{
|

~=
A=a
The Scientific Temper (2025) Vol. 16 (6): 4456-4467 ‘] 7 E-ISSN: 2231-6396, ISSN: 0976-8653
Doi: 10.58414/SCIENTIFICTEMPER.2025.16.6.19 https://scientifictemper.com/

RESEARCH ARTICLE

Pattern-driven Huffman encoding and positional encoding for
DNA compression

Arunachalaprabu G, Fathima Bibi K?

Abstract

Researchers from bioinformatics, biology, biotechnology, and medical sciences who are engaged in genetic data analysis face significant
challenges in the manipulation and storage of large datasets. Compression algorithms are essential for increasing storage capacity and
reducing the number of bits required to represent nucleotide bases. The pattern-driven Huffman encoding and positional encoding
for DNA compression (P2DNAComp) algorithm is designed to compress both non-repetitive and repetitive pattern bases within DNA
sequences. This demonstrates the algorithm’s adaptability across various pattern types in genomic data. P2DNAComp employs a
systematic approach to efficiently compress DNA sequences. It reads the sequences and constructs a symbol table to maintain the
positional values of repeated patterns. Using Huffman coding, the algorithm determines the optimal bit representation for each repeated
pattern to maximize storage efficiency. For non-repetitive patterns, a coded table is created to store positional values. Subsequently, a
positional encoding technique is applied to minimize the number of bits needed for efficient representation. The maximum positional
value is set as the upper limit, and the minimum number of bits required is computed using a binary logarithm function. The final
compressed sequence is generated by encoding both repetitive and non-repetitive patterns. Using standard datasets from the GenBank
database, the performance of the P2DNAComp algorithm was evaluated based on compression ratio, compression/decompression
time, and compression gain. The algorithm achieved an average compression ratio of 1.09 bits per base (bpb), an average compression

gain of 86.279%, and average compression and decompression times of 0.547 and 0.563 seconds, respectively.

Keywords: Compression ratio, Deoxyribonucleic acid, Huffman coding, Positional encoding technique, Binary logarithm function.

Introduction

The structure of genetic material is defined by three
fundamental biomolecules:

- Proteins,

« Deoxyribonucleic Acid (DNA),

- Ribonucleic Acid (RNA).

Research Scholar in Computer Science, Thanthai Periyar
Government Arts & Science College (Autonomous), Affiliated to
Bharathidasan University, Tiruchirappalli, Tamilnadu, India.
Assistant Professor in Computer Science, Thanthai Periyar
Government Arts & Science College (Autonomous), Affiliated to
Bharathidasan University, Tiruchirappalli, Tamilnadu, India.
*Corresponding Author: Arunachalaprabu G, Research Scholar
in Computer Science, Thanthai Periyar Government Arts & Science
College (Autonomous), Affiliated to Bharathidasan University,
Tiruchirappalli, Tamilnadu, India, E-Mail: guruarun12@gmail.com
How to cite this article: Arunachalaprabu, G., Bibi, FK. (2025).
Pattern-driven Huffman encoding and positional encoding for
DNA compression. The Scientific Temper, 16(6):4456-4467.

Doi: 10.58414/SCIENTIFICTEMPER.2025.16.6.19

Source of support: Nil

Conflict of interest: None.

© The Scientific Temper. 2025
Received: 24/06/2025

Accepted: 25/06/2025

Proteins govern cellular behavior, concentration, and
morphology, thereby determining the unique characteristics
of each cell type—nbe it hair, nerve, or blood cells. DNA, often
regarded as the molecular architect, directs the synthesis of
specific proteins, althoughits activation depends on protein
interactions. RNA, which shares structural similarities with
DNA, plays a complementary role in regulating various
cellular processes. Genetic material is transmitted across
generations and forms the basis of heredity and cellular
identity. DNA, located within the cell nucleus, is composed
of long chains made up of four nucleotide bases: Adenine
(A), Cytosine (C), Guanine (G), and Thymine (T). These
bases pair specifically—A with T, and C with G—to ensure
structural stability and the accurate transmission of genetic
information. The DNA sequence, a long string of these
base pairs, encodes the essential instructions for all cellular
functions. The double-helix structure of DNA emphasizes
theimportance of base pairing in preserving genetic fidelity.
Notably, (1) the precise order of these bases is vital for
decoding the genetic code, and (2) unraveling the encoded
information is critical for understanding the organism’s traits
and functions. DNA serves as the blueprint for an organism'’s
genetic makeup. Despite advancements in databases and

Published : 30/06/2025

4457 Pattern-driven Huffman encoding and positional encoding for DNA compression

Table 1: GenBank database

Release Month/Year Bases Sequence Growth Rate Bases % Growth Rate sequence%
241 12/2020 723003822007 221467827 - -

242 02/2021 776291211106 226241476 +7.37 +2.15
243 04 /2021 832400799511 227123201 +7.14 +0.39
244 06 /2021 866009790959 227888889 +3.46 +0.34
245 08/2021 940513260726 231982592 +8.66 +1.79
246 10/2021 1014763752113 233642893 +7.23 +0.72
247 12/2021 1053275115030 234557297 +3.92 +0.39
248 02 /2022 1173984081721 236338284 +11.43 +0.76
249 04 /2022 1266154890918 237520318 +7.12 +0.50
250 06 /2022 1395628631187 239017893 +9.54 +0.63
251 08 /2022 1492800704497 239915786 +8.15 +0.37
252 10/2022 1562963366851 240539282 +2.93 +0.26
253 12/2022 1635594138493 241015745 +4.66 +0.20
254 02/2023 1731302248418 241830635 +6.13 +0.34
255 04/2023 1826746318813 242554936 +5.51 +0.30
256 06/2023 1966479976146 243560863 +7.66 +0.41
257 08 /2023 2112058517945 246119175 +7.39 +1.05
258 10/2023 2433391164875 247777761 +15.19 +0.67
259 12/2023 2570711588044 249060436 +5.66 +0.52

data processing technologies, researchers continue to face
challenges due to the overwhelming volume of genetic
data. Collecting complete DNA sequences and annotating
genomic features are complex and resource-intensive tasks.
Ongoing genome projects are now generating trillions
of base pairs, supported by a wide variety of biomedical
devices and data acquisition methods.

For instance, Release 259 of the GenBank database
(December 2023) reported approximately 2,570,711,588,044
bases across 249,060,436 sequences (National Library
of Medicine, 2024) (Table 1). The database has nearly
doubled in size every 18 months, presenting storage and
computational bottlenecks. Accumulating such large
volumes of DNA sequences has become a primary challenge
in bioinformatics, often leading to memory overflow and
network congestion during data transfers. Efficient access
to DNA sequences remains a major concern for the scientific
community. To address these issues, various algorithms
have been developed to reduce DNA file sizes—mitigating
challenges related to storage, transmission, and accessibility.
These algorithms aim to optimize storage efficiency
and improve the usability of genetic data in the rapidly
expanding bioinformatics landscape.

Overview of Compression Techniques

The task of minimizing the number of bits required to
represent DNA bases is known as compression. Compression
techniques are broadly categorized as lossy or lossless.
Lossy compression reduces file size effectively but cannot

precisely recover the original data, making it unsuitable for
DNA data. In contrast, lossless compression reduces the file
size while ensuring the original data can be fully restored,
making it ideal for applications in genomics where data
integrity is crucial.

Impact of DNA Mutations on Compression Strategies
DNA mutations—such as base insertions, deletions, or
substitutions—pose significant challenges for compression.
These changes can disrupt sequence regularity, making
lossy techniques unsuitable. The necessity to preserve data
accuracy highlights the importance of lossless compression
strategies that maintain sequence fidelity despite genomic
variation.

Advances in Lossless Compression for Genomic Data
Lossy compression may result in the loss of essential bases
during sequence encoding, which is unacceptable in
bioinformatics. Consequently, researchers have shifted focus
toward lossless compression techniques, which preserve
the complete genetic sequence while reducing storage
requirements.

A universal storage system that employs lossless
compression is essential for efficient data exchange between
databases—enabling faster uploads, downloads, and cross-
platform compatibility. Compression quality is generally
determined by how well algorithms handle repetitive and
non-repetitive patterns in DNA sequences.

The Scientific Temper. Vol. 16, No. 6

Arunachalaprabu and Fathima

4458

This study proposes a solution using lossless compression
strategies tailored for genomic data. Several existing lossless
algorithms have aimed to reduce storage space and improve
data transmission efficiency. Among them are: BioCompress
(Grumbach & Tahi, 1993), BioCompress2 (Grumbach &
Tahi, 1994), GenCompress (Chen, Kwong, & Li, 1999),
DNACompress (Chen, Li, Ma, & Tromp, 2002), Normalized
Maximum Likelihood (NML) (Tabus, Korodi, & Rissanen,
2003), GeNML (Korodi & Tabus, 2005), DNASC (Mishra,
Aaggarwal, & Abdelhadi, 2010). These earlier algorithms
demonstrated efficacy for repetitive DNA sequences, but
their performance degrades with non-repetitive patterns,
limiting their generalizability. This dependency on regularity
in DNA sequences is a core limitation of many traditional
models.

To address this, the present research introduces the
P2DNAComp method, which effectively compresses both
repetitive and non-repetitive DNA patterns using pattern
matching and an improved Huffman coding approach.
The method also relocates non-repetitive patterns to a
separate working file, where positional encoding and
binary logarithmic optimization techniques are applied. This
approach significantly enhances storage efficiency, even
under high-throughput conditions where non-repetitive
sequences are prevalent.

Organization of the Paper

This paper is organized as follows:
Section 2 reviews recent advances in DNA compression
algorithms.

« Section 3 defines the performance metrics used to
evaluate the proposed method.

« Section 4 describes the P2DNAComp algorithm in detail.

« Section 5 presents the experimental results.

« Section 6 concludes the study with key findings and
future directions.

Related Works

Recently, researchers have implemented lossless
compression techniques for genetic data (DNA sequences),
marking a significant advancement in the field of
bioinformatics. This development highlights the need for
strong interdisciplinary collaboration—particularly among
the domains of computer science, bioinformatics, biology,
biotechnology, and medical science. This section presents
a comprehensive literature review of recently developed
lossless DNA sequence compression algorithms, examining
both theoretical foundations and practical applications. It
also addresses ongoing research challenges in managing
large-scale genomic datasets.

Krishnamoorthy and Karthikeyan (2022) proposed a
technique called Hybrid Streamlining of Hospitalization-
Subordinate DNA Compression (HOARDNAComp), which
uses a firefly algorithm and an auto-regression strategy.

The technique integrates an even-mode statistical method
with autoregressive modeling. Modified firefly optimization
is employed to set model parameters dynamically. This
approach resolves computational efficiency issues and
achieved an average compression ratio of 1.39 bits per
base (bpb). In comparison with DNA Compression using
Particle Swarm Optimization (DCPSO) (Arya & Bharti, 2017),
HOARDNAComp demonstrated superior performance
(Krishnamoorthy & Karthikeyan, 2022).

Murugan and Punitha (2021) introduced an innovative
algorithm called Small Pattern Matching (S_Pattern) for
DNA sequence compression. In this method, input DNA
sequences are divided into segments of size 2 to 6, and
each matching segment is encoded using ASCIlI symbol
representation. These encoded sequences are then
compressed using the LZ77 algorithm (Ziv & Lempel, 1977).
An average compression ratio of 93% was achieved across
various datasets from the UCI repository. However, the
limitation lies in its constrained segment size range (2-6),
which restricts flexibility (Murugan & Punitha, 2021).

Rosario Gilmary and Murugesan (2021) proposed a bit-
reduction technique involving three stages: Bit reduction,
Binary-to-hexadecimal conversion, and Huffman coding of
the hexadecimal values.

Compared to existing algorithms, this method achieved
better compression ratios and reduced storage requirements.
The technique utilizes multiple transformations to reduce
complexity in compressing DNA datasets, thereby
emphasizing storage efficiency and lossless performance
(Rosario Gilmary & Murugesan, 2021).

Mansouri et al. (2020) presented Single-Block Encoding
(DNAC-SBE), a technique based on One-Bit encoding. In this
method: a) Frequently occurring bases are substituted with
1, b) Less frequent bases with 0, and c) The outputis encoded
using Single-Block Encoding (SBE) with dynamically
assigned short codewords. DNAC-SBE effectively identified
previously unrecognized DNA bases and achieved a strong
compression ratio. However, the use of a fixed 7-bit block
size limited its compression efficiency when applied to
diverse datasets (Mansouri & Yuan, 2018).

Murugesan (2020) introduced a Codon-Based
Compression Algorithm (CBCA) that performs both
compression and decompression without the use of a
dictionary, thus reducing the need for additional storage
space. CBCA achieved a compression ratio of 1.59 bpb
with a decompression time of 0.18 seconds. However, the
algorithm uses fixed-length binary strings (1, 2, 4, 5, or 6 bits),
which may constrain adaptability when encoding variable
DNA sequences.

Hui Chen (2020) developed an Entropy Coding
Technique (ECT) based on context modeling. The
ECT method: a) Segments input DNA into coding
sequences, residual clusters, RNA, and introns, b)

4459 Pattern-driven Huffman encoding and positional encoding for DNA compression

Assigns attributes based on sequence features, and
) Applies entropy-based encoding.

It achieved an average compression ratio of 1.72 bpb,
although it suffered from high computational time. Despite
this drawback, ECT is noted for its effective entropy-based
compression of DNA sequences (Chen, 2020).

Syed Mahamud Hossein et al. (2020) proposed a novel
method named GP2R, which integrates Genetic Palindrome
(GP), Palindrome (P), and Reverse (R) algorithms. The method
involves:

Stage 1: Identification of all substrings,

Stage 2: Encoding unmatched and palindrome regions,
Stage 3: Encoding compressed files using a modified RSA
technique.

GP2R outperformed standard algorithms in terms of
compression ratio, showcasing its potential for efficient DNA
data compression (Hossein et al., 2020).

Performance Evaluation Metrics

Table 2 outlines the key metrics used to evaluate the
performance of DNA sequence compression algorithms.
These metrics helpin quantifying the efficiency, effectiveness,
and practicality of the proposed method.

Proposed Algorithm

Computational modeling of DNA sequencing techniques
has generated voluminous data in the form of DNA
sequences. The rapid proliferation of these DNA sequences
has attained prominent pace. These genetic data has been
popular as well as easily accessible for homology searches,
intricate modeling and sequence mining. The need for
advanced storage solution in bioinformatics is motivated by
the large size, the great complexity and diversity of genetic
data in databases. It is an essential need for researchers to

store extensive amount of genomic data as well as efficiently
analyze them.

Within the intricate landscape of the bioinformatics
community, several prominent challenges demand
meticulous attention from researchers (Table 3).

The pursuit of addressing pressing challenges in
genomic data management is intricately tied to several
pivotal objectives (Table 4).

The main objective of lossless compression algorithms is
to maintain integrity of information during compression. This
work achieves good compression ratio and commendable
compression gain as well as reduce demands for time
related with compression and decompression. P2DNAComp
algorithm compresses both repetitive pattern and non-
repetitive pattern bases of DNA sequences. The uniqueness
of the algorithm depends on the combination of advanced
positional encoding methodologies and improved
Huffman coding techniques which enhance the genetic
data compression efficiency. P2DNAComp provides a novel
solution to challenges of compression and holds promise
for efficiency of lossless DNA sequence compression. The
important suggestions are also offered for development in
analysis and storage of genetic sequences.

The input for P2DNAComp consists of discrete set of
nucleotide bases within DNA sequence. The P2DNAComp
algorithm works as follows. First, all genetic information (as a
sequence) of individual elements is recognized for analysis of
the sequences. Then, formulate a symbol table for repeated
patterns that inherent in the sequence. The positions
and occurrences of recurrent bases are systematically
maintained in this structured table. Next, Huffman coding
technique is applied to efficiently optimize the frequently
occurring patterns representation and storage. This

Table 2: Key Performance Metrics

Compression Ratio (CR)

Definition

Formula

CR = Compressed file size / Original file size

Establishes the ratio of compressed file size to original file size in bits per base (bpb) or bits per character (bpc).

Compression Factor (CF)

Definition

Formula

CF = Original file size / Compressed file size

Represents the ratio of original file size to compressed file size.

Saving Percentage (SP)

Definition

Formula

Depends on the difference between original and compressed file sizes, expressed as a percentage.

SP =(Original file size -Compressed file size) / Original file size

Compression Time (CT)

Definition Time needed for file compression

Decompression Time (DT)

Definition

Time required reconstructing the file to its original state, both measured in seconds.

The Scientific Temper. Vol. 16, No. 6

Arunachalaprabu and Fathima

4460

Table 3: Challenges and Solutions in Genomic Data Storage and Management

Challenge

Significance

Research Focus

Escalating
DNA Sequences and
Storage Imperatives

Logistical
Complexities in
Genomic Data
Transfer

Genomic

Need for substantial disk storage
capacity

Transferring the genomic
data(DNA sequences) from one
node to another node which
makes difficulties, resulting in
time-intensive procedures

Genetic information with its complex
sequences requires advanced storage
solutions to handle the huge volume
of the DNA sequences

Transfer of genetic data (DNA
sequences) is a laborious task
hindering the efficiency of
collaborative research endeavours

Non-repetitive bases (space-

Improve the capacity of storage device and
provide a platform capable to handling
the huge volume of the DNA sequences
efficiently

Aims to provide the seamless transfer

of large volume of genetic data (DNA
sequences) among databases, institutions
and researchers

Non-repetitive bases in DNA
sequences occupy more storage
space during compression

Data Compression
Challenges and
Pathway Inference

intensive nature) within the DNA
sequences require more space
which leads to challenges for data
compression

Emphasizes the requirement of enhanced
compression approaches which ensures the
reliability of information while efficiently
compressing DNA sequences

technique determines the optimal number of bits needed
for representation of repeated pattern. Here, shortest binary
codes are assigned to patterns encountered most frequently
which ensures encoding patterns efficiently. To represent
non-repetitive patterns with respective positional values
a coded table is constructed. It is helpful for encoding the
positional values of the patterns and facilitates the way for
reconstruction of the sequence in an efficient manner during
decompression. Using information theory techniques,
minimum required bits are determined to store positional
values in the coded table. The key objectives are:
« Minimum redundancy
« Optimal bit representation
- Information content preservation

Following this step, the binary representation of the
repetitive patterns is written into the work file. With the
help of previously constructed symbol table and Huffman
codes this operation is performed with exactitude. In this
algorithm, the features of Huffman coding (for repeated

patterns) and coded table representation (for non-
repetitive patterns) are used. This helps to achieve better
DNA sequence compression that encapsulates all essential
genetic information and significantly reduce storage
requirements.

The novelty of P2DNAComp lies in its transformative
integration of information techniques such as systematic
positional encoding; Huffman coding that collectively
builds a paradigm shift in compression of sequences. It
takes the input sequences as a discrete set of bases. Symbol
table is generated for recurrent patterns to organize them
in a systematic manner. Thereby the algorithm offers a
sophisticated comprehensive and structured method
to recognition of patterns in the DNA sequences. The
process of determining the number of bits required for
repeated patterns is performed using the application of
Huffman coding and principles of information theory.
Another important feature of P2DNAComp algorithm
is that generation of a coded table for non-repetitive

Table 4: Objectives in Genomic Data Management-Compression, Storage and Data Transfer

Objective

Significance

Propose a novel lossless DNA sequence compression

Innovative Compression
Algorithm for Genomic Data

repetitive bases)

The algorithm provides the way to store huge volume of
genomic data without compromising the efficacy of the

Efficient Storage and

Capacity Expansion storage medium

Improves the capacity of storage medium

Scalability for Varied Dataset
Sizes sequences with different sizes
Optimized Data Transfer and

Reduced Network Traffic point and minimize network traffic

algorithm to minimize the number of bits need to
represent genomic data with better compression ratio
in DNA sequences (both repetitive bases and non-

The algorithm should be adapt to compress DNA

The algorithm ensures to transferring genomic
datasets(DNA sequences) from one point to another

Design an algorithm that compress the size
of DNA sequences, understanding of the
complexities within DNA sequences

Optimize the capacity of storage device(storage
efficiency)
Enhancing capacity of storage device

Ensure the scalability of algorithm across
various dataset with different sizes

Reduce network traffic streamlines the data
transfer process
optimizing overall genomic data exchange

4461 Pattern-driven Huffman encoding and positional encoding for DNA compression

Table 5: Illustrative Symbol Table

Table 6: Symbol Table Generations for Repeated patterns

Sequence identifier Repeated patterns Sequence identifier Repeated sequences
RPO “"ACGT” RPO AAAAA

RP1 “ATCG” RP1 TTTT

RP2 “TTTT” RP2 Ccc

RP3 “ATTA” RP3 GGG

RP4 “TTC”

RP5 “GTT” « Repeat (3) and (4) until it reaches the root.

RP6 e « Assign “0” to left edge and “1” to non-leaf nodes.

patterns to incorporating positional values. This proposed
technique not only minimizes the redundancy but also offers
efficient decompression which shows the uniqueness of the
algorithm and underscoring the significant advancement in
lossless DNA sequence compression.

Symbol Table for Recurrent DNA Sequences

For effective data representation of repetitive patterns and

to eliminate the overhead of occupying more storage space,

the symbol table is designed for recurrent sequences. The
symbol table provides tremendous flexibility to organize the
repetitive DNA sequences and consequently document the
sequences. It collects the details of sequence identifier and

repeated sequences in Table 5.

+ Sequence Identification: The recurring sequences in DNA
dataset are identified by the P2DNAComp algorithm.

« Building Symbol Table: After identification of the
repeated sequences, the symbol is generated into
two parts. a) The sequence identifier b) The repetitive
sequences.

Table 6 presents a list of repeated patterns identified with

sequence identifier (unique label). These elements provide

users with clear reference to enhance the compression and
decompression process.

Huffman Coding Method

Developed by David Huffman, Huffman coding method is a

familiar lossless compression technique using the principles

of information theory and widely used to reduce the size of

files. Sayood, K. (2012) (Table 7).

Steps involved in Huffman coding:

« All bases are arranged (descending order) based on
frequencies of respective bases.

- Initiating with lowest frequency base, designate each
base (leaf node).

« To devise a new node extract two minimum frequency
nodes. Left node-base with minimum frequency.
Right node-base with second minimum frequency.
New node-sum of the frequencies of left node and
right node.

Add the new node

« Determine codeword by traversing the tree.

Determine Minimum Bits for Positional Values

« LetSbeasetof positional values S= {P,P,P,...P} where
n denotes total number of positional values within the
coded table.

« Find the maximum positional value (Max): The maximum
value among the positional values is Max. It calculates
the upper limit for the individual bit.

Max = max {P,, PZ, P3. .. Pn}

Find the minimum bits needed for positional value:
Determine the minimum number of bits needed to represent
each positional value using binary logarithm function log,.

Minimum Bits for P, = [log,(P))]

For example, Consider the following positional values
P,=5, P,=12, P,=21 and P,=30. Now find the maximum
positional value Max=max {5, 12, 21, 30} = 30. Then
determine the minimum number of bits needed for
represent the positional values. For P, =5, P, = [log,
(5)1=3,ForP,=12,P,= [log,(12) | = 4, For P,= 21,
P,= [log,(21)1 =5, For P,= 30, P,= [log,(30) | = 5.
In this example, the minimum number of bits needed
for each positional value is 3, 4, 5 and 5 bits.

lllustration

Consider the DNA sequence
AAAAACCCTTAAAAAAAACCCCCCGGGTTTTTTTTTGGGGG
Step 1: Read the given DNA sequence.

Step 2: Find repeated patterns and generate symbol table.
Step 3: Find shortest codeword for repeated patterns using
Huffman Coding.

Step 4:Form coded table for non-repetitive patterns (Table 8).
Step 5: Find number of bits needed for each positional value

Max=max {3, 5, 11, 13} = 13

hen determine the minimum number of bits needed to
represent the positional values. For P,= 3, P, = [log,
(3)1=2,ForP,=5,P,=[log,(5)1=3,ForP,=11, P2
= [log,(11) 1 = 4, For P,= 13, P, = [log,(13)] = 4. The

The Scientific Temper. Vol. 16, No. 6

Arunachalaprabu and Fathima 4462

Table 7: Huffman coding analysis for DNA sequence repeated patterns

Sequence identifier Repeated sequences Frequency Code word Length of codeword Bits required
RPO AAAAA 2 00 2 4
RP1 TTTT 2 01 2 4
RP2 CCC 3 10 2 6
RP3 GGG 2 11 2 4

Required bits = 18 bits

Table 8: Coded table for non-repetitive patterns in DNA sequence

Table 9: Minimum bit representation for positional values

Sequence identifier Non-repetitive pattern Positional value

NRPO T 3
NRP1 AAA 5
NRP2 T 1
NRP3 GG 13

minimum number of bits required for each positional

value is 2, 3, 4 and 4 bits respectively as represented

in Table 9.

Step 6: Write the following pattern into work file
00-10-00-10-10-11-01-01-11

Required bits = 2 x Frequency (RP0) + 2 x Frequency (RP1)

+ 3 x Frequency (RP2) + 2 x Frequency (RP3)

=2X2+2%x24+3x2+2x2

=4+4+6+4 = 18 bits

Size after Compression = Work file + Bits required for

positional values

= 18 bits + 13 bits

= 31 bits = 3.8 bytes

Compression Ratio is given by

. . Size after Compression
Compression Ratio =| — - x8 -
Size before Compression

(3.8/41)x 8
=0.74 bpb.

Results and Discussion

Datasets
To test the proposed algorithm, six GenBank benchmark
datasets are employed. Table 10 illustrates the key
characteristics of the datasets. The P2DNAComp algorithm
is implemented using the Java. Analyzing and accounting
the relation between original file size and compressed file
size is vital. Three different scenarios contingent upon the
DNA sequences containing the occurrence of both repetitive
patterns and non-repetitive patterns are considered:

Best case

Average case

Worst case

Minimum bits

Identifier Positional value required Bit representation
PO 3 2 10

P1 5 3 100

P2 11 4 1010

P3 13 4 1100

Bits Required 13

The above datasets are taken from different sources
containing various range of sequences and each of
them associated with particular information detailing
the characteristics and source (Table 10). The sequences
Chloroplast as “Chmpxx” (Length: 121024 Bytes and File
size: 118.19 KB), Human sequence source as “Humdystrop”
(Length: 38770 Bytes and File size: 37.86 KB), “Humhbb”
(Length: 73308 Bytes and File size: 71.59 KB), “Humhprtb”
(Length: 56737 Bytes and File size: 55.40 KB), Mitochondria
as “Mpomtcg” (Length: 186609 Bytes and File size: 182.23
KB) and Virus as “Vaccg” (Length: 191737 Bytes and File size:
187.24 KB). The proposed algorithm is assessed and validated
using these standard benchmark datasets which helps to
contribute the development of compression algorithms and
analyse the genetic data effectively.

Best Case

Consider the DNA sequence (40bytes)
AAAAAAAAAGGGGGGCCCCCCTTTTTCCCCCCCCCTTTTT
Step 1: Read the given DNA sequence.

Step 2: Find repeated patterns and generate symbol table
(Table 11).

Step 3: Find short codeword for repeated patterns using
Huffman Coding (Table 12).

Step 4: Form coded table for non-repetitive patterns (Table
13).

Step 5: Find number of bits needed for each positional value.

Max=max{3,9}=9
Then determine the minimum number of bits needed

to represent the positional values. For P,= 3, P,= [log,
(3)1=2,ForP,=9, P1=[log,(9) | = 4. The minimum

4463 Pattern-driven Huffman encoding and positional encoding for DNA compression
Table 10: Summary of Benchmark Datasets Table 13: Coded table for non-repetitive patterns in DNA sequence
fszgcince izcz::nce ?gnit;f)w File size (kilobytes) Sequence identifier ~ Non-repetitive pattern Positional value
4 NRPO A 3
Chl last Ch 121024 118.19
oropias mpxx NRP1 ccc 9
Humdystrop 38770 37.86
Human Humhbb 73308 71.59 Table 14: Minimum bit representation for positional values
Humhprtb 56737 5540 Identifier Positional value ~ Minimum bits Bit
required representation
Mitochondria ~ Mpomtcg 186609 182.23
PO 3 2 10
Virus Vaccg 191737 187.24
P1 9 3 1000
Bits Required 6

Table 11: Symbol Table Generations for Repeated patterns

Sequence identifier Repeated sequences
RPO Cccccc

RP1 TTTTT

RP2 AAAA

RP3 GGG

number of bits needed for each positional value is 2

and 4 bits respectively as given in Table 14.

Step 6: Write the following pattern into work file
10-10-11-11-00-01-00-01

Compression ratio for best case = 0.54 bpb

Average Case

Consider the DNA sequence (40 bytes)
AAAAAAATCCCCCGGTTTCCCCCCCCCCCCCCCAAA GGCC
Step 1: Read the given DNA sequence.

Step 2: Find repeated patterns and generate symbol table
(Table 15).

Step 3: Find short codeword for repeated patterns using
Huffman Coding (Table 16).

Step 4: Form coded table for non-repetitive pattern (Table
17).

Step 5: Find number of bits needed for each positional value.

Max=max{3,6, 12} =9
Then determine the minimum number of bits needed

for represent the positional values. For P,= 3, P, =
[log,(3) 1 =2, For P,=6, P,=log,(6)] = 3, For P,

Table 15: Symbol Table Generations for Repeated patterns

Sequence identifier Repeated sequences
RPO CCccc

RP1 AAA

RP2 GG

=12, P,= [log,(12)] = 4. The minimum number of

bits needed for each positional value is 2, 3 and 4 bits

respectively as shown in Table 18.

Step 6: Write the following pattern into work file
10-10-0-11-0-0-0-10-11

Compression ratio for best case = 0.57 bpb.

Worst Case

Suppose DNA sequence (40 bytes)
TAACGGGTCTCGGGGTTTTTCCCCACGTCCCGGCTAAAGT
Step 1: Read the given DNA sequence.

Step 2: Find repeated patterns and generate symbol Table 19.
Step 3: Find short codeword for repeated patterns using
Huffman Coding (Table 20).

Step 4: Form coded table for non-repetitive patterns (Table
217).

Step 5: Find number of bits needed for each positional value.

Max=max {3,5,9, 10,12, 14} =14
Then determine the minimum number of bits needed

for represent the positional values. For P,= 3, P, =
[log,(3) 1 =2, For P,=5, P,=[log,(5)] =3, ForP,=

Table 12: Huffman coding analysis for DNA sequence repeated patterns

Sequence identifier Repeated sequences Frequency Code word Length of codeword Bits required
RPO Cccecc 2 00 2 4
RP1 TTTTT 2 01 2 4
RP2 AAAA 2 10 2 4
RP3 GGG 2 1 2 4

Required bits = 16 bits

The Scientific Temper. Vol. 16, No. 6

Arunachalaprabu and Fathima

4464

Table 16: Huffman coding analysis for DNA sequence repeated patterns

Sequence identifier Repeated sequences Frequency Code word Length of codeword Bits required
RPO Ccccc 4 0 1 4
RP1 AAA 3 10 2 6
RP2 GG 2 1 2 4

Required bits = 14 bits

9, P,=1log,(9) 1 =4, For P,= 10, P,= [log,(10) | =

4, For P,= 12, P, = [log,(12) | = 4, For P_= 14, P_=

[log,(14) 1 = 4. The minimum number of bits needed

for each positional value is 2, 3, 4, 4, 4 and 4 bits

respectively (Table 22).

Step 6: Write the following pattern into work file
10-00-00-11-11-01-01-10

Compression ratio for best case = 0.92 bpb.

Results of P2DNAComp for standard datasets
The performance of P2DNAComp across different DNA
datasets is shown in Table 23. The original size of Chmpxx
121,024 is compressed to 15,649 bytes with compression
ratio of 1.03 and compression gain of 87.07 percent. The
original size of Humdystrop 38770 is compressed to 5451
bytes with compression ratio of 1.12 and compression gain of
85.94 percent. Similarly, for Humhbb (compression ratio: 1.08,
compression gain: 86.47), Humhprtb (compression ratio:
1.09, compression gain: 86.37), Mpomtcg (compression ratio:
1.13, compression gain: 85.85) and Vaccg (compression ratio:
1.12, compression gain: 85.96). The average compression
ratio and compression gain of P2DNAComp are 1.09 bpb
and 86.28 percent for the standard datasets. In table 23,
compression time and decompression time is indicated
to emphasize the efficiency of the algorithm. Table 23
underscores the robust performance of P2DNAComp which
helps reduce the file size of datasets and achieve high
compression gain.

Statistical analysis of P2DNAComp over DNAC-SBE,
CBCA, ECT, HOARDNA Comp, Bit Reduction, IBDNASCA and
EIBDNASCA is shown in Table 24. The proposed algorithm
achieves compression ratio of 1.03 for the dataset “Chmpxx”
than other algorithms. It highlights the percentage
improvement of 35% over DNAC-SBE, 35% over ECT and
22% over HOARDNA. The results establish the efficacy of

Table 17: Coded table for non-repetitive patterns in DNA sequence

Sequence identifier Non-repetitive pattern Positional value

NRPO AT 3
NRP1 TTT 6
NRP2 CcC 12

Table 18: Minimum bit representation for positional values

. Positional Minimum bits Bit
Identifier . .
value required representation
PO 3 2 10
P1 6 3 101
P2 12 4 1011
Bits Required 9

Table 19: Symbol Table Generations for Repeated patterns

Sequence identifier Repeated sequences
RPO CGGG

RP1 TCCC

RP2 TAA

RP3 T

P2DNAComp in reducing the various genetic datasets (DNA
sequences).

The proposed algorithm achieves good compression
ratio of 1.12 for the dataset “Humdystrop” than other
algorithms. It highlights the percentage improvement of
43% over CBCA, 19% over ECT and 32% over IBDNASCA. The
results establish the ability of P2DNAComp in reducing the
various genetic datasets (DNA sequences) and optimizing
the capacity of storage medium. The dataset “Humhbb”
achieves 1.08 compression ratio and an improvement in

Table 20: Huffman coding analysis for DNA sequence repeated patterns

Sequence identifier Repeated sequences Frequency Code word Length of codeword Bits required
RPO CGGG 2 00 2 4
RP1 TCCC 2 01 2 4
RP2 TAA 2 10 2 4
RP3 T 2 1 2 4

Required bits = 16 bits

4465

Pattern-driven Huffman encoding and positional encoding for DNA compression

Table 21: Coded table for non-repetitive patterns in DNA sequence

Sequence identifier ~ Non-repetitive pattern Positional value

NRPO TCT 3
NRP1 G 5
NRP2 C 9
NRP3 ACG 10
NRP4 GGC 12
NRP5 AGT 14

Table 22: Minimum bit representation for positional values

Minimum bits

Identifier Positional value required Bit representation
PO 3 2 10

P1 5 3 101

P2 9 4 1000

P3 10 4 1001

P4 12 4 1011

P5 14 4 1101

Bits Required 21

percentage of 37% over CBCA, 41% over ECT and 25% over
IBDNASCA. The average compression ratio of P2DNAComp
is 1.09 bpb which exhibits the improvement from 6% to 38%
compared with other compression algorithms.

The results highlight the performance of the proposed

algorithm and empbhasize its need for efficient sequence
compression. It helps to analyse the sequence, optimize
storage device capacity and transmission of genetic dataset.

Table 25 presents the comparison of the proposed
algorithm over standard DNA sequence compression
algorithms such as WinRAR, Bio-Compres2, Gen Compress,
DNA Compress, Ge—-NML and DNASC. The analysis includes
compression ratios for different DNA sequence datasets
which unveils the superiority of P2DNAComp. The dataset
“Chmpxx”, achieves better compression ratio of 1.03
compared to WinRAR (2.25 bpb), Bio—-Compres2 (1.68
bpb), Gen Compress (1.67 bpb), DNA Compress (1.67 bpb),
Ge-NML (1.66 bpb) and DNASC (1.50 bpb). In particular,
the P2DNAComp algorithm does 54% better compared
with others.

The dataset “Humdystrop”, achieves better compression
ratio of 1.12 compared to WinRAR (2.37 bpb), Bio-Compres2
(1.93 bpb), Gen Compress (1.92 bpb), DNA Compress (1.91
bpb), Ge-NML (1.91 bpb) and DNASC (1.89 bpb). It shows
the improvement of P2DNAComp algorithm (54%) over
other algorithms. The result obtained by P2DNAComp for
the dataset “Humhbb” is 1.08 bpb. This surpasses WinRAR
(2.22 bpb), Bio-Compres2 (1.88 bpb), Gen Compress (1.82
bpb) and DNA Compress (1.79 bpb).

For the dataset “Humhprtb”, the proposed algorithm
maintains good performance with a compression ratio
of 1.09 when compared with WinRAR (2.23 bpb), Bio-
Compres2 (1.91 bpb), Gen Compress (1.85 bpb), DNA
Compress (1.82 bpb), Ge-NML (1.76 bpb) and DNASC (1.71

Table 23: Performance evaluation of P2DNAComp on Standard datasets

Compression Gain ~_Time Taken(Seconds)

DNA sequence Actual size (Bytes) Reduced size (Bytes) ~ Compression ratio (bps) % Com - -
pression Decompression

Chmpxx 121024 15649 1.03 87.0695069 0.510 0.546

Humdystrop 38770 5451 1.12 85.9401599 0.498 0.501

Humhbb 73308 9913 1.08 86.4776014 0.508 0.526

Humhprtb 56737 7732 1.09 86.3722086 0.504 0.531

Mpomtcg 186609 26395 1.13 85.8554518 0.583 0.597

Vaccg 191737 26912 1.12 85.9641071 0.679 0.681

Average 1.09 86.279 0.547 0.563

Table 24: Comparison analysis of P2DNAComp over existing algorithms

DNA sequence DNAC-SBE ~ CBCA ECT HOARDNA comp Bit reduction IBDN-ASCA EIBDN-ASCA P2DNA comp

Chmpxx 1.60 - 1.58 1.33 - 1.40 1.14 1.03

Humdystrop 1.72 1.55 - 1.39 1.64 1.53 1.27 1.12

Humhbb 1.71 1.55 1.83 1.44 1.65 1.50 1.21 1.08

Humhprtb 1.72 1.54 1.85 1.45 - 1.51 1.25 1.09

Mpomtcg 1.72 1.55 - 1.40 1.62 1.57 1.28 1.13

Vaccg 1.67 1.57 1.78 1.32 1.66 1.52 1.23 1.12

Average Ratio 1.69 1.55 1.76 1.38 1.64 1.51 1.23 1.09

The Scientific Temper. Vol. 16, No. 6 Arunachalaprabu and Fathima 4466
Table 25: Comparison analysis of P2DNAComp over standard algorithms
DNA sequence WinRAR Bio—compres2 Gen compress DNA compress Ge-NML DNASC P2DNAComp
Chmpxx 2.25 1.68 1.67 1.67 1.66 1.50 1.03
Humdystrop 237 1.93 1.92 1.91 1.91 1.89 1.12
Humhbb 222 1.88 1.82 1.79 - - 1.08
Humbhprtb 223 1.91 1.85 1.82 1.76 1.71 1.09
Mpomtcg 2.30 1.94 1.91 1.89 1.88 1.88 1.13
Vaccg 223 1.76 1.76 1.76 1.76 1.70 1.12
Average Ratio 2.27 1.85 1.82 1.80 1.79 1.74 1.09
Experimental Results of P2DNAComp for standard datasets

bpb). P2DNAComp shows an improvement of 52% over s

other algorithms. For “Mpomtcg”, the proposed algorithm

maintains good performance with compression ratio of 1.13 5

when compared with WinRAR (2.23 bpb), Bio-Compres2 = | — L8 109 - -

(1.91 bpb), Gen Compress (1.85 bpb), DNA Compress (1.82 ?

bpb), Ge-NML (1.76 bpb) and DNASC (1.71 bpb). It shows :

the improvement of P2DNAComp algorithm about 51%

over other algorithms. The result obtained by P2DNAComp ok e .

 Chmpoc Humdystrop Humbbb Humbpris Mpormicg Vaceg

for the dataset “Vaccg” is 1.12 bpb. This surpasses WinRAR
(2.23 bpb), Bio-Compres2 (1.91 bpb), Gen Compress (1.85
bpb), DNA Compress (1.82 bpb), Ge-NML (1.76 bpb)and
DNASC (1.71 bpb). It shows the improvement of P2DNAComp
algorithm about 51% over other algorithms.

Figure 1 displays compression ratio of P2DNAComp
algorithm of various DNA sequences (datasets).
P2DNAComp algorithm achieves compression ratio of 1.03
bpb for “Chmpxx”, 1.12 bpb for “Humdystrop”, 1.08 bpb for
“Humhbb”, 1.09 bpb for “Humhprtb”, 1.13 bpb for “Mpomtcg”
and 1.12 bpb for “Vaccg” respectively.

Figure 2 shows the comparative analysis of P2DNAComp
algorithm over various existing compression algorithms for
DNA sequences. The x-axis indicates existing algorithms
and y-axis identifies average compression ratio achieved
by each algorithms such as DNAC-SBE, CBCA, ECT,
HOARDNAComp, Bit Reduction, IBDNASCA, EIBDNASCA and
P2DNAComp. These algorithms are evaluated using various
standard DNA sequence datasets (“Chmpxx”, “Humdystrop”,
“Humhbb”, “Humhprtb”, “Mpomtcg” and “Vaccg”).

The results show that P2DNAComp algorithm
outperforms existing algorithms across various datasets. It
highlights the efficiency of P2DNAComp algorithm in terms
of compression ratio over other competitive algorithms.

Figure 2 gives the identification of approaches to reduce
the size of DNA sequences and gives the valuable insights
of various DNA sequence compression algorithms.

Figure 3 shows the average compression ratio of
different standard lossless DNA sequence compression
algorithms and P2DNAComp across the datasets “Chmpxx”,
“Humdystrop”, “Humhbb”, “Humhprtb”, “Mpomtcg” and
“Vaccg".

Datasets

Figure 1: Experimental results of P2DNAComp for standard datasets

Average Compression Ratio of P2DNAComp over Existing Algorithms

L.76
18 1.69

—+—DNAC-SBE
—=-CBCA

E 1.4 —=ECT
2
213 2 ——HOARDNA Comp
E ; —#=Bit Reduction
L 12 —o—IBDNASCA
109 EIBDNASCA
11 P2DNAComp
1
& % > \g & r r
S & & @e &8) ;,c P.__,c Cwé&
o o & & & &
N < ¢ & &
Algorithms
Figure 2: Average compression ratio of P2DNAComp over existing
algorithms
Average C ion Ratio of P2DNAComp over Standard Algorithms
24 a7
22
=)
i .
- 182 1.80 1.79 —+=WinRAR
S 18 174
2 8- Bio-Compres2
§ 1.6 —#—Gen Compress
E ==DNA Compress
8 14 —-Ge-NML
~+-D2
1.2 1.09 DNASC
P2DNAComp
‘WinRAR Bio-Compres2 Gen DNA Ge-NML DNASC P2DNAComp

ompress Compress

Algorithms

Figure 3: Average compression ratio of P2DNAComp over standard
algorithms

WInRAR achieved a compression ratio of 2.27 bpb, Bio-
Compres2 1.85 bpb, Gen Compress 1.82 bpb, DNA Compress
1.80 bpb, Ge-NML 1.79 bpb, DNASC 1.74 bpb whereas
P2DNAComp algorithm achieves a compression ratio of

4467 Pattern-driven Huffman encoding and positional encoding for DNA compression

1.09 bpb. This highlights the effectiveness of P2DNAComp
algorithmin reducing the size of the DNA sequence datasets
and also development in compression ratio when compared
with other algorithms.

Conclusion and Future work

This study addresses the critical challenges associated with
the analysis and storage of DNA sequences, particularly
the difficulty in handling massive datasets originating
from diverse genomic sources. The proposed P2DNAComp
algorithm effectively compresses both repetitive and non-
repetitive pattern bases within DNA sequences, offering
adaptability across various pattern types. This positions it
as a versatile and robust tool in the domain of lossless DNA
compression. The algorithm adopts a systematic approach,
beginning with the construction of a symbol table and the
application of Huffman coding to optimize storage capacity.
For non-repetitive patterns, a coded table is created,
followed by the use of positional encoding to minimize the
number of bits required for efficient representation. The
final compressed sequence—comprising Huffman codes
and positional encoding—significantly reduces storage
requirements while preserving the integrity of the genetic
information. Performance evaluation was conducted
using standard datasets from the GenBank database. The
compression ratio, compression gain, compression time, and
decompression time were used as key metrics. The results
demonstrate the efficiency of P2DNAComp, with an average
compression ratio of 1.09 bits per base (bpb), compression
gain of 86.279%, compression time of 0.547 seconds, and
decompression time of 0.563 seconds. Overall, P2DNAComp
stands out as a promising advancement in the field of DNA
sequence compression. It offers a comprehensive and
efficient solution to the growing challenges of large-scale
genomic data storage and transmission. In the future, this
research can be extended by integrating machine learning
techniques to predict optimal encoding strategies based on
DNA sequence characteristics. Additionally, enhancing real-
time compression speed and evaluating performance across
more heterogeneous genomic datasets will further establish
the algorithm’s utility in clinical genomics, personalized
medicine, and cloud-based bioinformatics platforms.

Acknowledgment
None.

References

Chen X., Kwong, S., & Li, M. (1999). A compression algorithm for
DNA sequences and its application in genome comparison.
The Tenth Workshop on Genome and Informatics (GIW9), pp.
340-350.

Chen X, Li, M., Ma, B., & Tromp, J. (2002). DNACompress: Fast and
effective DNA sequence compression. Bioinformatics, https://
doi.org/10.1093/bioinformatics/18.12.1696

Deloula, M., & Yuan, X. (2018). One-bit DNA compression
algorithm. Proceedings of the International Conference
on Neural Information Processing, Cambodia, https://doi.
org/10.1007/978-3-030-04239-4_34

Govind Prasad Arya, & Bharti, R. (2017). DNA compression using
particle swarm optimization (DCPSO). Journal of Advanced
Research in Dynamical and Control Systems, 5(Special Issue),
295-302.

Grumbach, S., & Tahi, F. (1993). Compression of DNA sequences. In
Proceedings of the Conference on Data Compression (DCC), pp.
340-350. https://doi.org/10.1109/DCC.1993.253115

Grumbach, S., & Tahi, F. (1994). A new challenge for compression
algorithms: Genetic sequences. Information Processing and
Management, pp. 875-886. https://doi.org/10.1016/0306-
4573(94)90014-0

Hui Chen. (2020). Application of genome sequence based on
entropy coding. In International Conference on Intelligent
Computing, Automation and Systems (ICICAS), pp. 156-159.

Khalid, S. (2012). Introduction to Data Compression (4th ed.). Morgan
Kaufmann Series, Elsevier.

Korodi, G., & Tabus, I. (2005). An efficient normalized
maximum likelihood for DNA sequence compression.
ACM Transactions on Information Systems, https://doi.
org/10.1145/1055709.1055711

Krishnamoorthy, M., & Karthikeyan, R. (2022). Classification
techniques for medicinal databases using auto-regression
and firefly algorithm. Journal of Algebraic Statistics, 13(3),
1130-1136.

Mishra, K. N., Aaggarwal, A., & Abdelhadi, E. (2010). An efficient
horizontal and vertical method for online DNA sequence
compression. International Journal of Computer Applications,
https://doi.org/10.5120/757-954

Murugan, A., & Punitha, K. (2021). An efficient DNA sequence
compression using small sequence pattern matching.
International Journal of Computer Science and Network Security
(IJCSNS), https://doi.org/10.22937/1JCSNS.2021.21.8.37

Murugesan, G. (2020). Codon-based compression algorithm for
DNA sequences with two-bit encoding. European Journal of
Molecular and Clinical Medicine, 7(10), 33-41.

National Library of Medicine. (2024). GenBank and WGS Statistics.
https://www.ncbi.nlm.nih.gov/genbank/statistics/. Accessed
29 March 2024.

Rosario Gilmary, & Murugesan, G. (2021). Bit reduction based
compression algorithm for DNA sequences. International
Journal of Scientific Research in Science, Engineering and
Technology, https://doi.org/10.32628/1JSRSET218529

Syed Mahamud Hossein, De, D., Mohapatra, P. K. D., Mondal, S. P.,
Ahmadian, A., Ghaemi, F., & Senu, N. (2020). DNA sequences
compression by GP2R and selective encryption using
modified RSA technique. IEEE Access, https://doi.org/10.1109/
ACCESS.2020.2985733

Tabus, I., Korodi, G., & Rissanen, J. (2003). DNA sequence
compression using the normalized maximum likelihood
model for discrete regression. In Proceedings of the Data
Compression Conference (DCC), https://doi.org/10.1109/
DCC.2003.1194016

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential
data compression. IEEE Transactions on Information Theory,
https://doi.org/10.1109/TIT.1977.1055714

