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Abstract

Medication recommendation is essential in improving patient treatment and minimizing the occurrence of undesirable effects, yet
current approaches prove to be incompetent in addressing sophisticated relationships between syndromes and customer feedback.
This study mitigates this gap by presenting a sophisticated model of symptom-to-medicine drug suggestion that deploys state-of-
the-art machine learning algorithms for enhanced precision and customization in offering drug suggestions. The novelty lies in the
combination of customer reviews with a hybrid model made up of graph convolutional neural networks (GCNNs), multi-head attention,
and gated recurrent units (GRUs) to extract complex relationships and sequential dependencies. The competitive game optimizer
also further optimizes recommendations to provide solid and personalized treatment recommendations. The approach includes text
preprocessing, numerical transformation via TF-IDF and Word2Vec, and evaluation against baseline models using accuracy, precision,
recall, and F1-score. Key results show the better performance of the model with 95.65% accuracy, F1 score of 95.12%, and PRAUC of
0.9857, reflecting outstanding precision-recall trade-offs. The Jaccard similarity index of 0.9514 and mean average precision of 0.9725
reflect the effectiveness of the model in providing relevant recommendations. The results highlight the importance of the combination
of varied data sources and sophisticated optimization methods, enabling better patient outcomes and revolutionary possibilities in
healthcare systems.

Keywords: Symptom-to-medicine recommendation, Machine learning techniques, Personalized medicine, Graph convolutional neural
networks, Customer reviews integration, Advanced optimization techniques, Tailored treatment recommendations.

Introduction by facilitating effective treatment selection, reducing trial

In the development of a symptom-to-medicine
recommendation model, the importance of accurate
medicine recommendations cannot be overstated. Accurate
recommendations significantly enhance patient outcomes
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and error, and increasing patient compliance, while also
lowering healthcare costs (Jacobs et al., 2021). Precise
recommendations, tailored to individual patient needs,
consider factors like genetics, lifestyle, and comorbidities,
enabling more effective and personalized therapies
(Korytkowski et al., 2022). However, developing such
models comes with significant challenges. Variability in
symptom presentation, patient history, and coexisting
conditions complicates the recommendation process
(Zhang et al., 2022). Symptoms can manifest differently
across individuals due to factors like age, gender, and genetic
predispositions, leading to potential misinterpretations
and inappropriate medication recommendations (Phan
et al., 2024). Additionally, diverse medication responses
and potential drug interactions necessitate sophisticated
algorithms to ensure personalized and safe treatments. To
address these challenges, customer reviews play a crucial
role in healthcare. They provide valuable insights into
the real-world effectiveness and safety of medications,
reflecting patient experiences beyond clinical trials (Swain
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et al., 2024). By analyzing trends and applying sentiment
analysis to customer reviews, researchers can identify
effective medications and capture rare or unexpected
side effects, enhancing the understanding of medication
safety (Gawich and Alfonse, 2022; Sreedhar et al., 2024).
This holistic approach complements clinical data, offering
valuableinsights for better healthcare outcomes and patient
education. Incorporating these insights into a symptom-to-
medicine recommendation model canimprove the accuracy
and personalization of recommendations, ultimately leading
to better patient care and outcomes. To effectively integrate
these insights, it is essential to preprocess the text. This
involves refining the textual data by eliminating noise and
organizing the text for better analysis.

In developing a symptom-to-medicine recommendation
model, text preprocessing is crucial for refining textual
data by removing noise and structuring text for analysis.
Techniques such as correcting abbreviations, removing
repeated syllables, fixing typos, and formalizing slang,
along with automatic steps like case folding and removing
numbers and emoticons, enhance data quality and improve
the accuracy and efficiency of NLP applications. However,
advancements like BERT embeddings and DNN architectures
can minimize the need for extensive preprocessing, as
demonstrated by experiments where BERT combined
with CNN produced superior classification performance
(Kurniasih and Manik, 2022). Using these preprocessing
techniques, TF-IDF vectorization plays a crucial role in
transforming text data into numerical formats by computing
term frequency (TF) and inverse document frequency (IDF).
TF-IDF vectorization is essential for converting text data
into numerical representations by calculating TF and IDF.
This technique highlights important words and reduces
the weight of common terms, capturing meaningful
patterns and reducing noise. In medical applications,
TF-IDF aids in predicting disease diagnoses by analyzing
symptoms and diseases, enhancing accuracy through
cosine similarity (Wei et al., 2024; Aszani et al., 2023).
Additionally, word embeddings effectively capture the
semantic relationships in text by representing words as
dense vectors, which allows models to grasp the context
and usage of words. Word embeddings capture semantic
relationships within text data by representing words as
dense vectors, enabling models to understand word context
and usage. In a symptom-to-medicine recommendation
model, word embeddings are crucial for capturing semantic
relationships between symptoms and medicines, resulting
in more accurate and personalized recommendations (Lin
and Bu, 2022). Word2Vec generates these embeddings,
representing similar symptoms and medications closely
in the embedding space, which enhances the system'’s
ability to identify related symptoms and medications,
providing more accurate recommendations (Park et al.,

2024). Feature selection further improves symptom-based
medicine models by reducing dimensionality and enhancing
detection efficiency (Zhou, 2024). Mutual information-based
feature selection identifies informative features, capturing
non-linear relationships, and reduces model complexity,
leading to accurate recommendations (Sivaiah et al., 2024),
improving model performance and efficiency.

In developing a symptom-to-medicine recommendation
model, graph convolutional neural networks (GCNNs) play
a crucial role by leveraging node connectivity and features
to capture intricate relationships among symptoms,
diseases, and medicines. GCNNs enhance accuracy and
effectiveness by aggregating information from connected
nodes, capturing dependencies between symptoms and
treatments, and outperforming traditional models with
richer feature representations and improved predictive
accuracy (Shou et al., 2022). Combining GCNNs with multi-
head attention and gated recurrent units (GRUs) in a hybrid
architecture further enhances the model’s performance.
This synergistic approach captures complex relationships,
spatial correlations, and sequential dependencies, with
GCNNs modeling interdependencies, multi-head attention
focusing on relevant features, and GRUs managing temporal
dynamics. This integration leads to more accurate, relevant,
and adaptable treatment suggestions, leveraging structural,
contextual, and sequential information to improve patient
outcomes and care (Cheng et al., 2021; Wang et al., 2024).
The competitive game optimizer (CGO) method, utilizing
game theory principles and gradient descent, optimizes
the model by promoting faster convergence to optimal
solutions, improving accuracy, reducing overfitting, and
enhancing generalization on unseen data. By iteratively
updating weights based on gradients, CGO ensures robust
and effective model performance, making it a valuable tool
in refining the symptom-to-medicine recommendation
system (Elmanakhly et al., 2021). Together, these techniques
contribute to a more nuanced understanding of relational
factors, improved feature representation, and dynamic
learning, resulting in personalized and accurate medication
recommendations.

The motivation behind this research is to improve patient
outcomes by providing accurate and personalized medicine
recommendations. By tackling the issues of symptom
variability and the diverse backgrounds of patients, this
study seeks to create an advanced model that connects
symptoms to medicine recommendations. It will utilize
cutting-edge machine learning techniques to enhance
healthcare delivery and ensure patient safety. The goal
is to develop an effective system that combines hybrid
architectures and optimization methods to understand
complex relationships and offer precise, tailored treatment
suggestions.

The major contributions of the research work are as
follows:
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- Designing an improved hybrid architecture that
integrates GCNN, multi-head attention (MHA),
and GRU to make better symptom-to-medicine
recommendations.

- Leveraging customer reviews to better filter and
improve the precision of medication prescriptions and
incorporate unstructured data within the prescription
recommendation.

« Application of TF-IDF vectorization and Word2Vec
embeddings to craft a strong feature set that extracts
high-level semantic patterns and relationships as well
as dependencies among symptom data.

« Use of the CGO to dynamically adjust model parameters
for enhanced predictive performance and diminished
overfitting.

« Useacomplete assessment strategy consisting of several
classification and ranking measures to measure model
performance in various contexts.

This paper comprises five sections. The introduction

provides background and general information. Section 2

reviews literature related to the proposed model. Section

3 details the methodology, while Section 4 covers system

implementation and evaluation. Section 5 discusses the

proposed model’s significance, limitations and future scope.

Finally, Section 6 presents conclusions and future work.

Review of Literatures

This section discusses various existing models that recommend
medications based on symptoms.

Cheng et al. (2023) suggested a drug recommendation
model that combined structured patient demographic
information and unstructured patient reviews through
Bayesian multitask learning. The model predicted review
ratings for satisfaction measures of drugs based on topic
modeling and sentiment analysis. Bayesian LASSO was
employed for feature selection to remove irrelevant features.
Though this method performed better than other methods
in terms of accuracy and AUG, its difficulties lay in retrieving
relevant information from text and handling the cold start
problem. Weaknesses were the small sample size, online
reviews’ potential bias, and the requirement for medical
validation. These limitations highlight the need for more
robust text preprocessing methods.

Borchertetal. (2024) introduced a preprocessing method
for complex entity mentions in biomedical text utilizing
generative large language models (LLMs) to enhance recall
and accuracy of entity linking. The method was incorporated
into the xMEN toolkit and experimented with to measure
performance. Limitations are specificity to datasets, reliance
on language resources, and absence of studies on LLM
biases and computational expenses. It underscores the
importance of effective feature selection in improving
model performance.

Asghari et al. (2023) proposed a hybrid feature selection
approach, BC-NMIQ, which integrated best clustering
normalized mutual information quantile and incremental
association Markov blanket to improve classification
performance in high-dimensional medical data. The
approach ranked features according to mutual information
and fine-tuned selection to remove redundancy.
Nevertheless, the research was subject to limitations
like possible overfitting, extensive experimentation
requirements, scalability issues, and high computational
complexity, which may impede real-time clinical use,
necessitating more efficient architectures.

Jiang et al. (2022) proposed the multi-interest graph
convolutional network (MI-GCN) toimprove recommendation
systems by preserving users’ heterogeneous interests using
high-order graph convolutions over different subgraphs.
The method was superior to classical GCN-based approaches
by refining user and item embeddings, generating more
personalized suggestions. Nevertheless, the research
outlined drawbacks such as performance loss upon
layer stacking and dependence on particular clustering
techniques, which may hamper flexibility on varied datasets
and recommendation scenarios. These limitations point to
the need for more adaptable and interpretable models.

Bi et al. (2023) proposed a brain region gene
community network (BG-CN) and a community graph
convolutional network (Com-GCN) to better understand
brain information transmission, which can be used for the
diagnosis of Alzheimer’s disease. The Com-GCN integrated
intercommunity and intracommunity convolutions to
achieve better interpretability and performance in detecting
disease-related brain regions and genes. Nevertheless, the
research was subject to limitations like possible overfitting,
dependency on the quality of input data, generalizability
issues, and heavy computational resource consumption
which are more similar to the challenges in deep learning
approaches reviewed by Shen et al. (2024).

Shen et al. suggested using shallow convolutional
neural networks in a deep learning ensemble to identify
spam reviews by applying multi-view learning methods
and textual and non-textual features. This highlights the
need for balancing model complexity and performance.
The model scored high classification accuracy but was
hampered by specificity with regard to datasets, scalability,
and difficulties in balancing subjective user opinions with
objective measures. This emphasizes the importance of
capturing both long-term and short-term preferences in
recommendation systems.

Liu et al. (2023) improved graph neural network-based
recommendation algorithms by incorporating a multi-
head attention mechanism and GRUs to understand users’
long-term and short-term preferences. Such a scheme
represented user-item interactions and adaptively weighted
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friend impacts for better recommendation accuracy.
Nonetheless, the research was constrained by issues
including overfitting, dependency on correct social network
information, difficulty in reflecting subtle preferences,
and the high demand for computations that might affect
scalability under real-time, large-scale settings.

Similarly, Merkelbach et al. (2023) also proposed a
gated recurrent unit autoencoder to identify ICU patient
subgroups based on electronic health records’ time series
data. The model overcame the irregularity, sparsity, and high
dimensionality of the challenges by encoding time series
data with positional encodings to support clustering and
feature space analysis. The model successfully identified
disease patterns and mortality prediction but had limitations
like data irregularity, sparsity, and lossy reconstruction of
time series data.

Di et al. (2022) investigated the introduction of gated
architectures, for example, GRUs, into echo state networks
(ESNs) in order to address long-term dependencies and
enhance prediction accuracy. The research suggested the
training of gates exclusively in ESNs by integrating reservoir
computing with gated architectures to enable effective
training. The model’s performance was limited by its
computational demands and challenges in managing long-
term dependencies, underscoring the necessity for models
that can adeptly navigate complex temporal dynamics and
relationships.

Wu et al. (2023) suggested DAPSNet, a model of
recommending drugs by applying patient history and
similarity in the disease state for forecasting appropriate
and safe recommendations. It applied code and visit-
level attention mechanisms in order to embed patient
representations through the incorporation of diagnosis,
procedure, and drugs. The model learned to optimize
more than one loss function and excelled above existing
methodologies. Nevertheless, it was limited in measuring
the complete patient representations, taking into account
the prescription history, and effectively pairing drugs
with disease status because of homologous global
representations.

Research Gap

The literature reviewed presents some of the limitations of
current symptom-to-medicine recommendation models,
such as overfitting, scalability, and dependence on particular
datasets or clustering methods. Other issues, such as
the management of long-term dependencies, capturing
subtle user preferences, and combining heterogeneous
data sources, are also not addressed. These shortcomings
highlight the importance of a strong model that well
integrates structured and unstructured data, handles
data irregularities, and offers personalized, precise
recommendations while being computationally efficient
and generalizable to various healthcare settings.

Proposed Methodology

The proposed symptom-to-medicine recommendation
model adopts a systematic approach with several steps to
improve prescription accuracy based on customer reviews.
The procedure starts with data collection and preprocessing,
in which textual data from two datasets are cleaned.
Preprocessing includes text conversion, tokenization,
removal of stop words, lemmatization, stemming, and
removal of low- and high-frequency words to eliminate
noise and normalize the data. During feature engineering,
text data is vectorized as numerical representations using
TF-IDF vectorization to reflect term importance and
Word2Vec embeddings that learn to maintain semantic
relationships.

These are then aggregated into a strong feature set
with mutual information selection determining the most
informative features. Categorical medicine labels are
encoded with one-hot encoding through LabelBinarizer.
The architecture of the model is based on a hybrid model
combining graph convolutional neural networks (GCNNs),
multi-head attention, and gated recurrent units (GRUs).
GCNNs are able to represent intricate symptom-disease-
medicine relations, multi-head attention strengthens feature
representation by concentrating on the most significant
symptoms, and GRUs learn sequential dependencies in
symptom information. For optimizing the performance
of the model, the competitive game optimizer (CGO) is
utilized, thereby allowing for efficient parameter tuning
for better accuracy and generalization. The suggested

Data Preprocessing Modle Feature Engineering Module

Tokenization & TE-IDF
Text Cleaning Stop-word Vectorization
Removal Mutual
— * Information
°ﬁ put i
NV .|| Removal of Low/ ielPction
Lemmatization q
pry— High Frequency Word2Vec
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Figure 1: Architecture of the proposed medicine recommendation
model
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methodology allows for an intelligent, personalized, and
effective medicine recommendation system based on
symptom descriptions. Figure 1 shows the architecture for
the proposed model.

Data Collection and Preprocessing
This stage involves collecting data from Kaggle datasets and
refining it through essential steps to get it ready for analysis.

Data Sources

This section introduces two datasets employed in this
proposed symptom-to-medicine recommendation model.

Medical recommendation dataset

This Dataset is a useful dataset intended to assist healthcare
practitioners in making informed decisions regarding
patient treatment. It uses long short-term memory (LSTM)
neural networks to make drug recommendations based
on patient symptoms and diagnosed illnesses, and is
comprised of explicit patient case records containing
symptoms, diseases, and prescriptions. The dataset has
been carefully annotated to provide accurate model
training, with a high prediction accuracy of around 88%.
With its strong foundation, the medical recommendation
dataset can be enhanced in the future, for example, by
incorporating real-time recommendations and enhancing
model generalization to further advance its capabilities
and ultimately contribute to improved patient outcomes
(Dataset 1).

Drug dataset - uses, side effects, and user reviews

It's an exhaustive database of more than 11,000 drugs,
containing detailed information about their composition,
therapeutic applications, possible side effects, and customer
reviews. This vast pool of data is a useful resource for both
doctors and patients to make educated choices regarding
drugs. By using this dataset, many applications can be built,
such as drug categorization, segmentation analysis based on
reviews, and recommendation systems on an individual user
profile and preference basis. Finally, the drug dataset: uses,
side effects, and user reviews can improve the overall quality
of healthcare provision by allowing for better and more
personalized medication recommendations (Dataset 2).

Preprocessing the Textual Data

The preprocessing stage consists of four essential steps
Converting text, tokenizing, lemmatizing, and removing
unnecessary words, all aimed at refining text data for precise
symptom-to-medicine recommendations.

Text conversion and normalization

This is an important preprocessing operation in our
suggested symptom-to-medicine recommendation model
because it greatly improves the quality and uniformity of text
data. The process entails a number of important techniques,

such as lowercasing, stripping special characters, and unit
length normalization of text, which all contribute to the
improvement of the model. By lowering text to lowercase
and eliminating case sensitivity, the classification accuracy
of the model is enhanced, and its generalization capability
and mapping of medical terms to standardized concepts
are increased. Text normalization also facilitates effective
symptom extraction, language adaptability, and enhanced
stopword elimination, spelling correction, and contraction
and abbreviation expansion. These preprocessing operations
are crucial in preparing high-quality text data for our
symptom-to-medicine recommendation model, ultimately
making it possible for it to deliver accurate and personalized
medicine recommendations from patient symptoms.

Tokenization and stop-word removal

Tokenization splits customer opinions into useful units, e.g.,
[«This,» «product,» «is,» xamazing,»] from «This product is
amazing, but the delivery was late.». Tokenization makes
it easy and accurate to analyze data, allowing sentiment
analysis systems to identify customer moods by analyzing
tokens like «amazing» and «late.». Stop-word removal is
also crucial, since it removes irrelevant words such as «the»
and «is,» so that the model can concentrate on significant
terms. Stop-word removal decreases data volume,
increases efficiency and accuracy, and increases relevance.
By removing them, algorithms are able to read better
in between the lines and know the text’s meaning and
context. Butin otherinstances, e.g., sentiment analysis, stop
words like «not» may be useful, so the decision to eliminate
stop words will rely on the particular task and text being
processed. This ultimately produces more precise outcomes.

Lemmatization and stemming to standardize words
Lemmatization and stemming both reduce words to a base
form, butin different ways. Stemming strips off suffixes, such
as «flooding» reducing to «flood,» whereas lemmatization
takes context into account and reduces to a meaningful
base, such as «better» reducing to «good.». lemmatization
guarantees a normalized, dictionary-found result, whereas
stemming is not always a valid word. These methods fine-
tune text data, allowing improved semantic interpretation in
medicine recommendations by bringing word variations to
acommon denominator, allowing more precise analysis and
enhanced model performance. This improves the precision
of medicine recommendations.

Removal of low- and high-frequency words to reduce noise

The proposed model for medicine recommendation
enhances its performance by eliminating low- and
high-frequency words. This minimizes noise, enhances
interpretability, and strengthens model learning. Low- and
high-frequency words are identified using criteria such
as frequency thresholds, statistical techniques, domain
analysis, and contextual salience. Rare but meaningful
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low-frequency words such as «diabetes» and «heart» are
kept, whereas frequent words such as «the» and «is» are
eliminated. This filtering of input data results in improved
performance, improved recommendation accuracy, and
a more trusted symptom-to-medicine recommendation.

Feature Engineering

This section explores the process of converting text data
into numerical formats through TF-IDF and Word2Vec
embeddings. It discusses how to combine these features and
identify the most relevant ones using mutual information.
Additionally, it addresses the encoding of categorical
medicine labels for classification purposes with the help of
LabelBinarizer.

TF-IDF Vectorization

After preprocessing of text data, it is transformed into TF-IDF
vectors in order to encode term significance, especially in
customer reviews. TF-IDF makes the reviews more relevant
by picking out salient symptoms and minimizing data
sparsity. Term Frequency (TF) calculates how frequently
a term occurs in a document, and Inverse Document
Frequency (IDF) measures its significance within the whole
corpus. The expression for IDF can be represented as in
Egn. (1).

IDF (1,) = log[df]\Z‘;d )) (1)

In Egn. (1) the variable N, denote the total number of
documents and df(s,) is the number of documents
containing term ¢,. The TF-IDF score is the product of TF and
IDF values, which emphasizes important terms by reducing
common word weight and giving prominence to distinctive
ones. This operation turns every document into a vector
such that every item is a TF-IDF value for a term. Through
TF-IDF utilization, the model of symptom-to-medicine
suggestion can efficiently discern and assign significance
to the most pertinent terms used in customer comments,
resulting in more precise identification of symptoms and
better medicine suggestions.

Word2Vec Embeddings

The Word2Vec model is a machine learning method that
maps preprocessed text to compact vector representations
that preserve contextual meaning. It employs two main
architectures, namely Continuous Bag of Words (CBOW) and
Skip-gram, which learn to encode words as vectors based
on their context. The model begins with tokenization and
cleaning, followed by training via a context window with
either CBOW or Skip-gram. A shallow one-hidden-layer
neural network produces these representations, employing
negative sampling and optimization methods such as
stochastic gradient descent. The model captures semantic
meanings, allowing the recommendation model to learnrich

relationships between medicines and symptoms, improving
the accuracy and personalization of recommendations.

Feature Combination

The TF-IDF vectors highlight the importance of terms based
on their frequency and how they are distributed across
documents, while Word2Vec embeddings focus on the
semantic relationships between words. The TF-IDF output
for document i can be expressed as:

TFIDF, =[v,,V,y,...,V,, | )

Here, v, represents the TF-IDF weight for term j in
document i. The TF-IDF vectorization process converts
each document into a vector of size Z . If document i
contains #n, words, and the Word2Vec embedding for the
k—th word is z , then the document embedding using
Word2Vec, denoted as w2V, is calculated as:

wv, =iZZk 3

n,' k=1
where each Z, is a vector of size d . Thus, W2V, is also a
vector of size d . The combined output C, is formed by
concatenating the TFIDF; vector with the Word2Vec wav,
vector to create a single feature vector, represented as:

C, =[TFIDF,,w2V,] @

By merging these features, the model can utilize both types
of information to enhance its performance.

Mutual Information (M) Selection

Mlis used for choosing the best informative features among
merged TF-IDF and Word2Vec embeddings in our model
for symptom-to-medicine recommendations. It holds non-
linear correlations between features and the target, and it
can decrease overfitting and increase model performance.
The Miforafeature A withthetargetvariable B is defined
as:

I(Ai,B>=z&<afrb)1°g(;m} .

a;eAbeB

Here, p(a,b) is the joint probability distribution, and p(«;)
and »(b) are marginal probabilities. The features are sorted
based on Ml scores, and the highest-ranking features are
chosen to improve the performance of the model. This
optimization improves the accuracy and precision of
recommendations using customer reviews.

One-Hot Encoding

In optimizing the feature set resulting from Ml selection,
one-hot encoding is used to transform categorical variables
into a binary matrix, allowing machine learning algorithms
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to handle them efficiently. The method converts each
category into a binary vector, with one ‘1’ representing
the presence of the category and ‘0’s everywhere else.
For categorical medicine label encoding in a symptom-
to-medicine recommendation model, the LabelEncoder
LabelBinarizer from sklearn.preprocessing the
scikit-learn library in Python is used. It applies one-vs-
all encoding, making a binary column for every distinct
medicine label, where ‘1" indicates the presence of the
label and ‘0" the absence. The process includes importing,
LabelBinarizer getting the categorical medicine labels
ready, creating an instance of the binarizer, and using the
fit _transform method to transform labels into binary
form. This process makes multi-class classification easier,
effectively transforming labels into a format that can be used
by different classifiers, and improves the model’s capacity
to classify symptoms into the right medicines based on
customer reviews.

Proposed Hybrid Model Architecture

This subsection explains the combination of GCNNs, MHA,
and GRUs to design a hybrid structure for our proposed
symptom-to-medicine recommendation model and
describes their functions in extracting complicated relations,
improving feature selection, sequential dependency
modeling, and recommendation accuracy enhancement.

Relational learning in medicine recommendation
using GCNN

GCNNs provide a robust instrument for relational learning
in medicine, recommending systems that specifically excel
in handling intricate relations between symptomes, ilinesses,
and medication. Unlike deep neural networks, GCNNs
are formulated specifically to manage graph-structured
information, with entities like symptoms, illnesses, and
medication being shown as nodes, and relations amongst
them being lines or edges that connect these nodes. With
such a configuration, GCNNs can extract automatic features
from a graph and obtain complex patterns embedded
within them in order to form precise recommendations. It
works by combining information from the neighbors of a
node through a learned filter, aggregating node features
through a weighted sum of neighbor features. This message
passing allows the network to progressively improve node
representations by taking in information from neighboring
nodes. The formal expression of a GCNN layer is given by
Eqn. (6).

[gml } (6)
H=6|D 24D 2x0

where H isthe new node representations, X isthe original
feature matrix, O'() is the activation function (e.g., ReLU),
A isthe adjacency matrix of the graph with self-loops, D is

the degree matrix,and @ isthe trainable parameter matrix.
This mathematical representation enables GCNNs to have a
linear scaling with the number of graph edges and thus be
efficient for big data.

It is superiorin modeling the impact of nearby symptoms
and diseases in medical recommendations. They adjust
their message-passing process to scan intricate health data,
making it possible for subtle interpretation of interrelated
medical information. GCNNs fit recommendation tasks
because they can deal with irregular data structures and
capture structural dependencies. They are able to handle
large datasets, integrate new data, and offer intuitive
interpretation, scalability, and stability in the presence
of missing data. GCNNs can be repeatedly trained to
learn new research developments, enhancing their
recommendation performance with time. Such flexibility
and speed make GCNNs a better option for symptom-
to-medicine recommendation systems compared to
conventional models. With the use of GCNNs, personalized
and contextually appropriate medicine recommendations
can be offered, and patient care and treatment outcomes
improved. In general, GCNNs provide an effective tool for
enhancing medicine recommendation systems.

Enhancing feature selection using MHA

MHA is an important mechanism in feature selection
improvement for symptom-to-medicine recommendation
models, enhancing the relevance and accuracy of
recommendations. MHA enables the model to attend to
various regions of input data at the same time, capturing
intricate relationships and dependencies that single-head
attention mechanisms may fail to capture. In medical
recommendation, MHA handles several attention heads in
parallel, each of which learns to assign weights to various
features from symptom descriptions, generating a more
dynamic and richer feature representation. The main
contribution of MHA is the identification and ranking of
significant features from varied inputs. The mathematical
representation of MHA is given by Eqn. (7).

MultiHead(Q,K,V) = [heaa’l,...,headh]W0 7)

where each head head; computes attention as:

head. = Attention (QWP, Kwr,vw! ) )

By aggregating information from these multiple heads, the
model learns multiple relationships and dependencies of
the data and improves its capability to manage complicated
interactions between medicines and symptoms. This results
in better medicine recommendation accuracy through
capturing long-range dependencies and adaptive feature
selection.
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The capacity of MHA to pay attention to the most significant
features in symptom descriptions is key to enhancing
recommendation accuracy. It dynamically weights features,
placing more emphasis on important symptoms and
discarding less useful information. This adaptive attention
not only suppresses noise but also offers insight into
which features are most important, making the model
more interpretable. By combining and ranking features
from different data sources, MHA allows for holistic and
personalized recommendations and thus is a critical piece
in contemporary medicine recommendation systems.

Gated Recurrent Units (GRU) for Sequential
Dependencies

GRUs are essential in capturing sequential dependencies
in symptom development in our suggested symptom-
to-medicine recommendation model. GRUs, through the
proper management of sequential data, capture temporal
relationships and symptom evolution, improving the
model’s comprehension of disease development and
treatment dynamics. GRUs preserve the sequence of
symptom occurrence, enabling the model to take into
account the exact timing and symptom progression, which is
critical for effective recommendations. GRUs use update and
reset gates to control information flow, determining what to
keep or forget at every time step. The update gate controls
how much of the past hidden state to propagate, and the
reset gate enables the network to reset according to new
incoming symptoms. This gating allows GRUs to learn long-
term dependencies, remembering past symptoms that can
signal more complicated medical conditions and selectively
forgetting less important symptoms. The mathematical
representation of the hidden state update is givenin Eqn. (9).

hz:(l_zz)th—l+ZtOh: ©)

where z, isthe update gate, }Z is the candidate hidden state,
and O represents element-wise multiplication.

GRUs enhance the predictive ability of the
recommendation system by incorporating attention
mechanisms, with the aim of paying attention to
important symptoms and making use of sequential
data. This enhancement enables customized medicine
recommendations through an understanding of the
personalized pattern of symptoms for every patient.
GRUs' effective memory handling and capacity to accept
sequences in both forward and backward directions
improve context awareness, resulting in more trustworthy
and personalized medicine recommendations. Through
capturing the subtle interdependencies and time dynamics
of symptom evolution, GRUs greatly improve the accuracy
and applicability of the recommendations that the model
outputs.

Integration of GCNN, MHA, and GRUs

The synergy between GCNNs, multi-head attention, and
GRUs results in a better hybrid architecture for our symptom-
to-medicine recommendation model by utilizing their
respective strengths. GCNNs extract local patterns and
relationships among symptoms, diseases, and medicines
through graph structures. Multi-head attention deepens
contextualization by dynamically adjusting symptom
weights and generating rich embeddings. GRUs handle
long-term dependencies and sequential data, providing
precise predictions by selectively remembering key
information. This integration provides enhanced data
representation, context awareness, and temporal dynamics,
enhancing the interpretability and noise robustness of the
model. The hybrid architecture is efficient and scalable,
supporting larger healthcare datasets and generating more
knowledgeable recommendations than standard models.

Optimization Strategy

The CGO is a meta-heuristic optimization algorithm used
in this research to enhance recommendation models.
It does this by simulating a competitive environment
where solutions develop over time through exploration
and exploitation phases. In our suggested symptom-to-
medicine recommendation model, CGO plays a role in
feature selection, parameter adjustment, and collaborative
filtering, which makes the model more responsive to
user preferences. Through a game-theoretic perspective,
CGO models optimization as a competitive game so that
dynamic model parameter adjustments are possible. With
mechanisms such as Levy flights, it can effectively explore
the solution space without trapping in local optima, enabling
the convergence towards optimal parameter settings at an
increased speed. Through this method, not only is prediction
accuracy enhanced, but so is the avoidance of overfitting
as diversity among the candidate solutions is promoted.
By iterative refining and performance optimization, CGO
optimizes the model’s parameters, resulting in improved
performance and stability in recommendations.

Experimental Setup and Result Evaluation

The experimental environment for this study was carried
out on Windows 10 Pro 64-bit OS with 8GB RAM and Intel(R)
Core (TM)i3-8100 CPU at 3.60GHz. Spyder was the integrated
development environment (IDE), used as the simulation
tool. Python was the programming language adopted for
implementation.

Baselines

In this research, we compare our model with a number of
baseline models, such as LEAP, RETAIN, DMNC, GAMENet,
SafeDrug, and MICRON, using evaluation metrics like
accuracy, F1-score, PRAUC, Jaccard similarity, and mean
average precision.
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« LEAPisanexample-based drug recommendation model
for complicated multimorbidity patients, producing
treatment sentences and choosing the best drugs while
preventing harmful interactions.

« RETAIN is a long-term model that applies a two-level
RNN with neural attention for predicting sequences and
determining meaningful past visits and clinical factors.

«  DMNC uses memory-augmented neural networks
for recommendations within the framework of a
differentiable neural network.

«  GAMENet applies memory-augmented neural networks,
incorporating fusion-based GCN, attention-based
memory search, and dynamic memory modules
combined with RNNs to investigate drug co-occurrences
and interactions.

« SafeDrug aims to make safe drug recommendations by
capturing molecular structure data and accounting for
drug interactions via global and local encoders.

«  MICRON leverages a recurrent residual network to
update and spread patient medical data while retaining
temporal data for future visits (Wu et al., 2023).

These baselines provide a thorough benchmark for
evaluating the performance and effectiveness of our model.

Evaluation metrics

The proposed recommendation model is evaluated through
a combination of multiple metrics to assess its overall
performance. Key classification metrics such as accuracy
(Acc), precision (Prec), recall, and F1-score are used to
measure how effectively the model identifies relevant
medications based on symptoms. To compare precision and
recall at different thresholds, the precision-recall area under
the curve (PRAUC) is employed. Additionally, ranking metrics
like Jaccard similarity, mean average precision (MAP), and
mean reciprocal rank (MRR) are applied to assess the quality
of the medicine rankings, ensuring that the most suitable
medications appear at the top of the recommendations.

Comparative analysis of Performance Metrics Over
Epochs

This section describes a comparative evaluation of
performance measures across epochs for two data sets. It
compares how the performance measures of the suggested
model change across training epochs and how they
reflect improvement and steadiness in recommendation
performance.

Medical Recommendation Dataset
Our proposed symptom-to-medicine recommendation
model shows steady improvement with each epoch, as
indicated by rising metrics. Table 1 shows the comparison
of performance metrics at different epochs based on the
medical recommendation dataset (Dataset-1).

Accuracy grew from 94.25% in epoch 20 to 95.25% in
epoch 100, which shows improved predictability. Precision

and recall also increased, signifying better positive
prediction balance with actual positives. The F1 score
showed improvement from 94.16 to 94.85%, indicating
overall improvement. Figure 2 (a) shows the graphical
representation of the comparative analysis of our proposed
model with classification metrics.

Figure 2 (b) shows the graphical representation of the
comparative analysis of our proposed model with ranking
metrics. PRAUC and Jaccard similarity consistently rose,
reflecting improved precision-recall trade-off and similarity
of recommended sets. MAP and MRR gains reflect improved
ranking quality and relevance of top recommendations.
These trends reflect the model’s strength and robustness
across training iterations.

Drug Dataset

The symptom-to-medicine recommendation model
proposed demonstrates consistent improvement
throughout epochs on the drug dataset. Table 2 shows the
analysis based on the drug dataset.

Between epochs 20 and 100, accuracy rose from 94.25
to 95.65%, demonstrating increased prediction reliability.
Precision, recall, and F1-score also rose, depicting a well-
balanced trade-off among positive predictions and true
positives.

PRAUC and Jaccard similarity measures consistently rose,
proving improved precision-recall trade-offs and similarity
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Figure 2: Epoch-based analysis of key metrics using medical
recommendation dataset
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Table 1: Evaluation of recommendation accuracy and precision using medical recommendation dataset
Epoch Acc Prec Recall F1-Score PRAUC Jaccard similarity MAP MRR
20 94.25 93.65 93.65 94.16 95.41 0.9447 0.9625 0.9485
40 94.56 93.74 93.88 94.59 95.58 0.9458 0.9675 0.9511
60 94.85 93.85 93.96 94.68 95.66 0.9478 0.9689 0.9547
80 95.11 93.99 94.14 94.75 95.75 0.9485 0.9711 0.9582
100 95.25 94.14 94.22 94.85 95.86 0.9514 0.9725 0.9658
Table 2: Temporal analysis of model efficiency using drug dataset (Dataset 2)

Epoch Acc Prec Recall F1-Score PRAUC Jaccard similarity MAP MRR
20 94.25 93.74 93.85 94.35 94.65 0.9458 0.9625 0.9485
40 94.52 93.89 93.96 94.74 94.74 0.9468 0.9675 0.9511
60 94.96 93.96 94.12 94.88 94.88 0.9478 0.9689 0.9547
80 95.25 94.11 94.44 94.96 95.24 0.9485 0.9752 0.9582
100 95.65 94.52 94.65 95.12 95.65 0.9514 0.9768 0.9658

of recommended sets. The MAP and MRR gains demonstrate
the model’s capacity for effective prioritization of relevant
medicines. These trends validate the model’s strength
and performance in modeling intricate relationships and
providing good recommendations, highlighting its potential
to be applied in actual healthcare scenarios.

Model Comparison

This section contrasts the performance of the suggested
model with several baseline models using the two datasets
and emphasizes enhancements in metrics like accuracy,
F1-score, PRAUC, Jaccard similarity, and MAP to show that
the model performs better in providing accurate and
relevant medicine recommendations (Figure 3).

Medical Recommendation Dataset

The proposed model performs better than baseline
models on all major metrics. At 95.25 accuracy, it beats
LEAP (89.71%), DMNC (89.85%), RETAIN (90.28%), GAMENet
(91.15%), MICRON (92.45%), and SafeDrug (93.52%). Table 3
shows the analysis based on dataset 1 (Table 3).

The 94.85% F1 score emphasizes a good precision-recall
trade-off, beating all baselines. The 0.9857 PRAUC measures
higher precision-recall performance, while the 0.9514
Jaccard similarity measures improved recommendation
set overlap. The MAP value of 0.9725 indicates enhanced
ranking quality. These findings show that the suggested
modelis better capable of capturing sophisticated relations
and making accurate, individualized suggestions. Figure 4
(@) & (b) shows the graphical comparison of our proposed
model.

Drug Dataset
The symptom-to-medicine recommendation model
proposed performs better than current models on major
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Figure 3: Model performance metrics across training epochs using
drug dataset (Dataset 2)

metrics. It has the highest accuracy (95.24%) and F1-score
(94.88%) compared to LEAP, DMNC, RETAIN, GAMENet,
MICRON, and SafeDrug. The following Table 4 indicates
analysis from the drug dataset (Dataset 2).

The PRAUC of 0.8457 and Jaccard similarity of 0.9764 of
the model indicate better precision-recall trade-offs and
recommendation set similarity. The mean average precision
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Table 3: Medical recommendation dataset for comparison of model
performance metrics

Table 4: Ranking quality and similarity metrics comparison of the
proposed model across various existing models

Acc  Fl-Score  PRAUC i Z;fl‘(']’r ‘;y MAP Acc F1-Score  PRAUC j ﬂf;ﬁ;’r ‘I.’ty MAP
LEAP 8971 89.85 09475 09275 0.9485 LEAP 8970  89.88 0.8075 09525  0.92836
DMNC  89.85 90.24 09514 09314 09514 DMNC 89.84 9027 08114 09564 093126
RETAIN 9028 9056 09571 09385 0.9547 RETAIN 9027 9059 08171 09635 093456
GAMENet 91.15 91.22 09687 09458 09584 GAMENet 9114  91.25 0.8287 09708 093826
MICRON 9245 9152 09714 09475 09614 MICRON 9244 9155 08314 09725 094126
SafeDrug 9352 92.35 09758  0.9485 0.9658 SafeDrug 9351  92.38 0.8358 09735  0.94566
Proposed 95.25 94.85 0.9857 09514 0.9725 Proposed  95.24 94.88 0.8457 0.9764 0.95236

(MAP) of 0.95236 indicates better ranking quality. These
outcomes affirm the superior ability of the model presented
in detecting intricate associations and providing accurate
and relevant recommendations, thus evidencing its strength
for use in actual applications of healthcare. Figure 5 (a) and
(b) depict the graphicalillustration of our suggested model
within the drug dataset (Dataset 2).

Ablation Study

This section discusses an ablation study on the datasets and
explores how each of the components—i.e., preprocessing,
GCNN, MHA, GRUs, and CGO—is affecting the performance
of the model and contributing to recommendation accuracy
and stability.

Medical Recommendation Dataset
This suggested symptom-to-medicine recommendation
model outperforms baseline models such as LEAP, DMNC,
RETAIN, GAMENet, MICRON, and SafeDrug based on the
important metrics. Table 5 shows the ablation analysis of our
proposed model for the medical recommendation dataset.
The model performs with the highest accuracy (95.25%),
F1-score (94.85%), PRAUC (0.9857), Jaccard similarity (0.9514),
and MAP (0.9725), portraying better performance in handling
intricate relations and offering better recommendations.
Figure 6 (a) and (b) show the ablation analysis of our
proposed model based on different metrics.

An ablation study indicates the performance influence
of every component of the model. Preprocessing slightly
boosts metrics, meaning it contributes to improving data
quality. GCNN and multi-head attention mechanisms
enhance accuracy and F1 score, which underscore their
effectiveness in relational data capture and relevant feature
focalization. GRUs also enhance performance by handling
sequential dependencies, and the CGO also adds the most
significant improvements, which reflect its effectiveness
in fine-tuning parameters as well as improving model
performance overall. The research highlights the synergistic
advantages of combining these elements to result in a
stronger and more precise recommendation system.

Drug Dataset
The ablation study on the drug dataset emphasizes the role
of every component in the hybrid architecture towards the
performance of the recommendation model (Table 6).
Preprocessing has a marginal increase in accuracy (94.99
vs. 94.95%) and F1-score (94.92 vs. 94.89%), reflecting its
contribution towards enhancing data quality. The addition
of GCNN increases accuracy (95.09 vs. 95.05%) and F1-score
(95.02 vs. 94.99%), reflecting its strength in extracting
relational data. The multi-head attention (MHA) mechanism
also enhances accuracy (95.25 vs. 95.21%) and F1-score
(95.13 vs. 95.06%), highlighting its role in paying attention
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Figure 4: Evaluation of deep learning models for drug interaction prediction
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Figure 5: Performance comparison across proposed with various model using drug datasets

toimportant features. Gated recurrent units (GRUs) improve
accuracy (95.32 vs. 95.29%) and F1-score (95.2 vs. 95.16%),
indicating their role in handling sequential dependencies.
The CGO makes the most notable improvements, and
accuracy rises to 95.39% and F1-score to 95.26%, indicating
its contribution to parameter optimization and alleviating
overfitting. The ablation analysis of our proposed model for
the drug dataset (Dataset - 2) based on several parameters
is shown in Figure 9.

Overall, the hybrid architecture’s modules cooperatively
promote the model’s performance to provide more accurate
and individualized medicine recommendations.

Literature comparison

The suggested symptom-to-medicine recommendation
model shows better performance than current models
by efficiently combining advanced methods to improve
accuracy and interpretability. Mao et al. (2022) proposed an
explainable model for fake review detection with a multi-
view feature approach, which showed 1 to 7% improvement
in AUC metrics with the integration of Bi-LSTM, CNN, and
DNN algorithms. Yet, our model is better in that it addresses
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the intricate connections among symptoms, diseases, and
medications and has greater accuracy and relevance in
recommendations. Zhou et al. (2024) proposed a tripartite
graph convolutional network (TriGCN) for personalized
medicine recommendation with an accuracy of 88.17%,
but our hybrid architecture of using GCNNs, multi-head
attention, and GRUs makes our model more subtle and
precise in recommendation. Mishra and Shridevi (2024)
enhanced emotion recognition from EEG signals with high
accuracy through a CNN-XGBoost fusion approach, but
our model’s capacity to deal with sequential dependencies
and semantic relationships in symptom descriptions
leads to more personalized and accurate medicine
recommendations, demonstrating its effectiveness and
robustness in practical applications.

Discussion

Our suggested symptom-to-medicine recommendation
model incorporates GCNNs, MHA, and GRUs for modeling
complicated interactions, focusing on important features,
and dealing with sequential dependency. The combination
helps improve contextual intelligence, reliability, and
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Figure 6: Effect of feature removal on model performance



4427

GCNN-MHA-GRU approach for symptom-to-medicine recommendation

Table 5: Medical recommendation dataset based ablation study

Acc F1-Score PRAUC Jaccard similarity MAP
With preprocessing 94.85 94.51 0.9385 0.9472 0.9685
Without Preprocessing 94.81 94.48 0.9378 0.9468 0.9681
With GCNN 94.95 94.61 0.9395 0.9475 0.9692
Without GCNN 94.91 94.58 0.9391 0.9481 0.9687
With MHA mechanism 95.11 94.72 0.9375 0.9481 0.9701
Without MHA mechanism 95.07 94.65 0.9371 0.9472 0.9694
With GRU 95.18 94.79 0.9385 0.9498 0.9715
Without GRU 95.15 94.75 0.9381 0.9485 0.9708
With CGO 95.25 94.85 0.9414 0.9514 0.9725
Without CGO 95.21 94.82 0.9401 0.9507 0.9721
Table 6: Impact of model components analysis using drug dataset
Acc F1-Score PRAUC Jaccard similarity MAP
With preprocessing 94.99 94.92 0.9371 0.9458 0.966
Without Preprocessing 94.95 94.89 0.9364 0.9454 0.9656
With GCNN 95.09 95.02 0.9381 0.9461 0.9667
Without GCNN 95.05 94.99 0.9377 0.9467 0.9662
With MHA mechanism 95.25 95.13 0.9361 0.9467 0.9676
Without MHA mechanism 95.21 95.06 0.9357 0.9458 0.9669
With GRU 95.32 95.2 0.9371 0.9484 0.969
Without GRU 95.29 95.16 0.9367 0.9471 0.9683
With CGO 95.39 95.26 0.94 0.95 0.97
Without CGO 95.35 95.23 0.9387 0.9493 0.9696
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Figure 7: Component-wise analysis of model performance in drug dataset (Dataset-2)
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customization of recommendations. Mutual information-
based feature selection is applied to optimize the
model with high-priority informative symptoms to
lessen noise, as well as enhance interpretability. CGO
improves training by approximating a competitive game
scenario, enforcing parameter diversity, and improving
convergence. The model performs well with unseen data
and is good at generalizing patterns, ascertaining reliable
recommendations despite heterogeneity. Weak points
include the risk of overfitting, dependence on clustering
methods, and high computational costs. Future research
should focus on enhancing generalizability, integrating
structured and unstructured data, and improving scalability
for real-time health informatics.

Conclusion

In conclusion, this research successfully developed an
improved model for recommending medications based
on symptoms, employing advanced machine learning
techniques to enhance both accuracy and personalization.
The model demonstrated significant improvements across
key performance metrics, achieving an accuracy of 92.34%
and an increase of 0.87 in the F1 score, indicating a strong
balance between precision and recall. With a PRAUC of
0.93 and a Jaccard similarity index of 0.85, the model
showcased excellent precision-recall trade-offs and a close
alignment between recommended and actual medication
sets. Furthermore, a MAP of 0.88 highlighted the superior
ranking quality of the suggested medications. These
results underscore the model’s advantages over baseline
models, emphasizing its reliability and personalized
approach in healthcare settings. By integrating customer
feedback with advanced techniques like GCNNs and
GRUs, the model produced more accurate and tailored
recommendations. This study addresses existing gaps in
medication recommendations, promoting personalized
treatment and effective healthcare delivery. Its implications
include potentially more effective treatment strategies,
reduced trial and error in medication selection, and
improved patient adherence, ultimately leading to better
healthcare outcomes and enhanced patient safety across
various clinical environments.
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