
Abstract
Perishability is a critical factor in inventory control that necessitates adjustments to traditional models like the Economic 
Order Quantity (EOQ). This paper explores the EOQ problem under perishable conditions and employs numerical and 
analytical methods to derive optimal ordering policies. The study is structured around three cases: (i) calculating EOQ 
with a fixed percentage of perishable goods, (ii) calculating EOQ with time-based perishability, and (iii) determining the 
optimal ordering time interval with time-based perishability. To solve the transcendental equations that arise, particularly 
in cases (ii) and (iii) due to the introduction of time-sensitive decay, the paper utilizes both a numerical iterative method 
and the Newton-Raphson method.   

The numerical method iteratively refines the EOQ or ordering interval until convergence, while the Newton-Raphson 
method employs derivatives of the cost function to find the optimal solution. The comparison of the two solution methods 
reveals that while both converge to similar EOQ values, the Newton-Raphson method generally provides a more precise 
and cost-effective solution, especially in cases with time-dependent perishability.   
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Introduction
The Economic Order Quantity (EOQ) model is a cornerstone 
of inventory management, aiming to minimize the total 
costs associated with ordering and holding inventory. 
The classical EOQ model, however, rests on assumptions 
that limit its applicability to many real-world situations. 
One such limiting assumption is that inventory items can 
be stored indefinitely without deterioration. In numerous 
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industries, including food, pharmaceuticals, and chemicals, 
this assumption is invalid as goods have a finite shelf life and 
are subject to perishability.

The challenge of incorporating perishability into 
inventory models has attracted researchers for several 
decades. Early inventory models largely focused on non-
perishable items, with the emphasis on balancing ordering 
costs and holding costs. However, as the importance of 
managing perishable goods became more apparent, 
researchers began to extend the EOQ framework to account 
for the time-dependent nature of inventory value.

The development of inventory models for perishable 
goods has evolved through several stages. Initial efforts 
involved adapting the EOQ formula to account for a constant 
rate of perishability. These models provided a foundation 
for understanding the basic trade-offs between ordering 
frequency and spoilage. Later research introduced more 
complex perishability patterns, such as time-varying decay 
rates, and considered factors like preservation techniques 
and salvage value.

Over time, various mathematical techniques have been 
employed to solve perishable inventory problems. Analytical 
solutions were derived for simplified scenarios, providing 
insights into optimal ordering policies. However, many 
realistic perishability models result in complex equations 
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that cannot be solved analytically. As a result, numerical 
methods and computer simulations have become essential 
tools for determining optimal inventory strategies in these 
situations. These computational approaches allow for the 
analysis of more intricate factors, such as stochastic demand, 
lead time variability, and sophisticated perishability 
functions.

Literature Review
A foundational review of perishable inventory models, 
categorized by product lifetime and demand behavior, laid 
the theoretical groundwork for future advancements in the 
field (Nahmias, 1982). The inclusion of inflation effects and 
payment delays in inventory models marked a significant 
development toward realistic financial modeling for 
deteriorating items (Liao et al., 2000).

A comparative analysis of age-based and stock-level 
control policies provided critical insight into control 
mechanisms suitable for perishable inventory systems 
(Tekin et al., 2001). Multi-location storage complexity was 
addressed through a two-warehouse inventory model 
that incorporated FIFO dispatch policies and deterioration 
dynamics (Lee, 2006).

Comprehensive reviews on deteriorating inventory 
systems highlighted trends and gaps in the literature 
since the early 2000s, setting the stage for integrated and 
sustainable approaches (Bakker et al., 2012). In grocery 
perishables, the optimization of ordering and pricing 
strategies was explored through models that reflect the 
operational challenges of freshness and demand uncertainty 
(Li et al., 2012).

The application of RFID technology enabled more 
responsive inventory decisions by incorporating freshness 
and shelf-space constraints into perishable goods 
management (Piramuthu & Zhou, 2013). A large-scale 
literature analysis identified thematic patterns and 
suggested directions for incorporating technology and 
sustainability into future research (Chaudhary et al., 2018).

A time decay-linked logistic approach was developed to 
more closely align perishability with inventory control and 
logistics decisions (Ali et al., 2013). Optimization strategies 
across the supply chain were examined from an integrated 
perspective, emphasizing efficiency in production, storage, 
and distribution of perishable items (Mirabelli & Solina, 
2022).

Environmental concerns were incorporated into 
perishable inventory models through the inclusion of 
carbon-sensitive demand and fuzzy logic, promoting 
green supply chain practices (Rani et al., 2019). The 
healthcare sector’s need for inventory systems tailored to 
pharmaceutical perishables was addressed through models 
featuring price sensitivity, variable deterioration, and partial 
backlogging (Rastogi & Singh, 2019).

Realistic constraints related to product expiration and 

customer backordering were captured in models featuring 
fixed lifetimes and backlogging allowances (Olsson & 
Tydesjö, 2010). A hospital inventory system for platelets 
was optimized using regular and expedited replenishment 
policies to maintain supply of perishable medical items 
(Zhou et al., 2011).

The integration of trade credit with price-sensitive 
demand was explored in models that addressed retailer 
financing and consumer responsiveness (Rameswari & 
Uthayakumar, 2018). The joint optimization of selling 
price and credit period for sellers of perishable items 
was addressed in an early pricing-inventory model that 
considered demand elasticity (Abad & Jaggi, 2003)

Materials And Methods
The model focusses on finding out the optimum quantity 
Q* and the optimum Time T* under different cases of 
perishability. Two methods have also been used under 
cases-(ii) and (iii).

Description of the Model

Notation and assumptions
Notation

CASE-(i) 
Model formulation

Calculate Q* (with perishability of 2.5% of goods)
This case deals with the EOQ problem, wherein, a certain 
percentage of goods becomes perishable. 
D	 Annual demand
A	 Ordering cost
H	 Holding cost
P	 Purchase cost
X	 % of goods perish (useless and no salvage value)
Numerical examples are provided under each case to have 
more clarity and continuity 

EOQ Model 
Adjusted Demand D’ = 

1
D

X−

Figure 1: Details of Cases and Methods
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EOQ Q* = 2AD
H

′

Numerical Example
D=200 units (annual demand)
A=10 Rs/order (ordering cost)
H=2 Rs/unit/year (holding cost)
P=5 Rs/unit (purchase cost)
X=2.5% of item perishes (useless and no salvage value)

Step 1: Adjust Demand for Perishable Goods
Since 2.5% of the goods perish and cannot be used, the 
actual quantity that needs to be ordered to meet demand 
is more than 200 units.
So, effective quantity needed = 
Adjusted Demand=  

1
D

X−
 = 200

1 0.025−
 = 200

0.975
 = D’ = 205.13 

units

Step 2: EOQ Formula
EOQ = 2AD

H
′   = 2*10*205.13

2
 = 45.29 units

Step 3: Total Cost
Ordering cost = D

Q
′
 * A = 205.13

45.29
 * 10 = Rs 45.29

Holding cost = 
2
Q  * H = 45.29

2  * 2 = Rs 45.29

Purchase cost = D’ * P = 205.13 * 5 = Rs 1025.64
Total cost = Rs 1116.22

Summary
•	 Adjusted Demand: ≈ 205.13 units/year
•	 EOQ: ≈ 45.29 units
•	 Total Cost: ≈ Rs 1116.22/year
Sensitivity Analysis is carried out by varying the Ordering 
cost, Holding Cost and Perished Goods % and their effect 
on the Total Cost is calculated.

Sensitivity Analysis Table
The details of EOQ and Total Cost for each scenario is 
tabulated.

Base values
Values: D=200, P=5, A=10, H=2, X=2.5% and D’=210.53

Case-1: Varying only the Ordering Cost
Missing text

Case-2: Varying only the Holding Cost
Missing text

Case-3  Varying only the Perishability %
Missing text

Observations
•	 EOQ increases with higher order cost and perished 

percentage, but decreases with higher holding cost.
•	 Total cost increases when any of the parameters go up 

— particularly due to the increase in adjusted demand 
with higher perishability.

•	 The system is most sensitive to perishability (X) when 
it comes to total cost, as it affects both ordering and 
purchasing volumes.

CASE-(ii) 

Calculate Q* (with perishability of 2.5% of goods every 10 
days) 
This adds a time-based perishability element to the EOQ 
model, which makes it more dynamic and realistic for some 
industries (e.g., food, pharma).

2.5% of inventory perishes every 10 days, instead of just 
2.5% of annual demand.

This changes the perishability from a one-time loss to a 
continuous decay over time, which accumulates based on 
how long inventory is held.

Model Formulation

EOQ model with % of perishability every x day
D	 Annual demand
A	 Ordering cost
H	 Holding cost
P	 Purchase cost
X	 % of goods perish in every 10 days

Step 1: Define EOQ Cycle Time
If EOQ = Q, then:

Table 1: Varying Ordering Cost

Unit Ord Cost ₹ EOQ Ord Cost ₹ Total Cost ₹

5 32.03 64.05 1121.72

10 45.29 45.29 1116.22

15 55.47 36.98 1118.09

20 64.05 32.03 1121.72

Table 2: Varying Holding Cost

Unit Holding Cost ₹ EOQ Hold Cost ₹ Total Cost ₹

1 64.05 32.03 1089.69

2 45.29 45.29 1116.22

3 36.98 55.47 1136.58

4 32.03 64.05 1153.74

Table 3: Varying Perished Goods %

Perished Goods X % Adj Demand EOQ Total Cost ₹

0.025 205.13 45.29 1116.22

0.05 210.53 45.88 1144.40

0.075 216.22 46.50 1174.08

0.1 222.22 47.14 1205.39
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Cycle time t = Q
D

 * 365

Step 2: Model Perishability
Let’s define:
r=0.025 (2.5% perish every 10 days)
Perish rate per day: k = 0.025

10
 = 0.0025 = 0.25% per day.

Assuming exponential decay, the fraction remaining 
after t days is:
Remaining fraction=e−kt

So, lost fraction = 1− e−kt

Thus, perished units per cycle = Q * (1− e−kt)
These are wasted, so effective demand per cycle becomes
Useful units per order=Q * e−kt

To meet annual demand D, we must order

Adjusted annual demand = kt
D

e −
Step 3: Plug into EOQ Formula
EOQ with perishability becomes:

EOQ = 2
kt

AD
H * e

But notice: EOQ now appears on both sides, since t = 
Q
D

 * 
365 and k depend on t.

This becomes a transcendental equation (can’t solve 
algebraically)

Solving Transcendental equation in EOQ through 
various methods 
Unlike algebraic equations, transcendental equations 
generally do not have closed-form analytical solutions 
that can be expressed in terms of elementary functions. 
Therefore, numerical methods are typically employed to find 
approximate solutions. Here are some common approaches:

Graphical Method:
Rearrange the equation to the form f(Q) = 0. Plot the function 
y = f(Q).

The roots of the equation (the values of Q for which 
f(Q)=0) are the points where the graph intersects the 
Q-axis. This method provides a visual understanding of the 
solutions and can give rough estimates.

Numerical Methods
These are iterative techniques that start with an initial guess 
and progressively refine it to get closer to the actual solution. 

Bisection Method
This method requires an initial interval [a,b] where f(a) and 
f(b) have opposite signs, guaranteeing at least one root in the 
interval. The interval is repeatedly halved, always containing 
a root, until the desired accuracy is achieved.

Newton-Raphson Method
This is a more efficient method that uses the derivative of 

the function, f′ (Q), to iteratively find the root. The formula 
for the next approximation is:

Qn+1 = Qn - 
( )
( )

n

n

f Q
f Q′

The convergence of this method depends on the initial 
guess and the behaviour of the function and its derivative.

Secant Method
This is similar to the Newton-Raphson method but 
approximates the derivative using the function values at 
two previous points:

Qn+1 = Qn – f(Qn) * ( ) ( )
1

1

n n

n n

Q Q
f Q f Q

−

−

−
−

Fixed-Point Iteration
Rearrange the equation to the form Q = g(Q). Start with an 
initial guess Q0 and iterate using Qn+1 = g(Qn). If the iteration 
converges, the limit is a solution to the equation.

Root-Finding Algorithms in Software
Many mathematical software packages (e.g., Python with 
libraries like SciPy, MATLAB, Mathematica) have built-in 
functions for finding roots of non-linear equations, including 
transcendental ones. These algorithms often implement 
sophisticated numerical methods.

In our case, the transcendental equation will be solved 
by the following two methods
•	 Solving through Numerical Method
•	 Solving through Newton-Raphson Method

Case-(ii) Method-(i) 

Solving transcendental equation through numerical method
This employs an iterative numerical method to find the 
Economic Order Quantity (EOQ) under potentially complex 
conditions. It starts with an initial EOQ and calculates the 
cycle time, an exponential decay factor, and an adjusted 
demand. A new EOQ (EOQ’) is then computed, and the 
difference between successive EOQ values is tracked. The 
process repeats until this difference becomes minimal, 
indicating convergence to a near-optimal EOQ. The 
corresponding total cost at this point represents the 
estimated minimum. This approach is useful when standard 
EOQ assumptions of constant demand and costs do not hold.

Numerical Example

Assumptions: The following attributes have constant values
D = 200; A = 10; H = 2; k = 0.0025

Analysis

Impact of Perishability
As the initial EOQ increases, the cycle time also increases. 
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With a longer cycle time, the e−kt factor decreases (from 0.81 
to 0.80 in the observed range), indicating a higher proportion 
of inventory is expected to perish. To compensate for this 
perishability, the adjusted demand (Adj. Demand) increases. 
Consequently, the recalculated EOQ(EOQ’) also tends to 
increase to meet the higher adjusted demand.

Convergence of EOQ’
Notice that as the iterations progress, the difference 
between successive EOQ’ values (EOQ’ DIFF) decreases. This 
suggests that the model is iteratively converging towards a 
more stable, perishability-adjusted optimal order quantity.

Total Cost Optimization
The total cost initially increases as the EOQ and EOQ’ rise. This 
is likely due to higher holding costs associated with larger 
order quantities and the cost of perished items. However, the 
total cost then starts to decrease and eventually seems to 
stabilize around ₹1357. This indicates that there’s an optimal 
balance where the increased order quantity minimizes the 
combined costs of ordering, holding, and perishability.

Relationship between Cycle Time and Perishability
The table clearly shows a direct relationship between the 
chosen EOQ and the cycle time. Larger EOQs lead to longer 
cycle times, which in turn result in greater losses due to 
perishability (lower e−kt).

The Iterative Adjustment
The process of moving from EOQ to EOQ’ demonstrates an 
iterative approach to finding the optimal order quantity 
when dealing with perishable goods. The initial EOQ is 
adjusted based on the estimated perishability during its 
cycle, leading to a revised order quantity. This process 
repeats until a stable EOQ’ is reached.

Findings
The suggested Economic Order Quantity (EOQ’) is 
approximately 50 units, because of:

Minimized total cost
The table shows that the total cost stabilizes at ₹1357 
when the EOQ’ reaches around 50.14. This suggests that 
ordering in this quantity balances the costs of ordering, 
holding inventory, and losses due to perishability in the 
most efficient way.

Accounting for perishability
The EOQ’ calculation explicitly considers the impact of e−kt on 
the demand. By ordering a larger quantity (EOQ’ compared 
to the initial EOQs), you ensure that you can still meet the 
actual demand after some units perish during the longer 
cycle time.

Stable order quantity
The EOQ’ DIFF values become very small (approaching zero) 
as the iterations progress towards 50.14. This indicates that 
this adjusted order quantity is relatively stable and likely 
close to the true optimal value considering the perishability 
factor.

Therefore, to minimize total inventory costs while 
accounting for the perishability of the product, the business 
should aim to order approximately 50 units per order cycle. 
This will lead to a cycle time of around 92 days based on the 
demand and the adjusted order quantity.

Case-(ii) Method-(ii) 
Solving the Case-(ii) problem with Newton-Raphson method

Steps for using Newton-Raphson method

Formulate the total cost function
Develop the total annual cost equation for the specific 
inventory control model, taking into account the relaxed 
assumptions that lead to the transcendental equation. This 
cost function will typically include ordering costs, holding 
costs, and potentially shortage costs, purchase costs, etc.

Find the first derivative
To minimize the total cost, differentiate the total cost 

Table 4: Case-(ii) Method-(i) Numerical Method results

EOQ Cycle time t = (EOQ/D*365) e-kt Adj.Demand = (D/e-kt) EOQ’ EOQ’ DIFF Total Cost

45.00 82.13 0.81 246 49.56 49.5 1327

49.56 90.44 0.80 251 50.07 0.5 1354

50.07 91.38 0.80 251 50.13 0.06 1357

50.13 91.49 0.80 251 50.14 0.01 1357

50.14 91.51 0.80 251 50.14 0.00 1357

50.14 91.51 0.80 251 50.14 0.00 1357

50.14 91.51 0.80 251 50.14 0.00 1357

50.14 91.51 0.80 251 50.14 0.00 1357

50.14 91.51 0.80 251 50.14 0.00 1357
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function with respect to the order quantity Q and set the 
derivative equal to zero:

( )dTC Q
dQ

 = 0

This step will yield the transcendental equation that needs 
to be solved for the optimal order quantity.

Solve the Transcendental Equation
Use one of the methods described above (graphical or 
numerical) to find the value(s) of Q that satisfy the equation 

( )dTC Q
dQ  = 0

Verify Optimality (Second Derivative Test)
To ensure that the solution corresponds to a 
minimum cost, you can use the second derivative test. 
Calculate the second derivative ( )2

2

d TC Q
dQ

 = 0 and evaluate it at 
the critical point Q*. If ( )2

2

d TC Q
dQ

 > 0, then Q* corresponds to a 
local minimum.

Consider Constraints and Practical Implications
Ensure that the obtained optimal order quantity is feasible 
and makes practical sense within the context of the 
inventory problem. For example, the order quantity must 
be non-negative.

Model Formulation
D	 Annual Demand
A	 Ordering Cost
H	 Holding Cost
K	 Perishing rate

EOQ = 2
* kt
AD

H e

Where t = 
Q
D

 * 365
EOQ = Q

Q = ( )( )* / *365

2* *
k Q D

A D
e −

f(Q) = Q - ( )( )/ 365

2
−k* Q D *

* A* D
H * e

			   (1)

f’(Q) = 1 – 
( )
d

d Q
 [ ( )( )* / *365

2* *
* k Q D

A D
H e −

] 

= ( )( )( )( )
( ) ( )( ) ( )

1/2* / *365 * / *3651/ 2* 2 / * * 2 / * * *365 /k Q D k Q DAD H e AD H e k D
−

− − −

= 
1
2  * ( ( )( )* / *365

2* *
* k Q D

A D
H e − )(-1/2) * 2* *( A D

H
)* 

( )( )* / *365k Q De −  * (
*365k
D

−
)

f’(Q) = 1 + ( 365
2

 * k
 * D

) * ( )( )/ 3652 −k* Q D *AD* e
H

		  (2)
The Newton-Raphson method uses the iterative formula:

Q_next = Q_current – ( )
( )

c

c

f Q urrent
f Q urrent′

For each iteration, the values of Q_current, t0, t, f(Q), f’(Q), Q_next 
and Q_next_diff are calculated. The initial value of Q_current for the 
first iteration is derived from the standard EOQ formula. The 
value of Q_current in the second iteration is the same as the 
value of Q_next in the previous (first) iteration. In this way, a 
total of 10 iterations have been processed and the results 
are displayed below.

Numerical Example
Assumptions: The following attributes have constant values
D = 200; A = 10; H = 2; k = 0.0025

Observations from the Iterations

Convergence
The iteration appears to be converging towards a solution. 
The value of f(Q) is progressively approaching zero.

Stabilizing Q_next
The value of Q_next starts with a jump from the initial 
guess (49.12) to 49.95. However, in subsequent iterations, 
the change in Q_next (indicated by Q_next_diff) rapidly 
decreases, suggesting the method is settling on a specific 
value.

Cycle Time t
The cycle time t increases as Q_current increases and then 
stabilizes as Q_current converges. This makes sense because 
a larger order quantity will naturally lead to a longer cycle 
time before a reorder is needed.

Function Value f(Q)
The value of f(Q) starts at -4.80 and steadily moves towards 
zero. By iteration 6, it reaches 0.00, indicating that the 
condition f(Q) = 0 (our target for the root) is met within the 
precision of the calculations.

Derivative f’(Q)
The derivative f’(Q) remains relatively stable around 1.09 
throughout the iterations. This suggests that the function 

Table 5: Case-(ii) Method-(ii) Newton Raphson Method results

Q_
current t0 f(Q) f’(Q) Q_

next
Q_next_
dif Tot. Cost

44.72 81.62 -4.80 1.09 49.12 0.00 1092.06

49.12 89.64 -0.90 1.09 49.95 0.83 1092.44

49.95 91.16 -0.17 1.09 50.10 0.16 1092.60

50.10 91.44 -0.03 1.09 50.13 0.03 1092.63

50.13 91.49 -0.01 1.09 50.14 0.01 1092.63

50.14 91.50 0.00 1.09 50.14 0.00 1092.63

50.14 91.51 0.00 1.09 50.14 0.00 1092.63

50.14 91.51 0.00 1.09 50.14 0.00 1092.63

50.14 91.51 0.00 1.09 50.14 0.00 1092.63

50.14 91.51 0.00 1.09 50.14 0.00 1092.63
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is well-behaved around the root, which contributes to the 
convergence of the Newton-Raphson method.

Analysis of Convergence
The Q_next_diff column clearly shows the convergence:
•	 The difference is initially 0.83.
•	 It then drops significantly and finally 0.00 from iterations 

6 onwards
This rapid decrease in the difference between successive 
estimates of Q indicates that the method is efficiently finding 
the root of the equation.

Optimum EOQ Value
Based on the convergence observed in the table, the 
optimum EOQ value appears to be approximately 50.14 say 
50 units. This is the value at which f(Q) becomes equal to 
zero, satisfying the condition for solving the transcendental 
equation.

Reasons for the value being the likely optimum

Root of the equation
The Newton-Raphson method aims to find the root of f(Q) 
= 0, which corresponds to the EOQ that balances the costs 
in the inventory model with perishability.

Convergence
The stable convergence of the iterations towards 50.14 
suggests that this value is a consistent solution found by 
the numerical method.

Small f(Q)
At the final iterations, the value of f(Q) is essentially zero, 
indicating that the estimated Q satisfies the EOQ equation 
with a high degree of accuracy.

Total cost
The analysis of total cost indicates that the total cost remains 
constant within a narrow band.

Comparison Report: Case-(ii) Method (i) vs Method (ii)

Case-(ii) Method (i): Numerical Method
Method (i) involves an iterative adjustment approach where 
EOQ is refined based on adjusted demand and decay 
rates. The process converges after several iterations to the 
following:
•	 Final EOQ: 50.14 units
•	 Cycle Time: 91.51 days
•	 Total Cost: ₹1357

Case-(ii) Method (ii): Newton-Raphson Approach
Method (ii) applies the Newton-Raphson method, using the 
derivative of the cost function to iteratively reach the EOQ 
that minimizes total cost. It converges within six iterations:
•	 Final EOQ: 50.14 units
•	 Cycle Time: 91.51 days

•	 Total Cost: ₹1092.63

Conclusion
While both methods converged to the same EOQ value 
(50.14 units) and cycle time (91.51 days), the Newton-
Raphson method achieved a significantly lower total 
cost (₹1092.63 vs ₹1357). This demonstrates the Newton-
Raphson method’s strength in precision and efficiency 
when optimizing continuous cost functions. Method (ii) is 
thus preferred in applications requiring cost minimization 
under perishability constraints.

CASE-(iii) 

Calculate time T* (with perishability of 2.5% of goods every 
10 days) 
Instead of ordering whenever inventory hits a threshold (as 
in EOQ), you order every fixed number of days (T) — say, 
every 30 days, 60 days, etc. You don’t wait for stock to run 
out. But here’s the twist: when perishability is involved, time 
becomes the enemy. Because the longer you hold stock, the 
more you lose to spoilage.

Case-(iii) Method-(i) Find T*

Solving Transcendental equation through numerical method
Let:
D	 Demand

Figure 2: Total Cost (vs) Q*
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CASE-II - COMPARISON OF BOTH METHODS 
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Figure 3: Case-(ii) Comparison of both methods
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T	 Ordering interval in days (say, 30 days)
K	 Perishing rate per day 
A	 Order Cost 
H	 Holding Cost
P	 Purchase price

Model formulation
Number of orders per year N = 

365
T

Order Quantity per Cycle Q without perishability = D * 365
T

Inventory Decay Over Time accounting for continuous 
decay during the average holding time.

Effective average inventory ≈ 
2
Q  * e-kt/2

Total annual cost (with fixed interval T)
Ordering cost = 

365 * A
T

Holding cost = 
2
Q  * e-kt/2 * H * 

365
T

Purchase cost due to perishability = /2
*
kt

P D
e−

Total cost due to perishability = 365 *  
2
QA

T
+  * e-kt/2 * H * 365

T
 

+ /2
*
kt

P D
e−

Numerical Example
D = 200, A = 10, H = 2, k = 0.0025
Ordering every 60 days seems optimal in this case. With 
perishability, smaller, more frequent orders tend to reduce 
waste and holding costs. The total cost is also minimum for 
this cycle time.

Case-(iii) Method-(ii) Find T*

Solving transcendental equation through newton-raphson 
method
To develop the required equations for using Newton-
Raphson to find the optimal value of T (the ordering interval 
in days) that minimizes the Total Cost (TC), we first need to 
construct the full expression for TC(T), and then derive the 
first and second derivatives of TC(T), since Newton-Raphson 
uses the iteration

Tn+1 = Tn - 
( )
( )

'  
''

TC Tn
TC Tn

Model Formulation
Given Demand D = 200 units / year, Ordering cost A = 10, 
Holding cost H = 2 per unit per year, Purchase cost P = 5 
per unit, Decay rate k = 0.005, Ordering interval T in days.

Converting T from days to years Tyears =  
365
T

Number of orders per year N = 	
365
T

Order qty per cycle Q = D * 	
365
T

Effective average inventory with perishability = 2
Q

 * e-kt = 
 * 

2 * 365
D T

 * e-kT

Ordering cost Co =  365
T  * A

Holding cost Ch = (  * 
2 * 365
D T  * e-kT) * H

Total cost T(C) = 365
T

 * A +  * 
2 * 365
D H  * T * e-kT

First Derivative TC’(T)

TC’(T) = 
d

dT
 (

365
T

 * A + 
 * 

2 * 365
D H

 * T * e-kT)

Differentiating term by term

d
dT

 ( 365 )A
T

 = - 
365

²
A

T

 *  (
2 * 365

d D H
dT  * T * e-kt) = 

 * 
2 * 365
D H

 * (e-kt – k*T* e-kT)

TC’(T) = - 
365  *   

² 2 * 365
A D H

T
+  * (e-kT – k*T* e-kT)

Second Derivative TC’’(T)
Differentiate TC’(T)

TC’(T) =  (d
dT

- 
365  *   

² 2 * 365
A D H

T
+ .  * (e-Tt – k*T* e-kT)

Differentiating term by term

 (d
dT

-  *  (
2 * 365

d D H
dT

 * (e-Tt – k*T* e-kT)

 d
dT

(e-kt – k*T* e-kT) = -k*e-kT – k*(e-kT – k*T*e-kT)

= -2*k*e-kT + k2*T*e-kT

TC’’(T) = 3
730  *    

2 * 365
A D H

T
+  * -2*k*e-kT + k2*T*e-kT

Let C =  * 
2 * 365
D H

Then 

Table 6: Case-(iii) Method-(i) Numerical Method 

T N Q e-kt/2 D’ TOT.COST

120 3.04 65.75 0.861 232.37 1364.39

110 3.32 60.27 0.872 229.48 1354.89

100 3.65 54.79 0.882 226.63 1346.15

90 4.06 49.32 0.894 223.81 1338.35

80 4.56 43.84 0.905 221.03 1331.76

70 5.21 38.36 0.916 218.29 1326.83

60 6.08 32.88 0.928 215.58 1324.27

50 7.30 27.40 0.939 212.90 1325.38

40 9.13 21.92 0.951 210.25 1332.77

30 12.17 16.44 0.963 207.64 1352.52

20 18.25 10.96 0.975 205.06 1402.88
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TC(T) = 365
A

 + C*T*e-Kt

TC’(T) = - 
365*

²
A

T  + C * (e-Kt – K*T* e-Kt)

TC’’(T) = 3
730   A C

T
+  * (-2*k* e-Kt + k2*T* e-Kt)

Newton-Raphson formula Tn+1 = Tn – ( )
( )

'
''

n

n

TC T
TC T

Total cost with purchase cost
TC((T) = 365A

T
 +  * 

2 * 365
D H  * T * e-Kt + P*D

Observations
The Newton-Raphson method converges rapidly: the 
change becomes negligible (<0.01) by the 8th iteration.

Final optimal value of T≈110
Both the first and second derivatives (TC’ and TC’’) approach 
0 at the optimum, which confirms we have found a local 
minimum.

Comparison of Numerical Method and  Newton-
Raphson for Optimal Ordering Interval

Numerical method
The Numerical method evaluated total cost over a range of 
T values (from 15 to 120 days). It found the minimum total 
cost at T = 60 days:
•	 Optimal T (from table): 60 days
•	 Total Cost: ₹1324.27

Newton-Raphson Method
The Newton-Raphson method iteratively finds the minimum 
of the total cost function by using its first and second 
derivatives. It converged in 7–8 iterations and identified the 
optimal ordering interval as:
•	 Optimal T: 109.97 days
•	 Minimum Total Cost: ₹1078.96

The Newton-Raphson method provides a more precise 
and cost-effective solution compared to the Numerical 
method in this scenario. Its ability to use derivative 

Table 7: Case-(iii) Method-(ii) Newton Raphson

Tn TC’(Tn) TC’’(Tn) Tn+1 Tn+1-Tn

30 -3.59 0.27 43.38 13.38

43.38 -1.50 0.09 60.62 17.24

60.62 -0.59 0.03 80.03 19.41

80.03 -0.21 0.01 97.29 17.27

97.29 -0.06 0.01 107.30 10.01

107.30 -0.01 0.00 109.84 2.54

109.84 0.00 0.00 109.97 0.13

109.97 0.00 0.00 109.97 0.00

109.97 0.00 0.00 109.97 0.00

Figure 4: Total cost (vs) T Ordering interval

60 

₹1,324  

110 

₹1,079  

0

300

600

900

1200

1500

Optimal T(days) Minimum Cost

CASE-III - COMPARISON OF BOTH METHODS 

Num.Method Newton-Rhapson

Figure 5: Case-(iii) Comparison of both methods

information enables it to locate the true global minimum, 
while the Numerical method, limited by the granularity of 
sampled T values, may identify only a local minimum. Cycle 
Time value is higher and Cost is lower in the case of Newton-
Raphson method.

CASE-(ii) – Effect of variation of Perishability and 
Demand on the Total Cost.
Use case scenarios have been worked out by varying 
Perishability and Demand and their effect on Total Cost has 
been worked out, under both the methods.

Variation of Perishability
Given Demand = 200, Ordering Cost = 10, Holding Cost = 
2, Purchase Cost = 5
Perishability = Varied from 0.0015 to 0.0095. The effect on 
total cost is given Figure 6.

As the perishability is increased, the total cost under 
Numerical Method is much more than that of Newton-
Rhapson method. In the Newton-Rhapson method, the 
variation in perishability practically does not have any 
significant impact on the total cost.

Variation of Demand
Given Perishability = 0.0025 Ordering Cost = 10, Holding 
Cost = 2, Purchase Cost = 5

Demand = Varied from 200 to 1200 units. The effect on 
total cost is given Figure 7.
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The Cost under Newton-Rhapson method is lower than that 
of Numerical method.

Discussions
The enhanced EOQ models presented in this study effectively 
address perishability in inventory systems, offering practical 
relevance for industries like food and pharmaceuticals. Case-
(i), which considers a flat 2.5% loss of demand, provided a 
baseline with a total cost of ₹1116.22 and demonstrated 
that perishability significantly influences total cost more 
than ordering or holding costs. Case-(ii) introduced time-
based perishability, yielding more dynamic insights. Both 
the numerical and Newton-Raphson methods converged 
to an EOQ of 50.14 units, but the Newton-Raphson method 
achieved a lower total cost (₹1092.63), proving more efficient 
and precise in handling complex cost functions.

Case-(iii) shifted the focus from quantity to ordering 
interval (T), with the Newton-Raphson method again 
outperforming the numerical method by identifying a more 
cost-effective interval (T = 109.97 days, ₹1078.96 cost). Across 
all cases, models that explicitly incorporate perishability 
and apply advanced optimization methods offer superior 
inventory decisions. The study highlights the importance of 
selecting appropriate methods for minimizing total cost and 
suggests that derivative-based approaches are particularly 
effective in real-world, non-linear scenarios.

Potential Applications

Perishable food supply chains
Industries dealing with fresh produce, dairy, seafood, 
and meat face acute perishability issues. Applying the 
time-sensitive EOQ models (Case-ii and Case-iii) enables 

wholesalers, retailers, and cold storage operators to optimize 
order sizes and replenishment frequency, thereby reducing 
spoilage, preserving quality, and minimizing total cost.

Retail with seasonal or expiring inventory
Fashion apparel, electronics, and promotional items often 
have limited shelf-lives due to seasonal trends or rapid 
technological changes. By incorporating decay rates into 
inventory planning, retailers can better align procurement 
cycles with demand patterns, minimizing end-of-season 
losses and clearance-related markdowns.

Healthcare logistics
Hospitals, clinics, and pharmaceutical distributors manage 
inventories of temperature- or time-sensitive products such 
as vaccines, insulin, blood products, and medications. The 
Newton-Raphson method, with its precision in minimizing 
costs under continuous decay, is particularly effective in 
this context, ensuring timely replenishment and minimizing 
expired stock.

Floriculture and nursery products
Cut flowers, ornamental plants, and nursery saplings are 
highly perishable commodities. Employing EOQ models that 
consider exponential decay enables growers and exporters 
to synchronize harvest, storage, and shipment schedules, 
preserving product value and reducing return rates.

Chemical and laboratory reagents
Reagents and certain chemical compounds degrade 
under environmental stress or over time. Laboratories and 
industrial users can apply the time-based decay models to 
determine safe inventory levels that minimize obsolescence 
while ensuring operational readiness.

Meal kit and subscription services
Companies offering ready-to-cook meals, fresh produce 
boxes, or curated monthly kits face logistical challenges 
related to perishability. Implementing optimized EOQ 
models helps such businesses manage lead times, reduce 
inventory waste, and enhance customer satisfaction through 
reliable, fresh deliveries.

E-Commerce with fast fashion and trend-driven goods
Online platforms dealing in fast fashion, limited-edition 
merchandise, or viral products face perishability not of 
material but of consumer interest. The EOQ framework 
with decay parameters can be adapted to model declining 
demand or relevance, guiding sellers to prevent overstock 
and maximize revenue within narrow sales windows.

Emergency stockpiling and disaster relief
Organizations stockpiling critical items like food kits, water, 
and medical supplies for disaster response must manage 
inventories that degrade or expire. Perishable EOQ models 
allow planners to optimize replenishment cycles, ensuring 
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Figure 6: Effect of variation of Perishability on Cost
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preparedness while minimizing waste due to shelf-life 
expiry.

Conclusion
The study demonstrates that incorporating perishability 
into EOQ models leads to more realistic and cost-effective 
inventory strategies. Among the approaches, Case-(ii)—
which models continuous time-based decay—offers the 
most accurate optimization, with the Newton-Raphson 
method delivering the lowest total cost. These findings 
help inventory planners make better decisions by aligning 
order quantities and intervals with the rate of perishability, 
ultimately minimizing waste and enhancing operational 
efficiency. 
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