-
making efficiency. The model allows firms to efficiently react
to varied demand conditions, such as linear, negative power,

and exponential, giving them a competitive advantagein a
technology-driven, demand-sensitive market.

Discussion

A few investigations have looked at inventory models from
the standpoint of merging modern digital technologies
such as the Internet of Things (IoT) with multiple demand
circumstances. Most current research focuses simply on
deterioration and shortages, or on standard cost-based
optimization, without considering how demand changes
influence inventory operation (Abu Hashan Md Mashud,
2020). Additionally, studies on demand-based inventory
models has largely disregarded the role of Internet of
Things (loT) monitoring in determining inventory levels,
shortfall provisions, and deterioration control. This creates
a significant research vacuum because the combined
effects on technological implementation, shortage
management, degradation, and diverse demand patterns
on overall profitability and stock optimization have not
been thoroughly investigated. The current study addresses
this gap by developing an Internet of Things-powered
inventory model that incorporates shortage management,
deterioration control, and three key demand variability:
linear price-stock dependent demand, negative power
price-based demand, and exponential price demand. loT
adoption is critical because it enables real-time monitoring,
predictive analytics, and automated adjustments, which
increases responsiveness, guarantees higher stock levels,
and reduces waste (Friday Ugbebor et al., 2024). The findings
demonstrate that the choice of demand structure has a
significant impact on model performance. The negative
power demand model outperforms the other two modelsin
terms of maximum inventory levels and overall profitability.
This shows that loT-based solutions work best when
integrated with nonlinear demand models, which allow
for more flexible consumer pricing reactions. Overall, the
results reveal that loT adoption reduces holding, shortages,
and degradation costs while raising maximum stock levels,
which leads to improved financial and operational efficiency.
Overall, the results reveal that loT adoption reduces
holding, shortages, and degradation costs while raising
maximum stock levels, which leads to improved financial
and operational efficiency.
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Conclusion

The study develops a holistic inventory model using Internet
of Things (IoT) technologies and tests its efficacy in shortage-
permitted scenarios across a variety of demand structures.
By implementing loT into the inventory structure, the model
enables continuous tracking, predictive analytics, and
automatic inventory modifications, improving flexibility,
optimizing stock levels, and reducing inefficiencies. Unlike
traditional approaches, which rely on static decision
criteria and frequently ignore demand variability, this
method links inventory management to real-world
concerns such as demand variation, shortfall control, and
degradation reduction. A numerical study is carried out
to show how the loT-based model performs under three
types of demand: linear price-stock dependent, negative
power of price, and exponential price-based demand. The
maximum inventory level per cycle for the Cases |, Il and
Il are 188.584482, 402.584988, 303.434275 respectively
and the total costs for the Cases |, Il and Ill are $1108.00326,
$786.214411, $1373.11204 respectively. The results reveal
that the negative power demand model outperforms the
linear and exponential scenarios in terms of maximum
stock levels and profitability. This conclusion underlines the
importance of include nonlinear demand forms in inventory
analysis, as well as the potential for IoT adoption to increase
decision-making efficiency, reduce degrading losses, and
lower shortage and holding costs. The inclusion of demand
fluctuations increases the model’s capacity to replicate actual
market behavior, making it more useful for businesses with
unpredictable and changeable demand. While the current
framework is based on deterministic demand assumptions,
future research could build on it by incorporating stochastic
demand processes, variable deterioration rates, and multi-
echelon supply chain circumstances, making it more useful
to more uncertain and volatile situations. This study is novel
in that it combines loT-enabled monitoring with demand-
sensitive inventory analysis, resulting in a comprehensive
approach that maximizes stock levels, boosts profitability,
and improves operational sustainability. This structure
serves as a foundation for firms that want to employ digital
technologies to match inventory planning with competitive
and demand-driven markets.
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