
Abstract
Researchers from bioinformatics, biology, biotechnology, and medical sciences who are engaged in genetic data analysis face significant 
challenges in the manipulation and storage of large datasets. Compression algorithms are essential for increasing storage capacity and 
reducing the number of bits required to represent nucleotide bases. The pattern-driven Huffman encoding and positional encoding 
for DNA compression (P2DNAComp) algorithm is designed to compress both non-repetitive and repetitive pattern bases within DNA 
sequences. This demonstrates the algorithm’s adaptability across various pattern types in genomic data. P2DNAComp employs a 
systematic approach to efficiently compress DNA sequences. It reads the sequences and constructs a symbol table to maintain the 
positional values of repeated patterns. Using Huffman coding, the algorithm determines the optimal bit representation for each repeated 
pattern to maximize storage efficiency. For non-repetitive patterns, a coded table is created to store positional values. Subsequently, a 
positional encoding technique is applied to minimize the number of bits needed for efficient representation. The maximum positional 
value is set as the upper limit, and the minimum number of bits required is computed using a binary logarithm function. The final 
compressed sequence is generated by encoding both repetitive and non-repetitive patterns. Using standard datasets from the GenBank 
database, the performance of the P2DNAComp algorithm was evaluated based on compression ratio, compression/decompression 
time, and compression gain. The algorithm achieved an average compression ratio of 1.09 bits per base (bpb), an average compression 
gain of 86.279%, and average compression and decompression times of 0.547 and 0.563 seconds, respectively.
Keywords: Compression ratio, Deoxyribonucleic acid, Huffman coding, Positional encoding technique, Binary logarithm function.
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Introduction
The structure of genetic material is defined by three 
fundamental biomolecules:
•	 Proteins,
•	 Deoxyribonucleic Acid (DNA), 
•	 Ribonucleic Acid (RNA).
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Proteins govern cellular behavior, concentration, and 
morphology, thereby determining the unique characteristics 
of each cell type—be it hair, nerve, or blood cells. DNA, often 
regarded as the molecular architect, directs the synthesis of 
specific proteins, although its activation depends on protein 
interactions. RNA, which shares structural similarities with 
DNA, plays a complementary role in regulating various 
cellular processes. Genetic material is transmitted across 
generations and forms the basis of heredity and cellular 
identity. DNA, located within the cell nucleus, is composed 
of long chains made up of four nucleotide bases: Adenine 
(A), Cytosine (C), Guanine (G), and Thymine (T). These 
bases pair specifically—A with T, and C with G—to ensure 
structural stability and the accurate transmission of genetic 
information. The DNA sequence, a long string of these 
base pairs, encodes the essential instructions for all cellular 
functions. The double-helix structure of DNA emphasizes 
the importance of base pairing in preserving genetic fidelity. 
Notably, (1) the precise order of these bases is vital for 
decoding the genetic code, and (2) unraveling the encoded 
information is critical for understanding the organism’s traits 
and functions. DNA serves as the blueprint for an organism’s 
genetic makeup. Despite advancements in databases and 
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Table 1: GenBank database

Release Month/Year Bases Sequence Growth Rate Bases % Growth Rate sequence%

241 12 / 2020 723003822007 221467827 – –

242 02 / 2021 776291211106 226241476 +7.37 +2.15

243 04 / 2021 832400799511 227123201 +7.14 +0.39

244 06 / 2021 866009790959 227888889 +3.46 +0.34

245 08 / 2021 940513260726 231982592 +8.66 +1.79

246 10 / 2021 1014763752113 233642893 +7.23 +0.72

247 12 / 2021 1053275115030 234557297 +3.92 +0.39

248 02 / 2022 1173984081721 236338284 +11.43 +0.76

249 04 / 2022 1266154890918 237520318 +7.12 +0.50

250 06 / 2022 1395628631187 239017893 +9.54 +0.63

251 08 / 2022 1492800704497 239915786 +8.15 +0.37

252 10 / 2022 1562963366851 240539282 +2.93 +0.26

253 12 / 2022 1635594138493 241015745 +4.66 +0.20

254 02 / 2023 1731302248418 241830635 +6.13 +0.34

255 04 / 2023 1826746318813 242554936 +5.51 +0.30

256 06 / 2023 1966479976146 243560863 +7.66 +0.41

257 08 / 2023 2112058517945 246119175 +7.39 +1.05

258 10 / 2023 2433391164875 247777761 +15.19 +0.67

259 12 / 2023 2570711588044 249060436 +5.66 +0.52

data processing technologies, researchers continue to face 
challenges due to the overwhelming volume of genetic 
data. Collecting complete DNA sequences and annotating 
genomic features are complex and resource-intensive tasks. 
Ongoing genome projects are now generating trillions 
of base pairs, supported by a wide variety of biomedical 
devices and data acquisition methods.

For instance, Release 259 of the GenBank database 
(December 2023) reported approximately 2,570,711,588,044 
bases across 249,060,436 sequences (National Library 
of Medicine, 2024) (Table 1). The database has nearly 
doubled in size every 18 months, presenting storage and 
computational bottlenecks. Accumulating such large 
volumes of DNA sequences has become a primary challenge 
in bioinformatics, often leading to memory overflow and 
network congestion during data transfers. Efficient access 
to DNA sequences remains a major concern for the scientific 
community. To address these issues, various algorithms 
have been developed to reduce DNA file sizes—mitigating 
challenges related to storage, transmission, and accessibility. 
These algorithms aim to optimize storage efficiency 
and improve the usability of genetic data in the rapidly 
expanding bioinformatics landscape.

Overview of Compression Techniques
The task of minimizing the number of bits required to 
represent DNA bases is known as compression. Compression 
techniques are broadly categorized as lossy or lossless. 
Lossy compression reduces file size effectively but cannot 

precisely recover the original data, making it unsuitable for 
DNA data. In contrast, lossless compression reduces the file 
size while ensuring the original data can be fully restored, 
making it ideal for applications in genomics where data 
integrity is crucial.

Impact of DNA Mutations on Compression Strategies
DNA mutations—such as base insertions, deletions, or 
substitutions—pose significant challenges for compression. 
These changes can disrupt sequence regularity, making 
lossy techniques unsuitable. The necessity to preserve data 
accuracy highlights the importance of lossless compression 
strategies that maintain sequence fidelity despite genomic 
variation.

Advances in Lossless Compression for Genomic Data
Lossy compression may result in the loss of essential bases 
during sequence encoding, which is unacceptable in 
bioinformatics. Consequently, researchers have shifted focus 
toward lossless compression techniques, which preserve 
the complete genetic sequence while reducing storage 
requirements.

A universal storage system that employs lossless 
compression is essential for efficient data exchange between 
databases—enabling faster uploads, downloads, and cross-
platform compatibility. Compression quality is generally 
determined by how well algorithms handle repetitive and 
non-repetitive patterns in DNA sequences.
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This study proposes a solution using lossless compression 
strategies tailored for genomic data. Several existing lossless 
algorithms have aimed to reduce storage space and improve 
data transmission efficiency. Among them are: BioCompress 
(Grumbach & Tahi, 1993), BioCompress2 (Grumbach & 
Tahi, 1994), GenCompress (Chen, Kwong, & Li, 1999), 
DNACompress (Chen, Li, Ma, & Tromp, 2002), Normalized 
Maximum Likelihood (NML) (Tabus, Korodi, & Rissanen, 
2003), GeNML (Korodi & Tabus, 2005), DNASC (Mishra, 
Aaggarwal, & Abdelhadi, 2010). These earlier algorithms 
demonstrated efficacy for repetitive DNA sequences, but 
their performance degrades with non-repetitive patterns, 
limiting their generalizability. This dependency on regularity 
in DNA sequences is a core limitation of many traditional 
models.

To address this, the present research introduces the 
P2DNAComp method, which effectively compresses both 
repetitive and non-repetitive DNA patterns using pattern 
matching and an improved Huffman coding approach. 
The method also relocates non-repetitive patterns to a 
separate working file, where positional encoding and 
binary logarithmic optimization techniques are applied. This 
approach significantly enhances storage efficiency, even 
under high-throughput conditions where non-repetitive 
sequences are prevalent.

Organization of the Paper
This paper is organized as follows:
•	 Section 2 reviews recent advances in DNA compression 

algorithms.
•	 Section 3 defines the performance metrics used to 

evaluate the proposed method.
•	 Section 4 describes the P2DNAComp algorithm in detail.
•	 Section 5 presents the experimental results.
•	 Section 6 concludes the study with key findings and 

future directions.

Related Works
Recently, researchers have implemented lossless 
compression techniques for genetic data (DNA sequences), 
marking a significant advancement in the field of 
bioinformatics. This development highlights the need for 
strong interdisciplinary collaboration—particularly among 
the domains of computer science, bioinformatics, biology, 
biotechnology, and medical science. This section presents 
a comprehensive literature review of recently developed 
lossless DNA sequence compression algorithms, examining 
both theoretical foundations and practical applications. It 
also addresses ongoing research challenges in managing 
large-scale genomic datasets.

Krishnamoorthy and Karthikeyan (2022) proposed a 
technique called Hybrid Streamlining of Hospitalization–
Subordinate DNA Compression (HOARDNAComp), which 
uses a firefly algorithm and an auto-regression strategy. 

The technique integrates an even-mode statistical method 
with autoregressive modeling. Modified firefly optimization 
is employed to set model parameters dynamically. This 
approach resolves computational efficiency issues and 
achieved an average compression ratio of 1.39 bits per 
base (bpb). In comparison with DNA Compression using 
Particle Swarm Optimization (DCPSO) (Arya & Bharti, 2017), 
HOARDNAComp demonstrated superior performance 
(Krishnamoorthy & Karthikeyan, 2022).

Murugan and Punitha (2021) introduced an innovative 
algorithm called Small Pattern Matching (S_Pattern) for 
DNA sequence compression. In this method, input DNA 
sequences are divided into segments of size 2 to 6, and 
each matching segment is encoded using ASCII symbol 
representation. These encoded sequences are then 
compressed using the LZ77 algorithm (Ziv & Lempel, 1977). 
An average compression ratio of 93% was achieved across 
various datasets from the UCI repository. However, the 
limitation lies in its constrained segment size range (2–6), 
which restricts flexibility (Murugan & Punitha, 2021).

Rosario Gilmary and Murugesan (2021) proposed a bit-
reduction technique involving three stages: Bit reduction, 
Binary-to-hexadecimal conversion, and Huffman coding of 
the hexadecimal values.

Compared to existing algorithms, this method achieved 
better compression ratios and reduced storage requirements. 
The technique utilizes multiple transformations to reduce 
complexity in compressing DNA datasets, thereby 
emphasizing storage efficiency and lossless performance 
(Rosario Gilmary & Murugesan, 2021).

Mansouri et al. (2020) presented Single–Block Encoding 
(DNAC–SBE), a technique based on One-Bit encoding. In this 
method: a) Frequently occurring bases are substituted with 
1, b) Less frequent bases with 0, and c) The output is encoded 
using Single–Block Encoding (SBE) with dynamically 
assigned short codewords. DNAC–SBE effectively identified 
previously unrecognized DNA bases and achieved a strong 
compression ratio. However, the use of a fixed 7-bit block 
size limited its compression efficiency when applied to 
diverse datasets (Mansouri & Yuan, 2018).

Murugesan (2020) introduced a Codon-Based 
Compression Algorithm (CBCA) that performs both 
compression and decompression without the use of a 
dictionary, thus reducing the need for additional storage 
space. CBCA achieved a compression ratio of 1.59 bpb 
with a decompression time of 0.18 seconds. However, the 
algorithm uses fixed-length binary strings (1, 2, 4, 5, or 6 bits), 
which may constrain adaptability when encoding variable 
DNA sequences.

Hui Chen (2020) developed an Entropy Coding 
Technique (ECT) based on context modeling. The 
ECT method: a) Segments input DNA into coding 
sequences, residual clusters, RNA, and introns, b) 
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Assigns attributes based on sequence features, and 
c) Applies entropy-based encoding.

It achieved an average compression ratio of 1.72 bpb, 
although it suffered from high computational time. Despite 
this drawback, ECT is noted for its effective entropy-based 
compression of DNA sequences (Chen, 2020).

Syed Mahamud Hossein et al. (2020) proposed a novel 
method named GP2R, which integrates Genetic Palindrome 
(GP), Palindrome (P), and Reverse (R) algorithms. The method 
involves: 
Stage 1: Identification of all substrings,
Stage 2: Encoding unmatched and palindrome regions,
Stage 3: Encoding compressed files using a modified RSA 
technique.

GP2R outperformed standard algorithms in terms of 
compression ratio, showcasing its potential for efficient DNA 
data compression (Hossein et al., 2020).

Performance Evaluation Metrics
Table 2 outlines the key metrics used to evaluate the 
performance of DNA sequence compression algorithms. 
These metrics help in quantifying the efficiency, effectiveness, 
and practicality of the proposed method.

Proposed Algorithm
Computational modeling of DNA sequencing techniques 
has generated voluminous data in the form of DNA 
sequences. The rapid proliferation of these DNA sequences 
has attained prominent pace. These genetic data has been 
popular as well as easily accessible for homology searches, 
intricate modeling and sequence mining. The need for 
advanced storage solution in bioinformatics is motivated by 
the large size, the great complexity and diversity of genetic 
data in databases. It is an essential need for researchers to 

store extensive amount of genomic data as well as efficiently 
analyze them.

Within the intricate landscape of the bioinformatics 
community, several prominent challenges demand 
meticulous attention from researchers (Table 3). 

The pursuit of addressing pressing challenges in 
genomic data management is intricately tied to several 
pivotal objectives (Table 4).

The main objective of lossless compression algorithms is 
to maintain integrity of information during compression. This 
work achieves good compression ratio and commendable 
compression gain as well as reduce demands for time 
related with compression and decompression. P2DNAComp 
algorithm compresses both repetitive pattern and non–
repetitive pattern bases of DNA sequences. The uniqueness 
of the algorithm depends on the combination of advanced 
positional encoding methodologies and improved 
Huffman coding techniques which enhance the genetic 
data compression efficiency. P2DNAComp provides a novel 
solution to challenges of compression and holds promise 
for efficiency of lossless DNA sequence compression. The 
important suggestions are also offered for development in 
analysis and storage of genetic sequences. 

The input for P2DNAComp consists of discrete set of 
nucleotide bases within DNA sequence. The P2DNAComp 
algorithm works as follows. First, all genetic information (as a 
sequence) of individual elements is recognized for analysis of 
the sequences. Then, formulate a symbol table for repeated 
patterns that inherent in the sequence. The positions 
and occurrences of recurrent bases are systematically 
maintained in this structured table. Next, Huffman coding 
technique is applied to efficiently optimize the frequently 
occurring patterns representation and storage. This 

Table 2: Key Performance Metrics

Compression Ratio (CR)

Definition Establishes the ratio of compressed file size to original file size in bits per base (bpb) or bits per character (bpc).

Formula CR = Compressed file size / Original file size

Compression Factor (CF)

Definition Represents the ratio of original file size to compressed file size.

Formula CF = Original file size / Compressed file size

Saving Percentage (SP)

Definition Depends on the difference between original and compressed file sizes, expressed as a percentage.

Formula SP  =(Original file size –Compressed file size) / Original file size

Compression Time (CT)

Definition Time needed for file compression

Decompression Time (DT)

Definition Time required reconstructing the file to its original state, both measured in seconds.
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Table 3: Challenges and Solutions in Genomic Data Storage and Management

Challenge Significance Research Focus

Escalating
DNA Sequences and 
Storage Imperatives

Need for substantial disk storage 
capacity

Genetic information with its complex 
sequences requires advanced storage 
solutions to handle the huge volume 
of the DNA sequences

Improve the capacity of storage device and 
provide a platform capable to handling 
the huge volume of the DNA sequences 
efficiently

Logistical 
Complexities in 
Genomic Data 
Transfer

Transferring the genomic 
data(DNA sequences) from one 
node to another node which 
makes difficulties, resulting in 
time–intensive procedures

Transfer of genetic data (DNA 
sequences) is a laborious task 
hindering the efficiency of 
collaborative research endeavours

Aims to provide the seamless transfer 
of large volume of genetic data (DNA 
sequences) among databases, institutions 
and researchers

Genomic
Data Compression 
Challenges and 
Pathway Inference

Non–repetitive bases in DNA 
sequences occupy more storage 
space during compression

Non-repetitive bases (space–
intensive nature) within the DNA 
sequences require more space 
which leads to challenges for data 
compression

Emphasizes the requirement of enhanced 
compression approaches which ensures the 
reliability of information while efficiently 
compressing DNA sequences

Table 4: Objectives in Genomic Data Management–Compression, Storage and Data Transfer

Objective Significance

Innovative Compression 
Algorithm for Genomic Data

Propose a novel lossless DNA sequence compression 
algorithm to minimize the number of bits need to 
represent genomic data with better compression ratio 
in DNA sequences (both repetitive bases and non–
repetitive bases)

Design an algorithm that compress the size 
of DNA sequences, understanding of the 
complexities within DNA sequences

Efficient Storage and 
Capacity Expansion

The algorithm provides the way to store huge volume of 
genomic data without compromising the efficacy of the 
storage medium
Improves the capacity of storage medium

Optimize the capacity of storage device(storage 
efficiency)
Enhancing capacity of storage device

Scalability for Varied Dataset 
Sizes

The algorithm should be adapt to compress DNA 
sequences with different sizes

Ensure the scalability of algorithm across 
various dataset with different sizes

Optimized Data Transfer and 
Reduced Network Traffic

The algorithm ensures to transferring genomic 
datasets(DNA sequences)  from one point to another 
point and minimize network traffic

Reduce network traffic streamlines the data 
transfer process
optimizing overall genomic data exchange

technique determines the optimal number of bits needed 
for representation of repeated pattern. Here, shortest binary 
codes are assigned to patterns encountered most frequently 
which ensures encoding patterns efficiently. To represent 
non–repetitive patterns with respective positional values 
a coded table is constructed. It is helpful for encoding the 
positional values of the patterns and facilitates the way for 
reconstruction of the sequence in an efficient manner during 
decompression. Using information theory techniques, 
minimum required bits are determined to store positional 
values in the coded table. The key objectives are:
•	 Minimum redundancy
•	 Optimal bit representation
•	 Information content preservation

Following this step, the binary representation of the 
repetitive patterns is written into the work file. With the 
help of previously constructed symbol table and Huffman 
codes this operation is performed with exactitude. In this 
algorithm, the features of Huffman coding (for repeated 

patterns) and coded table representation (for non–
repetitive patterns) are used. This helps to achieve better 
DNA sequence compression that encapsulates all essential 
genetic information and significantly reduce storage 
requirements.

The novelty of P2DNAComp lies in its transformative 
integration of information techniques such as systematic 
positional encoding; Huffman coding that collectively 
builds a paradigm shift in compression of sequences. It 
takes the input sequences as a discrete set of bases. Symbol 
table is generated for recurrent patterns to organize them 
in a systematic manner. Thereby the algorithm offers a 
sophisticated comprehensive and structured method 
to recognition of patterns in the DNA sequences. The 
process of determining the number of bits required for 
repeated patterns is performed using the application of 
Huffman coding and principles of information theory. 
Another important feature of P2DNAComp algorithm 
is that generation of a coded table for non–repetitive 
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patterns to incorporating positional values. This proposed 
technique not only minimizes the redundancy but also offers 
efficient decompression which shows the uniqueness of the 
algorithm and underscoring the significant advancement in 
lossless DNA sequence compression.

Symbol Table for Recurrent DNA Sequences
For effective data representation of repetitive patterns and 
to eliminate the overhead of occupying more storage space, 
the symbol table is designed for recurrent sequences. The 
symbol table provides tremendous flexibility to organize the 
repetitive DNA sequences and consequently document the 
sequences. It collects the details of sequence identifier and 
repeated sequences in Table 5. 
•	 Sequence Identification: The recurring sequences in DNA 

dataset are identified by the P2DNAComp algorithm.
•	 Building Symbol Table: After identification of the 

repeated sequences, the symbol is generated into 
two parts. a) The sequence identifier b) The repetitive 
sequences.

Table 6 presents a list of repeated patterns identified with 
sequence identifier (unique label). These elements provide 
users with clear reference to enhance the compression and 
decompression process. 

Huffman Coding Method
Developed by David Huffman, Huffman coding method is a 
familiar lossless compression technique using the principles 
of information theory and widely used to reduce the size of 
files. Sayood, K. (2012) (Table 7).
Steps involved in Huffman coding:
•	 All bases are arranged (descending order) based on 

frequencies of respective bases.
•	 Initiating with lowest frequency base, designate each 

base (leaf node).
•	 To devise a new node extract two minimum frequency 

nodes. Left node–base with minimum frequency. 
Right node–base with second minimum frequency. 
New node–sum of the frequencies of left node and 
right node.

•	 Add the new node

•	 Repeat (3) and (4) until it reaches the root.
•	 Assign “0” to left edge and “1” to non–leaf nodes.
•	 Determine codeword by traversing the tree.

Determine Minimum Bits for Positional Values
•	 Let S be a set of positional values S= {P1, P2, P3,…,Pn} where 

n denotes total number of positional values within the 
coded table.

•	 Find the maximum positional value (Max): The maximum 
value among the positional values is Max. It calculates 
the upper limit for the individual bit.

Max = max {P1, P2, P3… Pn}

Find the minimum bits needed for positional value: 
Determine the minimum number of bits needed to represent 
each positional value using binary logarithm function log2.

Minimum Bits for Pi = ⌈log2​(Pi​)⌉

For example, Consider the following positional values 
P1=5, P2=12, P3=21 and P4=30. Now find the maximum 
positional value Max=max {5, 12, 21, 30} = 30. Then 
determine the minimum number of bits needed for 
represent the positional values. For P1 = 5, P1 = ⌈log2​

(5) ⌉ = 3, For P2 = 12, P2 = ⌈log2​(12) ⌉ = 4, For P3 = 21, 
P3 = ⌈log2​(21) ⌉ = 5, For P4 = 30, P4 = ⌈log2​(30) ⌉ = 5. 
In this example, the minimum number of bits needed 
for each positional value is 3, 4, 5 and 5 bits.

Illustration
Consider the DNA sequence
AAAAACCCTTAAAAAAAACCCCCCGGGTTTTTTTTTGGGGG
Step 1: Read the given DNA sequence.
Step 2: Find repeated patterns and generate symbol table.
Step 3: Find shortest codeword for repeated patterns using 
Huffman Coding.
Step 4: Form coded table for non–repetitive patterns (Table 8). 
Step 5: Find number of bits needed for each positional value

Max=max {3, 5, 11, 13} = 13

hen determine the minimum number of bits needed to 
represent the positional values. For P0 = 3, P0 = ⌈log2​

(3) ⌉ = 2, For P1 = 5, P1 = ⌈log2​(5) ⌉ = 3, For P2 = 11, P2 

= ⌈log2​(11) ⌉ = 4, For P3 = 13, P3 = ⌈log2​(13) ⌉ = 4. The 

Table 5: Illustrative Symbol Table

Sequence identifier Repeated patterns

RP0 “ACGT”

RP1 “ATCG”

RP2 “TTTT”

RP3 “ATTA”

RP4 “TTC”

RP5 “GTT”

RP6 “CC”

Table 6: Symbol Table Generations for Repeated patterns

Sequence identifier Repeated sequences

RP0 AAAAA

RP1 TTTT

RP2 CCC

RP3 GGG
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The above datasets are taken from different sources 
containing various range of sequences and each of 
them associated with particular information detailing 
the characteristics and source (Table 10). The sequences 
Chloroplast as “Chmpxx” (Length: 121024 Bytes and File 
size: 118.19 KB), Human sequence source as “Humdystrop” 
(Length: 38770 Bytes and File size: 37.86 KB), “Humhbb” 
(Length: 73308 Bytes and File size: 71.59 KB), “Humhprtb” 
(Length: 56737 Bytes and File size: 55.40 KB), Mitochondria 
as “Mpomtcg” (Length: 186609 Bytes and File size: 182.23 
KB) and Virus as “Vaccg” (Length: 191737 Bytes and File size: 
187.24 KB). The proposed algorithm is assessed and validated 
using these standard benchmark datasets which helps to 
contribute the development of compression algorithms and 
analyse the genetic data effectively.

Best Case  
Consider the DNA sequence (40bytes)
AAAAAAAAAGGGGGGCCCCCCTTTTTCCCCCCCCCTTTTT
Step 1: Read the given DNA sequence.
Step 2: Find repeated patterns and generate symbol table 
(Table 11).
Step 3: Find short codeword for repeated patterns using 
Huffman Coding (Table 12).
Step 4: Form coded table for non–repetitive patterns (Table 
13).
Step 5: Find number of bits needed for each positional value.

Max = max {3, 9} = 9

Then determine the minimum number of bits needed 
to represent the positional values. For P0 = 3, P0 = ⌈log2​

(3) ⌉ = 2, For P1 = 9, P1 = ⌈log2​(9) ⌉ = 4. The minimum 

Table 7: Huffman coding analysis for DNA sequence repeated patterns

Sequence identifier Repeated sequences Frequency Code word Length of codeword Bits required

RP0 AAAAA 2 00 2 4

RP1 TTTT 2 01 2 4

RP2 CCC 3 10 2 6

RP3 GGG 2 11 2 4

Required bits = 18 bits

Table 8: Coded table for non–repetitive patterns in DNA sequence

Sequence identifier Non–repetitive pattern Positional value

NRP0 TT 3

NRP1 AAA 5

NRP2 T 11

NRP3 GG 13

Table 9: Minimum bit representation for positional values

Identifier Positional value Minimum bits 
required Bit representation

P0 3 2 10

P1 5 3 100

P2 11 4 1010

P3 13 4 1100

Bits Required 13
minimum number of bits required for each positional 
value is 2, 3, 4 and 4 bits respectively as represented 
in Table 9.
Step 6: Write the following pattern into work file

00–10–00–10–10–11–01–01–11
Required bits = 2 x Frequency (RP0) + 2 x Frequency (RP1) 
+ 3 x Frequency (RP2) + 2 x Frequency (RP3)
= 2 x 2 + 2 x 2 + 3 x 2 + 2 x 2
=4+4+6+4 = 18 bits
Size after Compression = Work file + Bits required for 
positional values
= 18 bits + 13 bits
= 31 bits = 3.8 bytes
Compression Ratio is given by

Size after CompressionCompression Ratio x 8
Size before Compression

 
=  
 

.

(3.8 / 41) x 8 
= 0.74 bpb.

Results and Discussion

Datasets
To test the proposed algorithm, six GenBank benchmark 
datasets are employed. Table 10 illustrates the key 
characteristics of the datasets. The P2DNAComp algorithm 
is implemented using the Java. Analyzing and accounting 
the relation between original file size and compressed file 
size is vital. Three different scenarios contingent upon the 
DNA sequences containing the occurrence of both repetitive 
patterns and non–repetitive patterns are considered:
•	 Best case
•	 Average case
•	 Worst case
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Table 10: Summary of Benchmark Datasets

Sequence 
source 

Sequence 
name 

Length 
(bytes) File size (kilobytes)

Chloroplast Chmpxx 121024 118.19

Human

Humdystrop 38770 37.86

Humhbb 73308 71.59

Humhprtb 56737 55.40

Mitochondria Mpomtcg 186609 182.23

Virus Vaccg 191737 187.24

Table 11: Symbol Table Generations for Repeated patterns 

Sequence identifier Repeated sequences

RP0 CCCCCC

RP1 TTTTT

RP2 AAAA

RP3 GGG

Table 12: Huffman coding analysis for DNA sequence repeated patterns

Sequence identifier Repeated sequences Frequency Code word Length of codeword Bits required

RP0 CCCCCC 2 00 2 4

RP1 TTTTT 2 01 2 4

RP2 AAAA 2 10 2 4

RP3 GGG 2 11 2 4

Required bits = 16 bits

Table 13: Coded table for non–repetitive patterns in DNA sequence

Sequence identifier Non–repetitive pattern Positional value

NRP0 A 3

NRP1 CCC 9

Table 14: Minimum bit representation for positional values

Identifier Positional value Minimum bits 
required

Bit 
representation

P0 3 2 10

P1 9 3 1000

Bits Required 6

Table 15: Symbol Table Generations for Repeated patterns 

Sequence identifier Repeated sequences

RP0 CCCCC

RP1 AAA

RP2 GG

number of bits needed for each positional value is 2 
and 4 bits respectively as given in Table 14.
Step 6: Write the following pattern into work file

10–10–11–11–00–01–00–01
Compression ratio for best case = 0.54 bpb

Average Case
Consider the DNA sequence (40 bytes)
AAAAAAATCCCCCGGTTTCCCCCCCCCCCCCCCAAA GGCC
Step 1: Read the given DNA sequence.
Step 2: Find repeated patterns and generate symbol table 
(Table 15).
Step 3: Find short codeword for repeated patterns using 
Huffman Coding (Table 16).
Step 4: Form coded table for non–repetitive pattern (Table 
17).
Step 5: Find number of bits needed for each positional value.

Max=max {3, 6, 12} = 9

Then determine the minimum number of bits needed 
for represent the positional values. For P0 = 3, P0 = 
⌈log2​(3) ⌉ = 2, For P1 = 6,  P1 = ⌈log2​(6) ⌉ = 3, For P2 

= 12,  P2 = ⌈log2​(12) ⌉ = 4. The minimum number of 
bits needed for each positional value is 2, 3 and 4 bits 
respectively as shown in Table 18.
Step 6: Write the following pattern into work file

10–10–0–11–0–0–0–10–11
Compression ratio for best case = 0.57 bpb.

Worst Case
Suppose DNA sequence (40 bytes)
TAACGGGTCTCGGGGTTTTTCCCCACGTCCCGGCTAAAGT
Step 1: Read the given DNA sequence.
Step 2: Find repeated patterns and generate symbol Table 19.
Step 3: Find short codeword for repeated patterns using 
Huffman Coding (Table 20).
Step 4: Form coded table for non–repetitive patterns (Table 
21).
Step 5: Find number of bits needed for each positional value.

Max=max {3, 5, 9, 10, 12, 14} = 14

Then determine the minimum number of bits needed 
for represent the positional values. For P0 = 3, P0 = 
⌈log2​(3) ⌉ = 2, For P1 = 5,  P1 = ⌈log2​(5) ⌉ = 3, For P2 = 
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Table 16: Huffman coding analysis for DNA sequence repeated patterns

Sequence identifier Repeated sequences Frequency Code word Length of codeword Bits required

RP0 CCCCC 4 0 1 4

RP1 AAA 3 10 2 6

RP2 GG 2 11 2 4

Required bits = 14 bits

Table 17: Coded table for non–repetitive patterns in DNA sequence

Sequence identifier Non–repetitive pattern Positional value

NRP0 AT 3

NRP1 TTT 6

NRP2 CC 12

Table 18: Minimum bit representation for positional values

Identifier Positional 
value

Minimum bits 
required

Bit 
representation

P0 3 2 10

P1 6 3 101

P2 12 4 1011

Bits Required 9

Table 19: Symbol Table Generations for Repeated patterns

Sequence identifier Repeated sequences

RP0 CGGG

RP1 TCCC

RP2 TAA

RP3 TT

Table 20: Huffman coding analysis for DNA sequence repeated patterns

Sequence identifier Repeated sequences Frequency Code word Length of codeword Bits required

RP0 CGGG 2 00 2 4

RP1 TCCC 2 01 2 4

RP2 TAA 2 10 2 4

RP3 TT 2 11 2 4

Required bits = 16 bits

9,  P2 = ⌈log2​(9) ⌉ = 4, For P3 = 10, P3 = ⌈log2​(10) ⌉ = 
4, For P4 = 12, P4 = ⌈log2​(12) ⌉ = 4, For P5 = 14, P5 = 
⌈log2​(14) ⌉ = 4. The minimum number of bits needed 
for each positional value is 2, 3, 4, 4, 4 and 4 bits 
respectively (Table 22).
Step 6: Write the following pattern into work file

10–00–00–11–11–01–01–10
Compression ratio for best case = 0.92 bpb.

Results of P2DNAComp for standard datasets
The performance of P2DNAComp across different DNA 
datasets is shown in Table 23. The original size of Chmpxx 
121,024 is compressed to 15,649 bytes with compression 
ratio of 1.03 and compression gain of 87.07 percent. The 
original size of Humdystrop 38770 is compressed to 5451 
bytes with compression ratio of 1.12 and compression gain of 
85.94 percent. Similarly, for Humhbb (compression ratio: 1.08, 
compression gain: 86.47),  Humhprtb (compression ratio: 
1.09, compression gain: 86.37), Mpomtcg (compression ratio: 
1.13, compression gain: 85.85) and Vaccg (compression ratio: 
1.12, compression gain: 85.96). The average compression 
ratio and compression gain of P2DNAComp are 1.09 bpb 
and 86.28 percent for the standard datasets. In table 23, 
compression time and decompression time is indicated 
to emphasize the efficiency of the algorithm. Table 23 
underscores the robust performance of P2DNAComp which 
helps reduce the file size of datasets and achieve high 
compression gain. 

Statistical analysis of P2DNAComp over DNAC–SBE, 
CBCA, ECT, HOARDNA Comp, Bit Reduction, IBDNASCA and 
EIBDNASCA is shown in Table 24. The proposed algorithm 
achieves compression ratio of 1.03 for the dataset “Chmpxx” 
than other algorithms. It highlights the percentage 
improvement of 35% over DNAC–SBE, 35% over ECT and 
22% over HOARDNA. The results establish the efficacy of 

P2DNAComp in reducing the various genetic datasets (DNA 
sequences).    

The proposed algorithm achieves good compression 
ratio of 1.12 for the dataset “Humdystrop” than other 
algorithms. It highlights the percentage improvement of 
43% over CBCA, 19% over ECT and 32% over IBDNASCA. The 
results establish the ability of P2DNAComp in reducing the 
various genetic datasets (DNA sequences) and optimizing 
the capacity of storage medium. The dataset “Humhbb” 
achieves 1.08 compression ratio and an improvement in 
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Table 21: Coded table for non–repetitive patterns in DNA sequence

Sequence identifier Non–repetitive pattern Positional value

NRP0 TCT 3

NRP1 G 5

NRP2 C 9

NRP3 ACG 10

NRP4 GGC 12

NRP5 AGT 14

Table 22: Minimum bit representation for positional values

Identifier Positional value Minimum bits 
required Bit representation

P0 3 2 10

P1 5 3 101

P2 9 4 1000

P3 10 4 1001

P4 12 4 1011

P5 14 4 1101

Bits Required 21

Table 23: Performance evaluation of P2DNAComp on Standard datasets

DNA sequence Actual size (Bytes) Reduced size (Bytes) Compression ratio (bps) Compression Gain 
%

Time Taken(Seconds)

Compression Decompression

Chmpxx 121024 15649 1.03 87.0695069 0.510 0.546

Humdystrop 38770 5451 1.12 85.9401599 0.498 0.501 

Humhbb 73308 9913 1.08 86.4776014 0.508 0.526

Humhprtb 56737 7732 1.09 86.3722086 0.504 0.531

Mpomtcg 186609 26395 1.13 85.8554518 0.583 0.597

Vaccg 191737 26912 1.12 85.9641071 0.679 0.681

Average 1.09 86.279 0.547 0.563

Table 24: Comparison analysis of P2DNAComp over existing algorithms

DNA sequence DNAC–SBE CBCA ECT HOARDNA comp Bit reduction IBDN-ASCA EIBDN-ASCA P2DNA comp

Chmpxx 1.60 – 1.58 1.33 – 1.40 1.14 1.03

Humdystrop 1.72 1.55 – 1.39 1.64 1.53 1.27 1.12

Humhbb 1.71 1.55 1.83 1.44 1.65 1.50 1.21 1.08

Humhprtb 1.72 1.54 1.85 1.45 – 1.51 1.25 1.09

Mpomtcg 1.72 1.55 – 1.40 1.62 1.57 1.28 1.13

Vaccg 1.67 1.57 1.78 1.32 1.66 1.52 1.23 1.12

Average Ratio 1.69 1.55 1.76 1.38 1.64 1.51 1.23 1.09

algorithm and emphasize its need for efficient sequence 
compression. It helps to analyse the sequence, optimize 
storage device capacity and transmission of genetic dataset.  

Table 25 presents the comparison of the proposed 
algorithm over standard DNA sequence compression 
algorithms such as WinRAR, Bio–Compres2, Gen Compress, 
DNA Compress, Ge–NML and DNASC. The analysis includes 
compression ratios for different DNA sequence datasets 
which unveils the superiority of P2DNAComp. The dataset 
“Chmpxx”, achieves better compression ratio of 1.03 
compared to WinRAR (2.25 bpb), Bio–Compres2 (1.68 
bpb), Gen Compress (1.67 bpb), DNA Compress (1.67 bpb), 
Ge–NML (1.66 bpb) and DNASC (1.50 bpb). In particular, 
the P2DNAComp algorithm does 54% better compared 
with others.

The dataset “Humdystrop”, achieves better compression 
ratio of 1.12 compared to WinRAR (2.37 bpb), Bio–Compres2 
(1.93 bpb), Gen Compress (1.92 bpb), DNA Compress (1.91 
bpb), Ge–NML (1.91 bpb) and DNASC (1.89 bpb). It shows 
the improvement of P2DNAComp algorithm (54%) over 
other algorithms. The result obtained by P2DNAComp for 
the dataset “Humhbb” is 1.08 bpb. This surpasses WinRAR 
(2.22 bpb), Bio–Compres2 (1.88 bpb), Gen Compress (1.82 
bpb) and DNA Compress (1.79 bpb).

For the dataset “Humhprtb”, the proposed algorithm 
maintains good performance with a compression ratio 
of 1.09 when compared with WinRAR (2.23 bpb), Bio–
Compres2 (1.91 bpb), Gen Compress (1.85 bpb), DNA 
Compress (1.82 bpb), Ge–NML (1.76 bpb) and DNASC (1.71 

percentage of 37% over CBCA, 41% over ECT and 25% over 
IBDNASCA. The average compression ratio of P2DNAComp 
is 1.09 bpb which exhibits the improvement from 6% to 38% 
compared with other compression algorithms. 

The results highlight the performance of the proposed 
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bpb). P2DNAComp shows an improvement of 52% over 
other algorithms. For “Mpomtcg”, the proposed algorithm 
maintains good performance with compression ratio of 1.13 
when compared with WinRAR (2.23 bpb), Bio–Compres2 
(1.91 bpb), Gen Compress (1.85 bpb), DNA Compress (1.82 
bpb), Ge–NML (1.76 bpb) and DNASC (1.71 bpb). It shows 
the improvement of P2DNAComp algorithm about 51% 
over other algorithms. The result obtained by P2DNAComp 
for the dataset “Vaccg” is 1.12 bpb. This surpasses WinRAR 
(2.23 bpb), Bio–Compres2 (1.91 bpb), Gen Compress (1.85 
bpb), DNA Compress (1.82 bpb), Ge–NML (1.76 bpb)and 
DNASC (1.71 bpb). It shows the improvement of P2DNAComp 
algorithm about 51% over other algorithms.

Figure 1 displays compression ratio of P2DNAComp 
algorithm of various DNA sequences (datasets).  
P2DNAComp algorithm achieves compression ratio of 1.03 
bpb for “Chmpxx”, 1.12 bpb for “Humdystrop”, 1.08 bpb for 
“Humhbb”, 1.09 bpb for “Humhprtb”, 1.13 bpb for “Mpomtcg” 
and 1.12 bpb for “Vaccg” respectively.

Figure 2 shows the comparative analysis of P2DNAComp 
algorithm over various existing compression algorithms for 
DNA sequences. The    x–axis indicates existing algorithms 
and y–axis identifies average compression ratio achieved 
by each algorithms such as DNAC–SBE, CBCA, ECT, 
HOARDNAComp, Bit Reduction, IBDNASCA, EIBDNASCA and 
P2DNAComp. These algorithms are evaluated using various 
standard DNA sequence datasets (“Chmpxx”, “Humdystrop”, 
“Humhbb”, “Humhprtb”, “Mpomtcg” and “Vaccg”).

The results show that P2DNAComp algorithm 
outperforms existing algorithms across various datasets. It 
highlights the efficiency of P2DNAComp algorithm in terms 
of compression ratio over other competitive algorithms. 

Figure 2 gives the identification of approaches to reduce 
the size of DNA sequences and gives the valuable insights 
of various DNA sequence compression algorithms.

Figure 3 shows the average compression ratio of 
different standard lossless DNA sequence compression 
algorithms and P2DNAComp across the datasets “Chmpxx”, 
“Humdystrop”, “Humhbb”, “Humhprtb”, “Mpomtcg” and 
“Vaccg”. 

Figure 1: Experimental results of P2DNAComp for standard datasets

Figure 2: Average compression ratio of P2DNAComp over existing 
algorithms

Figure 3: Average compression ratio of P2DNAComp over standard 
algorithms

Table 25: Comparison analysis of P2DNAComp over standard algorithms

DNA sequence WinRAR Bio–compres2 Gen compress DNA compress Ge–NML DNASC P2DNAComp

Chmpxx 2.25 1.68 1.67 1.67 1.66 1.50 1.03

Humdystrop 2.37 1.93 1.92 1.91 1.91 1.89 1.12

Humhbb 2.22 1.88 1.82 1.79 – – 1.08

Humhprtb 2.23 1.91 1.85 1.82 1.76 1.71 1.09

Mpomtcg 2.30 1.94 1.91 1.89 1.88 1.88 1.13

Vaccg 2.23 1.76 1.76 1.76 1.76 1.70 1.12

Average Ratio 2.27 1.85 1.82 1.80 1.79 1.74 1.09

WinRAR achieved a compression ratio of 2.27 bpb, Bio–
Compres2 1.85 bpb, Gen Compress 1.82 bpb, DNA Compress 
1.80 bpb, Ge–NML 1.79 bpb, DNASC 1.74 bpb whereas 
P2DNAComp algorithm achieves a compression ratio of 
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1.09 bpb. This highlights the effectiveness of P2DNAComp 
algorithm in reducing the size of the DNA sequence datasets 
and also development in compression ratio when compared 
with other algorithms.

Conclusion and Future work
This study addresses the critical challenges associated with 
the analysis and storage of DNA sequences, particularly 
the difficulty in handling massive datasets originating 
from diverse genomic sources. The proposed P2DNAComp 
algorithm effectively compresses both repetitive and non-
repetitive pattern bases within DNA sequences, offering 
adaptability across various pattern types. This positions it 
as a versatile and robust tool in the domain of lossless DNA 
compression. The algorithm adopts a systematic approach, 
beginning with the construction of a symbol table and the 
application of Huffman coding to optimize storage capacity. 
For non-repetitive patterns, a coded table is created, 
followed by the use of positional encoding to minimize the 
number of bits required for efficient representation. The 
final compressed sequence—comprising Huffman codes 
and positional encoding—significantly reduces storage 
requirements while preserving the integrity of the genetic 
information. Performance evaluation was conducted 
using standard datasets from the GenBank database. The 
compression ratio, compression gain, compression time, and 
decompression time were used as key metrics. The results 
demonstrate the efficiency of P2DNAComp, with an average 
compression ratio of 1.09 bits per base (bpb), compression 
gain of 86.279%, compression time of 0.547 seconds, and 
decompression time of 0.563 seconds. Overall, P2DNAComp 
stands out as a promising advancement in the field of DNA 
sequence compression. It offers a comprehensive and 
efficient solution to the growing challenges of large-scale 
genomic data storage and transmission. In the future, this 
research can be extended by integrating machine learning 
techniques to predict optimal encoding strategies based on 
DNA sequence characteristics. Additionally, enhancing real-
time compression speed and evaluating performance across 
more heterogeneous genomic datasets will further establish 
the algorithm’s utility in clinical genomics, personalized 
medicine, and cloud-based bioinformatics platforms.
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