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Abstract

Perishability is a critical factor in inventory control that necessitates adjustments to traditional models like the Economic
Order Quantity (EOQ). This paper explores the EOQ problem under perishable conditions and employs numerical and
analytical methods to derive optimal ordering policies. The study is structured around three cases: (i) calculating EOQ
with a fixed percentage of perishable goods, (ii) calculating EOQ with time-based perishability, and (iii) determining the
optimal ordering time interval with time-based perishability. To solve the transcendental equations that arise, particularly
in cases (ii) and (i) due to the introduction of time-sensitive decay, the paper utilizes both a numerical iterative method
and the Newton-Raphson method.

The numerical method iteratively refines the EOQ or ordering interval until convergence, while the Newton-Raphson
method employs derivatives of the cost function to find the optimal solution. The comparison of the two solution methods
reveals that while both converge to similar EOQ values, the Newton-Raphson method generally provides a more precise

and cost-effective solution, especially in cases with time-dependent perishability.
Keywords: Perishability, EOQ, Optimum Quantity, Optimum Cycle Time, Numerical method, Newton-Raphson Method, Total cost.

Introduction

The Economic Order Quantity (EOQ) model is a cornerstone
of inventory management, aiming to minimize the total
costs associated with ordering and holding inventory.
The classical EOQ model, however, rests on assumptions
that limit its applicability to many real-world situations.
One such limiting assumption is that inventory items can
be stored indefinitely without deterioration. In numerous
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industries, including food, pharmaceuticals, and chemicals,
this assumption is invalid as goods have a finite shelf life and
are subject to perishability.

The challenge of incorporating perishability into
inventory models has attracted researchers for several
decades. Early inventory models largely focused on non-
perishable items, with the emphasis on balancing ordering
costs and holding costs. However, as the importance of
managing perishable goods became more apparent,
researchers began to extend the EOQ framework to account
for the time-dependent nature of inventory value.

The development of inventory models for perishable
goods has evolved through several stages. Initial efforts
involved adapting the EOQ formula to account for a constant
rate of perishability. These models provided a foundation
for understanding the basic trade-offs between ordering
frequency and spoilage. Later research introduced more
complex perishability patterns, such as time-varying decay
rates, and considered factors like preservation techniques
and salvage value.

Over time, various mathematical techniques have been
employed to solve perishable inventory problems. Analytical
solutions were derived for simplified scenarios, providing
insights into optimal ordering policies. However, many
realistic perishability models result in complex equations
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that cannot be solved analytically. As a result, numerical
methods and computer simulations have become essential
tools for determining optimal inventory strategies in these
situations. These computational approaches allow for the
analysis of more intricate factors, such as stochastic demand,
lead time variability, and sophisticated perishability
functions.

Literature Review

A foundational review of perishable inventory models,
categorized by product lifetime and demand behavior, laid
the theoretical groundwork for future advancements in the
field (Nahmias, 1982). The inclusion of inflation effects and
payment delays in inventory models marked a significant
development toward realistic financial modeling for
deteriorating items (Liao et al., 2000).

A comparative analysis of age-based and stock-level
control policies provided critical insight into control
mechanisms suitable for perishable inventory systems
(Tekin et al., 2001). Multi-location storage complexity was
addressed through a two-warehouse inventory model
that incorporated FIFO dispatch policies and deterioration
dynamics (Lee, 2006).

Comprehensive reviews on deteriorating inventory
systems highlighted trends and gaps in the literature
since the early 2000s, setting the stage for integrated and
sustainable approaches (Bakker et al., 2012). In grocery
perishables, the optimization of ordering and pricing
strategies was explored through models that reflect the
operational challenges of freshness and demand uncertainty
(Lietal, 2012).

The application of RFID technology enabled more
responsive inventory decisions by incorporating freshness
and shelf-space constraints into perishable goods
management (Piramuthu & Zhou, 2013). A large-scale
literature analysis identified thematic patterns and
suggested directions for incorporating technology and
sustainability into future research (Chaudhary et al., 2018).

Atime decay-linked logistic approach was developed to
more closely align perishability with inventory control and
logistics decisions (Ali et al., 2013). Optimization strategies
across the supply chain were examined from an integrated
perspective, emphasizing efficiency in production, storage,
and distribution of perishable items (Mirabelli & Solina,
2022).

Environmental concerns were incorporated into
perishable inventory models through the inclusion of
carbon-sensitive demand and fuzzy logic, promoting
green supply chain practices (Rani et al., 2019). The
healthcare sector’s need for inventory systems tailored to
pharmaceutical perishables was addressed through models
featuring price sensitivity, variable deterioration, and partial
backlogging (Rastogi & Singh, 2019).

Realistic constraints related to product expiration and

customer backordering were captured in models featuring
fixed lifetimes and backlogging allowances (Olsson &
Tydesjo, 2010). A hospital inventory system for platelets
was optimized using regular and expedited replenishment
policies to maintain supply of perishable medical items
(Zhou et al., 2011).

The integration of trade credit with price-sensitive
demand was explored in models that addressed retailer
financing and consumer responsiveness (Rameswari &
Uthayakumar, 2018). The joint optimization of selling
price and credit period for sellers of perishable items
was addressed in an early pricing-inventory model that
considered demand elasticity (Abad & Jaggi, 2003)

Materials And Methods

The model focusses on finding out the optimum quantity
Q* and the optimum Time T* under different cases of
perishability. Two methods have also been used under
cases-(ii) and (iii).

Description of the Model

Notation and assumptions
Notation

CASE-(i)
Model formulation

Calculate Q* (with perishability of 2.5% of goods)
This case deals with the EOQ problem, wherein, a certain
percentage of goods becomes perishable.

D Annual demand

Ordering cost

Holding cost

Purchase cost

% of goods perish (useless and no salvage value)
Numerical examples are provided under each case to have
more clarity and continuity

EOQ Model
Adjusted Demand D’ =

X I >

D
1-X
RESEARCH ARTICLE ON
EOQ WITH PERISHABLE GOODS

I
[ \
CASE-(i) CASE-(ii)
Calculate EOQ Q* (with Calculate EOQ Q* (with
perishability of 2.5% of perishability of 2.5% of

CASE-(iii)
Calculate time T* (with
perishability of 2.5% of

goods) goods every 10 days) oods every 10 days)
Method-(i) Method-{i)
Using Numerical Method Using Numerical Method
Method-(ii) Method-(ii)
| Using Newton-Raphson | Using Newton-Raphson
Method Method

Figure 1: Details of Cases and Methods
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FoQQr= 24D
H
Numerical Example
D=200 units (annual demand)
A=10 Rs/order (ordering cost)
H=2 Rs/unit/year (holding cost)
P=5 Rs/unit (purchase cost)
X=2.5% of item perishes (useless and no salvage value)

Step 1: Adjust Demand for Perishable Goods

Since 2.5% of the goods perish and cannot be used, the
actual quantity that needs to be ordered to meet demand
is more than 200 units.

So, effective quantity needed =

Adjusted Demand= 2 = 200 _ 200 _p _ 59513
units 1-X 1-0.025 0.975

Step 2: EOQ Formula

EOQ= [0 = PHONSI = 45.29 units

Step 3: Total Cost

Ordering cost = D A=2513 %10 =Rs 45.29
0 4529
Holding cost= 2 * H = 22 * 2 = Rs 45.29

2 2

Purchase cost =D’ * P =205.13 * 5 = Rs 1025.64
Total cost =Rs 1116.22

Summary

Adjusted Demand: = 205.13 units/year

EOQ: = 45.29 units

Total Cost: = Rs 1116.22/year
Sensitivity Analysis is carried out by varying the Ordering
cost, Holding Cost and Perished Goods % and their effect
on the Total Cost is calculated.

Sensitivity Analysis Table

The details of EOQ and Total Cost for each scenario is
tabulated.

Base values
Values: D=200, P=5, A=10, H=2, X=2.5% and D'=210.53

Case-1: Varying only the Ordering Cost
Missing text

Case-2: Varying only the Holding Cost
Missing text

Case-3 Varying only the Perishability %
Missing text

Observations
EOQ increases with higher order cost and perished
percentage, but decreases with higher holding cost.
Total cost increases when any of the parameters go up

Table 1: Varying Ordering Cost

Unit Ord Cost 3 EOQ Ord Cost % Total Cost ¥
5 32.03 64.05 1121.72
10 45.29 45.29 1116.22
15 55.47 36.98 1118.09
20 64.05 32.03 1121.72
Table 2: Varying Holding Cost
Unit Holding Cost ¥ EOQ Hold Cost¥ Total Cost ¥
1 64.05 32.03 1089.69
2 45.29 45.29 1116.22
3 36.98 55.47 1136.58
4 32.03 64.05 1153.74

Table 3: Varying Perished Goods %

Perished Goods X%  AdjDemand EOQ Total Cost %
0.025 205.13 45.29 1116.22
0.05 210.53 45.88 1144.40
0.075 216.22 46.50 1174.08
0.1 222.22 47.14 1205.39

— particularly due to the increase in adjusted demand
with higher perishability.

« The system is most sensitive to perishability (X) when
it comes to total cost, as it affects both ordering and
purchasing volumes.

CASE-(ii)

Calculate Q* (with perishability of 2.5% of goods every 10
days)
This adds a time-based perishability element to the EOQ
model, which makes it more dynamic and realistic for some
industries (e.g., food, pharma).

2.5% of inventory perishes every 10 days, instead of just
2.5% of annual demand.

This changes the perishability from a one-time loss to a
continuous decay over time, which accumulates based on
how long inventory is held.

Model Formulation

EOQ model with % of perishability every x day
Annual demand

Ordering cost

Holding cost

Purchase cost

% of goods perish in every 10 days

X ©TIT >0

Step 1: Define EOQ Cycle Time
If EOQ = Q, then:
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Cycle time t = % * 365
Step 2: Model Perishability

Let's define:
r=0.025 (2.5% perish everg 10 days)
Perish rate per day: k = 0925 _ 0.0025 = 0.25% per day.

10
Assuming exponential decay, the fraction remaining
after t days is:
Remaining fraction=e=
So, lost fraction = 1— et
Thus, perished units per cycle =Q * (1— e™)
These are wasted, so effective demand per cycle becomes
Useful units per order=Q * e«
To meet annual demand D, we must order

D
Adjusted annual demand = —-
o—

Step 3: Plug into EOQ Formula
EOQ with perishability becomes:

EOQ = 24D

H*ekt
But notice: EOQ now appears on both sides, since t = 2 *
365 and k depend on t. D

This becomes a transcendental equation (can't solve
algebraically)

Solving Transcendental equation in EOQ through
various methods

Unlike algebraic equations, transcendental equations
generally do not have closed-form analytical solutions
that can be expressed in terms of elementary functions.
Therefore, numerical methods are typically employed to find
approximate solutions. Here are some common approaches:

Graphical Method:
Rearrange the equation to the form f(Q) = 0. Plot the function
y =f(Q).

The roots of the equation (the values of Q for which
f(Q)=0) are the points where the graph intersects the
Q-axis. This method provides a visual understanding of the
solutions and can give rough estimates.

Numerical Methods

These are iterative techniques that start with an initial guess
and progressively refineit to get closer to the actual solution.

Bisection Method

This method requires an initial interval [a,b] where f(a) and
f(b) have opposite signs, guaranteeing at least one root in the
interval. The interval is repeatedly halved, always containing
a root, until the desired accuracy is achieved.

Newton-Raphson Method
This is a more efficient method that uses the derivative of

the function, f' (Q), to iteratively find the root. The formula
for the next approximation is:

_o f(2)
n+1_Qn f,(Q,,)

The convergence of this method depends on the initial
guess and the behaviour of the function and its derivative.

Secant Method

This is similar to the Newton-Raphson method but
approximates the derivative using the function values at
two previous points:

Qn _Qn—l
1(0,)-71(0.,)

Fixed-Point Iteration

Rearrange the equation to the form Q = g(Q). Start with an
initial guess Q and iterate using Q_,, =g(Q,). If the iteration
converges, the limit is a solution to the equation.

Q,, =Q,-fQ)*

n+

Root-Finding Algorithms in Software
Many mathematical software packages (e.g., Python with
libraries like SciPy, MATLAB, Mathematica) have built-in
functions for finding roots of non-linear equations, including
transcendental ones. These algorithms often implement
sophisticated numerical methods.

In our case, the transcendental equation will be solved
by the following two methods
«  Solving through Numerical Method
« Solving through Newton-Raphson Method

Case-(ii) Method-(i)

Solving transcendental equation through numerical method
This employs an iterative numerical method to find the
Economic Order Quantity (EOQ) under potentially complex
conditions. It starts with an initial EOQ and calculates the
cycle time, an exponential decay factor, and an adjusted
demand. A new EOQ (EOQ’) is then computed, and the
difference between successive EOQ values is tracked. The
process repeats until this difference becomes minimal,
indicating convergence to a near-optimal EOQ. The
corresponding total cost at this point represents the
estimated minimum. This approach is useful when standard
EOQassumptions of constant demand and costs do not hold.

Numerical Example

Assumptions: The following attributes have constant values
D =200; A=10;H=2; k=0.0025

Analysis

Impact of Perishability
As the initial EOQ increases, the cycle time also increases.
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Table 4: Case-(ii) Method-(i) Numerical Method results
EOQ Cycle time t = (EOQ/D*365) ekt Adj.Demand = (D/e™) EOQ’ EOQ’DIFF Total Cost
45.00 82.13 0.81 246 49.56 49.5 1327
49.56 90.44 0.80 251 50.07 0.5 1354
50.07 91.38 0.80 251 50.13 0.06 1357
50.13 91.49 0.80 251 50.14 0.01 1357
50.14 91.51 0.80 251 50.14 0.00 1357
50.14 91.51 0.80 251 50.14 0.00 1357
50.14 91.51 0.80 251 50.14 0.00 1357
50.14 91.51 0.80 251 50.14 0.00 1357
50.14 91.51 0.80 251 50.14 0.00 1357

With a longer cycle time, the e factor decreases (from 0.81
to 0.80in the observed range), indicating a higher proportion
of inventory is expected to perish. To compensate for this
perishability, the adjusted demand (Adj. Demand) increases.
Consequently, the recalculated EOQ(EOQ’) also tends to
increase to meet the higher adjusted demand.

Convergence of EOQ’

Notice that as the iterations progress, the difference
between successive EOQ’ values (EOQ’ DIFF) decreases. This
suggests that the model is iteratively converging towards a
more stable, perishability-adjusted optimal order quantity.

Total Cost Optimization

The total cost initially increases as the EOQ and EOQ' rise. This
is likely due to higher holding costs associated with larger
order quantities and the cost of perished items. However, the
total cost then starts to decrease and eventually seems to
stabilize around %1357. This indicates that there’s an optimal
balance where the increased order quantity minimizes the
combined costs of ordering, holding, and perishability.

Relationship between Cycle Time and Perishability
The table clearly shows a direct relationship between the
chosen EOQ and the cycle time. Larger EOQs lead to longer
cycle times, which in turn result in greater losses due to
perishability (lower e ™).

The Iterative Adjustment

The process of moving from EOQ to EOQ’ demonstrates an
iterative approach to finding the optimal order quantity
when dealing with perishable goods. The initial EOQ is
adjusted based on the estimated perishability during its
cycle, leading to a revised order quantity. This process
repeats until a stable EOQ’ is reached.

Findings
The suggested Economic Order Quantity (EOQ’) is
approximately 50 units, because of:

Minimized total cost

The table shows that the total cost stabilizes at 1357
when the EOQ’ reaches around 50.14. This suggests that
ordering in this quantity balances the costs of ordering,
holding inventory, and losses due to perishability in the
most efficient way.

Accounting for perishability

The EOQ’ calculation explicitly considers the impact of e %t on
the demand. By ordering a larger quantity (EOQ’ compared
to the initial EOQs), you ensure that you can still meet the
actual demand after some units perish during the longer
cycle time.

Stable order quantity

The EOQ’ DIFF values become very small (approaching zero)
as the iterations progress towards 50.14. This indicates that
this adjusted order quantity is relatively stable and likely
close to the true optimal value considering the perishability
factor.

Therefore, to minimize total inventory costs while
accounting for the perishability of the product, the business
should aim to order approximately 50 units per order cycle.
This will lead to a cycle time of around 92 days based on the
demand and the adjusted order quantity.

Case-(ii) Method-(ii)
Solving the Case-(ii) problem with Newton-Raphson method

Steps for using Newton-Raphson method

Formulate the total cost function

Develop the total annual cost equation for the specific
inventory control model, taking into account the relaxed
assumptions that lead to the transcendental equation. This
cost function will typically include ordering costs, holding
costs, and potentially shortage costs, purchase costs, etc.

Find the first derivative
To minimize the total cost, differentiate the total cost
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function with respect to the order quantity Q and set the
derivative equal to zero:

dTC(Q)
do

This step will yield the transcendental equation that needs
to be solved for the optimal order quantity.

Solve the Transcendental Equation

Use one of the methods described above (graphical or
nuEn)ericaI) to find the value(s) of Q that satisfy the equation
4rc(o

a0 =0

Verify Optimality (Second Derivative Test)

To ensure that the solution corresponds to a
minimum cost, you can use the second derivative test.
Calculate the second derivative %(Q) =0 and evaluate it at
the critical point Q*. If “’%ﬁg) > 0, then Q* corresponds to a
local minimum.

Consider Constraints and Practical Implications

Ensure that the obtained optimal order quantity is feasible
and makes practical sense within the context of the
inventory problem. For example, the order quantity must
be non-negative.

Model Formulation
D Annual Demand
Ordering Cost
Holding Cost
Perishing rate

"I >

24D
H*e"

Q *365

EOQ =

Where t =
EOQ=Q

2*¥A*D
Q= e(—k*(Q/D)*BbS)
2% A*D
fQ=Q- v @] (1)

L d 2%¥4*D
f(Q) =1- d(Q) H*e(—k*(Q/D)*365) ]

= 1/2%(24D/ H*e M ””‘“5))(’1 (24D YO 5365/ D)
=l* 2*A4*D )(—1/2)* (Z*A*D)*

2 H*e(fk (Q/D)*365) H

—k*365

e(—k*(Q/D)*365) * (T)
fl(Q) =1+ (365**117) * 2AD*e(—k*(Q/D)"365) (2)
The Newton-Raphsoh meth&d uses the iterative formula:
0 -0 S (Q.urrent)

_next

_current W

For each iteration, thevaluesofQ _ . t,t,f(Q),f(Q),Q .
andQ . ,carecalculated.The initial value of Q current forthe
first iteration is derived from the standard EOQ formula. The
value of Q  in the second iteration is the same as the
value of Q et 1N the previous (first) iteration. In this way, a
total of 10 iterations have been processed and the results

are displayed below.

Numerical Example

Assumptions: The following attributes have constant values
D =200; A=10; H=2; k=0.0025

Observations from the Iterations

Convergence

The iteration appears to be converging towards a solution.
The value of f(Q) is progressively approaching zero.

Stabilizing Q_next

The value of Q_next starts with a jump from the initial
guess (49.12) to 49.95. However, in subsequent iterations,
the change in Q_next (indicated by Q_next_diff) rapidly
decreases, suggesting the method is settling on a specific
value.

Cycle Time t

The cycle time tincreases as Q_current increases and then
stabilizes as Q_current converges. This makes sense because
a larger order quantity will naturally lead to a longer cycle
time before a reorder is needed.

Function Value f(Q)

The value of f(Q) starts at -4.80 and steadily moves towards
zero. By iteration 6, it reaches 0.00, indicating that the
condition f(Q) = 0 (our target for the root) is met within the
precision of the calculations.

Derivative f’(Q)
The derivative f'(Q) remains relatively stable around 1.09
throughout the iterations. This suggests that the function

Table 5: Case-(ii) Method-(ii) Newton Raphson Method results

?Jrrent b flQ) fl@ Se_xt dQl?neXt_ Tot. Cost
44.72 81.62 -480 1.09 49.12 0.00 1092.06
49.12 89.64 -090 1.09 49.95 0.83 1092.44
49.95 91.16 -0.17 1.09 50.10 0.16 1092.60
50.10 91.44 -0.03 1.09 50.13 0.03 1092.63
50.13 91.49 -0.01 1.09 50.14 0.01 1092.63
50.14 91.50 0.00 1.09 50.14 0.00 1092.63
50.14 91.51 0.00 1.09 50.14 0.00 1092.63
50.14 91.51 0.00 1.09 50.14 0.00 1092.63
50.14 91.51 0.00 1.09 50.14 0.00 1092.63
50.14 91.51 0.00 1.09 50.14 0.00 1092.63
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is well-behaved around the root, which contributes to the
convergence of the Newton-Raphson method.

Analysis of Convergence

The Q_next_diff column clearly shows the convergence:

« The difference is initially 0.83.

+ Itthendrops significantly and finally 0.00 from iterations
6 onwards

This rapid decrease in the difference between successive

estimates of Qindicates that the method is efficiently finding

the root of the equation.

Optimum EOQ Value

Based on the convergence observed in the table, the
optimum EOQ value appears to be approximately 50.14 say
50 units. This is the value at which f(Q) becomes equal to
zero, satisfying the condition for solving the transcendental
equation.

Reasons for the value being the likely optimum

Root of the equation

The Newton-Raphson method aims to find the root of f(Q)
= 0, which corresponds to the EOQ that balances the costs
in the inventory model with perishability.

Convergence

The stable convergence of the iterations towards 50.14
suggests that this value is a consistent solution found by
the numerical method.

Small f(Q)

At the final iterations, the value of f(Q) is essentially zero,
indicating that the estimated Q satisfies the EOQ equation
with a high degree of accuracy.

Total cost

The analysis of total cost indicates that the total cost remains
constant within a narrow band.

Comparison Report: Case-(ii) Method (i) vs Method (ii)

Case-(ii) Method (i): Numerical Method
Method (i) involves an iterative adjustment approach where
EOQ is refined based on adjusted demand and decay
rates. The process converges after several iterations to the
following:
« Final EOQ: 50.14 units
«  Cycle Time: 91.51 days

Total Cost: %1357

Case-(ii) Method (ii): Newton-Raphson Approach

Method (i) applies the Newton-Raphson method, using the
derivative of the cost function to iteratively reach the EOQ
that minimizes total cost. It converges within six iterations:
«  Final EOQ: 50.14 units

«  Cycle Time: 91.51 days

Total Cost vs Q (in %}

10915 —— Tatal Cost (7))
——- Optimal © = 50,14

10930

1092.5 ///

10920

Total Cost (T}

10915

45 a6 47 48 49 50
@ (Drder Quantity]

Figure 2: Total Cost (vs) Q*

CASE-Il - COMPARISON OF BOTH METHODS
1600

1,357

1400

1200

1,092

1000
800
600
400

200 50 50 92 92

Cycle Time (days)

0 — —

Final EOQ Total Cost

®Num.Method  ® Newton-Rhapson

Figure 3: Case-(ii) Comparison of both methods

- Total Cost: ¥1092.63

Conclusion

While both methods converged to the same EOQ value
(50.14 units) and cycle time (91.51 days), the Newton-
Raphson method achieved a significantly lower total
cost (31092.63 vs 1357). This demonstrates the Newton-
Raphson method’s strength in precision and efficiency
when optimizing continuous cost functions. Method (ii) is
thus preferred in applications requiring cost minimization
under perishability constraints.

CASE-(iii)

Calculate time T* (with perishability of 2.5% of goods every
10 days)

Instead of ordering whenever inventory hits a threshold (as
in EOQ), you order every fixed number of days (T) — say,
every 30 days, 60 days, etc. You don’t wait for stock to run
out. But here’s the twist: when perishability is involved, time

becomes the enemy. Because the longer you hold stock, the
more you lose to spoilage.

Case-(iii) Method-(i) Find T*

Solving Transcendental equation through numerical method
Let:
D Demand
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Ordering interval in days (say, 30 days)
Perishing rate per day

Order Cost

Holding Cost

Purchase price

o IT>» X -

Model formulation
Number of orders per year N = 365 T
Order Quantity per Cycle Q without perishability =D * 365
Inventory Decay Over Time accounting for continuous
decay during the average holding time.
Effective average inventory = Q % gh2
Total annual cost (with fixed interval T)
Ordering cost = 37*A

365
Holding cost = % *ehvzxH* —

T pxp
Purchase cost due to perishability = =T

Total cost due to perishability = 305, 412 % g2 vy x 363
P*D T 2 T
+ efkl/Z

Numerical Example

D=200,A=10,H=2,k=0.0025

Ordering every 60 days seems optimal in this case. With
perishability, smaller, more frequent orders tend to reduce
waste and holding costs. The total cost is also minimum for
this cycle time.

Case-(iii) Method-(ii) Find T*

Solving transcendental equation through newton-raphson
method

To develop the required equations for using Newton-
Raphson to find the optimal value of T (the ordering interval
in days) that minimizes the Total Cost (TC), we first need to
construct the full expression for TC(T), and then derive the
firstand second derivatives of TC(T), since Newton-Raphson
uses the iteration

ie '(T n)
n+1 = Tn -
TC"(Tn)
Model Formulation

Given Demand D = 200 units / year, Ordering cost A = 10,
Holding cost H = 2 per unit per year, Purchase cost P =5
per unit, Decay rate k = 0.005, Ordering interval T in days.

Gqpwyerting Tfrom daystoyears T | = 36
Number of orders per year N =

Order qty percycleQ=D*
365, 9

fve average inventory with perishability = 2 xgu=
2 *365 x gur

Ordering cost C_ = ? *A

D*T

e-kT) *H
2 *365

Holding cost C, = (

Table 6: Case-(iii) Method-(i) Numerical Method

T N Q e-k2 D’ TOT.COST
120 3.04 6575 0861 23237 136439
110 3.32 6027 0872 22948 1354.89
100 3.65 5479 0882 22663 1346.15
90 4,06 4932 0894 22381 133835
80 4.56 4384 0905  221.03 133176
70 5.21 3836 0916 21829 1326.83
60 6.08 3288 0928 21558  1324.27
50 7.30 2740 0939 21290 132538
40 9.13 2192 0951 21025 133277
30 1217 1644 0963  207.64 1352.52
20 1825 1096 0975 20506 1402.88

Total cost T(C) = 3% * A + DrH T*ekl

T 2 *365
First Derivative TC’(T)
TC’(T)= i (ﬁ *A+ ﬂ *T-X-e»kT)
dr T 2 *365

Differentiating term by term

d (3654, _ 3654

dT T T?

i D*H * * -kty — D*H * -kt *¥T* -kT
ar Dwses 1= g €K
3654 D *H
TC’(T) = - + % (e'kT _ k*T* e-kT)

T2 2 *365
Second Derivative TC”’(T)
Differentiate TC'(T)
d 3654 D*H
TC(T) = _ ¥ -Tt_k*T* -kT
cm dT( T? +2*365 (e )

Differentiating term by term

*
ddT (- afJT (2D*3I6_I5 T(eT -k e)
d
0T (e-kt — k*T* e-kT) = _k*ekT _ k*(e-kT _ k*T*e’kT)

= D¥k¥*eKT 4 K2¥T*a kT
TC(T) = ;372:[}5*’;[615 * D¥|c*aKT | | 2¥T*a kT
LetC=

2 *365

Then
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TCM =22 + OTre

365* 4
TC(M) =- o + C* (e —K*¥T* ™)

TC(T) = 7;2A+C * (:22%k* et 4 K2*T* )

Newton-Raphson formula T.,=T-

Total cost with purchase cost

TC(T) = 36T5A + 2D*’;?5 * T # okt 4 p*D

Observations

The Newton-Raphson method converges rapidly: the
change becomes negligible (<0.01) by the 8th iteration.

Final optimal value of T=110

Both thefirstand second derivatives (TC'and TC"”) approach
0 at the optimum, which confirms we have found a local
minimum.

Comparison of Numerical Method and Newton-
Raphson for Optimal Ordering Interval

Numerical method

The Numerical method evaluated total cost over a range of
T values (from 15 to 120 days). It found the minimum total
cost at T = 60 days:

«  Optimal T (from table): 60 days

« Total Cost: %1324.27

Newton-Raphson Method
The Newton-Raphson method iteratively finds the minimum
of the total cost function by using its first and second
derivatives. It converged in 7-8 iterations and identified the
optimal ordering interval as:
«  Optimal T: 109.97 days

Minimum Total Cost: ¥1078.96

The Newton-Raphson method provides a more precise
and cost-effective solution compared to the Numerical
method in this scenario. Its ability to use derivative

Table 7: Case-(iii) Method-(ii) Newton Raphson

T ca) e T, T,
30 -3.59 0.27 43.38 13.38
43.38 -1.50 0.09 60.62 17.24
60.62 -0.59 0.03 80.03 1941
80.03 -0.21 0.01 97.29 17.27
97.29 -0.06 0.01 107.30 10.01
107.30 -0.01 0.00 109.84 2.54
109.84 0.00 0.00 109.97 0.13
109.97 0.00 0.00 109.97 0.00
109.97 0.00 0.00 109.97 0.00

Total Cost vs. Ordering Interval (T)
=e= Total Cast
=== MinCost: TIOTA 96
—-=—- Optimal T: 109.84 days

1130

1120

110

Total Cost

1100

1090

1080

30 40 50 B0 70 80 90 100 110
Ordering Interval T {days)

Figure 4: Total cost (vs) T Ordering interval

information enables it to locate the true global minimum,
while the Numerical method, limited by the granularity of
sampled T values, may identify only a local minimum. Cycle
Time valueis higher and Cost is lower in the case of Newton-
Raphson method.

CASE-(ii) — Effect of variation of Perishability and
Demand on the Total Cost.

Use case scenarios have been worked out by varying
Perishability and Demand and their effect on Total Cost has
been worked out, under both the methods.

Variation of Perishability

Given Demand = 200, Ordering Cost = 10, Holding Cost =
2, Purchase Cost=5

Perishability = Varied from 0.0015 to 0.0095. The effect on
total cost is given Figure 6.

As the perishability is increased, the total cost under
Numerical Method is much more than that of Newton-
Rhapson method. In the Newton-Rhapson method, the
variation in perishability practically does not have any
significant impact on the total cost.

Variation of Demand
Given Perishability = 0.0025 Ordering Cost = 10, Holding
Cost = 2, Purchase Cost =5

Demand = Varied from 200 to 1200 units. The effect on
total cost is given Figure 7.

CASE-IIl - COMPARISON OF BOTH METHODS

1500 1,324

1200 1,079

900
600
300 0 110
0 I _

Optimal T(days) Minimum Cost

B Num.Method B Newton-Rhapson

Figure 5: Case-(iii) Comparison of both methods
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EFFECT OF PERISHABILITY ON TOTAL COST WITH NUM & NR METHODS

7000

TOTAL COST

6000

5000

4000

3000

2000

= g in e e |k II i b
0 0.0015 0.0025 0.0035 0.0045 0.0055 0.0065 0.0075 0.0085 0.0095

ETC-NUM 1235 1357 1508 1701 1959 2327 2918 4194 6917
ETC-NR 1092 1093 1094 1095 1096 1097 1098 1099 1010

PERISHABILITY

Figure 6: Effect of variation of Perishability on Cost

The Cost under Newton-Rhapson method is lower than that
of Numerical method.

Discussions

The enhanced EOQ models presented in this study effectively
address perishability in inventory systems, offering practical
relevance forindustries like food and pharmaceuticals. Case-
(i), which considers a flat 2.5% loss of demand, provided a
baseline with a total cost of ¥1116.22 and demonstrated
that perishability significantly influences total cost more
than ordering or holding costs. Case-(ii) introduced time-
based perishability, yielding more dynamic insights. Both
the numerical and Newton-Raphson methods converged
to an EOQ of 50.14 units, but the Newton-Raphson method
achieved a lower total cost (31092.63), proving more efficient
and precise in handling complex cost functions.

Case-(iii) shifted the focus from quantity to ordering
interval (T), with the Newton-Raphson method again
outperforming the numerical method by identifying a more
cost-effective interval (T = 109.97 days, ¥1078.96 cost). Across
all cases, models that explicitly incorporate perishability
and apply advanced optimization methods offer superior
inventory decisions. The study highlights the importance of
selecting appropriate methods for minimizing total cost and
suggests that derivative-based approaches are particularly
effective in real-world, non-linear scenarios.

Potential Applications

Perishable food supply chains

Industries dealing with fresh produce, dairy, seafood,
and meat face acute perishability issues. Applying the
time-sensitive EOQ models (Case-ii and Case-iii) enables

EFFECT OF DEMAND ON TOTAL COST WITH NUM & NR METHODS

7000

6000
5000
4000
3000
2000 I I I
1000 . I
0 200. 400 600 800 1000

1200

TOTAL COST

ETC-NUM 1235 2322 3389 4445 5495 6540
BTC-NR 1092 2132 3163 4010 5213 6235
DEMAND

Figure 7: Effect of variation of Demand on Cost

wholesalers, retailers, and cold storage operators to optimize
order sizes and replenishment frequency, thereby reducing
spoilage, preserving quality, and minimizing total cost.

Retail with seasonal or expiring inventory

Fashion apparel, electronics, and promotional items often
have limited shelf-lives due to seasonal trends or rapid
technological changes. By incorporating decay rates into
inventory planning, retailers can better align procurement
cycles with demand patterns, minimizing end-of-season
losses and clearance-related markdowns.

Healthcare logistics

Hospitals, clinics, and pharmaceutical distributors manage
inventories of temperature- or time-sensitive products such
as vaccines, insulin, blood products, and medications. The
Newton-Raphson method, with its precision in minimizing
costs under continuous decay, is particularly effective in
this context, ensuring timely replenishment and minimizing
expired stock.

Floriculture and nursery products

Cut flowers, ornamental plants, and nursery saplings are
highly perishable commodities. Employing EOQ models that
consider exponential decay enables growers and exporters
to synchronize harvest, storage, and shipment schedules,
preserving product value and reducing return rates.

Chemical and laboratory reagents

Reagents and certain chemical compounds degrade
under environmental stress or over time. Laboratories and
industrial users can apply the time-based decay models to
determine safe inventory levels that minimize obsolescence
while ensuring operational readiness.

Meal kit and subscription services

Companies offering ready-to-cook meals, fresh produce
boxes, or curated monthly kits face logistical challenges
related to perishability. Implementing optimized EOQ
models helps such businesses manage lead times, reduce
inventory waste, and enhance customer satisfaction through
reliable, fresh deliveries.

E-Commerce with fast fashion and trend-driven goods

Online platforms dealing in fast fashion, limited-edition
merchandise, or viral products face perishability not of
material but of consumer interest. The EOQ framework
with decay parameters can be adapted to model declining
demand or relevance, guiding sellers to prevent overstock
and maximize revenue within narrow sales windows.

Emergency stockpiling and disaster relief

Organizations stockpiling critical items like food kits, water,
and medical supplies for disaster response must manage
inventories that degrade or expire. Perishable EOQ models
allow planners to optimize replenishment cycles, ensuring
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preparedness while minimizing waste due to shelf-life
expiry.

Conclusion

The study demonstrates that incorporating perishability
into EOQ models leads to more realistic and cost-effective
inventory strategies. Among the approaches, Case-(ii)—
which models continuous time-based decay—offers the
most accurate optimization, with the Newton-Raphson
method delivering the lowest total cost. These findings
help inventory planners make better decisions by aligning
order quantities and intervals with the rate of perishability,
ultimately minimizing waste and enhancing operational
efficiency.
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