
Abstract
Medication recommendation is essential in improving patient treatment and minimizing the occurrence of undesirable effects, yet 
current approaches prove to be incompetent in addressing sophisticated relationships between syndromes and customer feedback. 
This study mitigates this gap by presenting a sophisticated model of symptom-to-medicine drug suggestion that deploys state-of-
the-art machine learning algorithms for enhanced precision and customization in offering drug suggestions. The novelty lies in the 
combination of customer reviews with a hybrid model made up of graph convolutional neural networks (GCNNs), multi-head attention, 
and gated recurrent units (GRUs) to extract complex relationships and sequential dependencies. The competitive game optimizer 
also further optimizes recommendations to provide solid and personalized treatment recommendations. The approach includes text 
preprocessing, numerical transformation via TF-IDF and Word2Vec, and evaluation against baseline models using accuracy, precision, 
recall, and F1-score. Key results show the better performance of the model with 95.65% accuracy, F1 score of 95.12%, and PRAUC of 
0.9857, reflecting outstanding precision-recall trade-offs. The Jaccard similarity index of 0.9514 and mean average precision of 0.9725 
reflect the effectiveness of the model in providing relevant recommendations. The results highlight the importance of the combination 
of varied data sources and sophisticated optimization methods, enabling better patient outcomes and revolutionary possibilities in 
healthcare systems.
Keywords: Symptom-to-medicine recommendation, Machine learning techniques, Personalized medicine, Graph convolutional neural 
networks, Customer reviews integration, Advanced optimization techniques, Tailored treatment recommendations.
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Introduction
In the development of  a symptom-to -medicine 
recommendation model, the importance of accurate 
medicine recommendations cannot be overstated. Accurate 
recommendations significantly enhance patient outcomes 
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by facilitating effective treatment selection, reducing trial 
and error, and increasing patient compliance, while also 
lowering healthcare costs (Jacobs et al., 2021). Precise 
recommendations, tailored to individual patient needs, 
consider factors like genetics, lifestyle, and comorbidities, 
enabling more effective and personalized therapies 
(Korytkowski et al., 2022). However, developing such 
models comes with significant challenges. Variability in 
symptom presentation, patient history, and coexisting 
conditions complicates the recommendation process 
(Zhang et al., 2022). Symptoms can manifest differently 
across individuals due to factors like age, gender, and genetic 
predispositions, leading to potential misinterpretations 
and inappropriate medication recommendations (Phan 
et al., 2024). Additionally, diverse medication responses 
and potential drug interactions necessitate sophisticated 
algorithms to ensure personalized and safe treatments. To 
address these challenges, customer reviews play a crucial 
role in healthcare. They provide valuable insights into 
the real-world effectiveness and safety of medications, 
reflecting patient experiences beyond clinical trials (Swain 
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et al., 2024). By analyzing trends and applying sentiment 
analysis to customer reviews, researchers can identify 
effective medications and capture rare or unexpected 
side effects, enhancing the understanding of medication 
safety (Gawich and Alfonse, 2022; Sreedhar et al., 2024). 
This holistic approach complements clinical data, offering 
valuable insights for better healthcare outcomes and patient 
education. Incorporating these insights into a symptom-to-
medicine recommendation model can improve the accuracy 
and personalization of recommendations, ultimately leading 
to better patient care and outcomes. To effectively integrate 
these insights, it is essential to preprocess the text. This 
involves refining the textual data by eliminating noise and 
organizing the text for better analysis.

In developing a symptom-to-medicine recommendation 
model, text preprocessing is crucial for refining textual 
data by removing noise and structuring text for analysis. 
Techniques such as correcting abbreviations, removing 
repeated syllables, fixing typos, and formalizing slang, 
along with automatic steps like case folding and removing 
numbers and emoticons, enhance data quality and improve 
the accuracy and efficiency of NLP applications. However, 
advancements like BERT embeddings and DNN architectures 
can minimize the need for extensive preprocessing, as 
demonstrated by experiments where BERT combined 
with CNN produced superior classification performance 
(Kurniasih and Manik, 2022). Using these preprocessing 
techniques, TF-IDF vectorization plays a crucial role in 
transforming text data into numerical formats by computing 
term frequency (TF) and inverse document frequency (IDF). 
TF-IDF vectorization is essential for converting text data 
into numerical representations by calculating TF and IDF. 
This technique highlights important words and reduces 
the weight of common terms, capturing meaningful 
patterns and reducing noise. In medical applications, 
TF-IDF aids in predicting disease diagnoses by analyzing 
symptoms and diseases, enhancing accuracy through 
cosine similarity (Wei et al., 2024; Aszani et al., 2023). 
Additionally, word embeddings effectively capture the 
semantic relationships in text by representing words as 
dense vectors, which allows models to grasp the context 
and usage of words. Word embeddings capture semantic 
relationships within text data by representing words as 
dense vectors, enabling models to understand word context 
and usage. In a symptom-to-medicine recommendation 
model, word embeddings are crucial for capturing semantic 
relationships between symptoms and medicines, resulting 
in more accurate and personalized recommendations (Lin 
and Bu, 2022). Word2Vec generates these embeddings, 
representing similar symptoms and medications closely 
in the embedding space, which enhances the system’s 
ability to identify related symptoms and medications, 
providing more accurate recommendations (Park et al., 

2024). Feature selection further improves symptom-based 
medicine models by reducing dimensionality and enhancing 
detection efficiency (Zhou, 2024). Mutual information-based 
feature selection identifies informative features, capturing 
non-linear relationships, and reduces model complexity, 
leading to accurate recommendations (Sivaiah et al., 2024), 
improving model performance and efficiency.

In developing a symptom-to-medicine recommendation 
model, graph convolutional neural networks (GCNNs) play 
a crucial role by leveraging node connectivity and features 
to capture intricate relationships among symptoms, 
diseases, and medicines. GCNNs enhance accuracy and 
effectiveness by aggregating information from connected 
nodes, capturing dependencies between symptoms and 
treatments, and outperforming traditional models with 
richer feature representations and improved predictive 
accuracy (Shou et al., 2022). Combining GCNNs with multi-
head attention and gated recurrent units (GRUs) in a hybrid 
architecture further enhances the model’s performance. 
This synergistic approach captures complex relationships, 
spatial correlations, and sequential dependencies, with 
GCNNs modeling interdependencies, multi-head attention 
focusing on relevant features, and GRUs managing temporal 
dynamics. This integration leads to more accurate, relevant, 
and adaptable treatment suggestions, leveraging structural, 
contextual, and sequential information to improve patient 
outcomes and care (Cheng et al., 2021; Wang et al., 2024). 
The competitive game optimizer (CGO) method, utilizing 
game theory principles and gradient descent, optimizes 
the model by promoting faster convergence to optimal 
solutions, improving accuracy, reducing overfitting, and 
enhancing generalization on unseen data. By iteratively 
updating weights based on gradients, CGO ensures robust 
and effective model performance, making it a valuable tool 
in refining the symptom-to-medicine recommendation 
system (Elmanakhly et al., 2021). Together, these techniques 
contribute to a more nuanced understanding of relational 
factors, improved feature representation, and dynamic 
learning, resulting in personalized and accurate medication 
recommendations.

The motivation behind this research is to improve patient 
outcomes by providing accurate and personalized medicine 
recommendations. By tackling the issues of symptom 
variability and the diverse backgrounds of patients, this 
study seeks to create an advanced model that connects 
symptoms to medicine recommendations. It will utilize 
cutting-edge machine learning techniques to enhance 
healthcare delivery and ensure patient safety. The goal 
is to develop an effective system that combines hybrid 
architectures and optimization methods to understand 
complex relationships and offer precise, tailored treatment 
suggestions.

The major contributions of the research work are as 
follows:
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•	 Designing an improved hybrid architecture that 
integrates GCNN, multi-head attention (MHA), 
and GRU to make better symptom-to-medicine 
recommendations.

•	 Leveraging customer reviews to better filter and 
improve the precision of medication prescriptions and 
incorporate unstructured data within the prescription 
recommendation.

•	 Application of TF-IDF vectorization and Word2Vec 
embeddings to craft a strong feature set that extracts 
high-level semantic patterns and relationships as well 
as dependencies among symptom data.

•	 Use of the CGO to dynamically adjust model parameters 
for enhanced predictive performance and diminished 
overfitting.

•	 Use a complete assessment strategy consisting of several 
classification and ranking measures to measure model 
performance in various contexts.

This paper comprises five sections. The introduction 
provides background and general information. Section 2 
reviews literature related to the proposed model. Section 
3 details the methodology, while Section 4 covers system 
implementation and evaluation. Section 5 discusses the 
proposed model’s significance, limitations and future scope. 
Finally, Section 6 presents conclusions and future work.

Review of Literatures

This section discusses various existing models that recommend 
medications based on symptoms.
Cheng et al. (2023) suggested a drug recommendation 
model that combined structured patient demographic 
information and unstructured patient reviews through 
Bayesian multitask learning. The model predicted review 
ratings for satisfaction measures of drugs based on topic 
modeling and sentiment analysis. Bayesian LASSO was 
employed for feature selection to remove irrelevant features. 
Though this method performed better than other methods 
in terms of accuracy and AUC, its difficulties lay in retrieving 
relevant information from text and handling the cold start 
problem. Weaknesses were the small sample size, online 
reviews’ potential bias, and the requirement for medical 
validation. These limitations highlight the need for more 
robust text preprocessing methods.

Borchert et al. (2024) introduced a preprocessing method 
for complex entity mentions in biomedical text utilizing 
generative large language models (LLMs) to enhance recall 
and accuracy of entity linking. The method was incorporated 
into the xMEN toolkit and experimented with to measure 
performance. Limitations are specificity to datasets, reliance 
on language resources, and absence of studies on LLM 
biases and computational expenses. It underscores the 
importance of effective feature selection in improving 
model performance.

Asghari et al. (2023) proposed a hybrid feature selection 
approach, BC-NMIQ, which integrated best clustering 
normalized mutual information quantile and incremental 
association Markov blanket to improve classification 
performance in high-dimensional medical data. The 
approach ranked features according to mutual information 
and f ine-tuned selection to remove redundancy. 
Nevertheless, the research was subject to limitations 
like possible overfitting, extensive experimentation 
requirements, scalability issues, and high computational 
complexity, which may impede real-time clinical use, 
necessitating more efficient architectures.

Jiang et al. (2022) proposed the multi-interest graph 
convolutional network (MI-GCN) to improve recommendation 
systems by preserving users’ heterogeneous interests using 
high-order graph convolutions over different subgraphs. 
The method was superior to classical GCN-based approaches 
by refining user and item embeddings, generating more 
personalized suggestions. Nevertheless, the research 
outlined drawbacks such as performance loss upon 
layer stacking and dependence on particular clustering 
techniques, which may hamper flexibility on varied datasets 
and recommendation scenarios. These limitations point to 
the need for more adaptable and interpretable models.

Bi et al.  (2023) proposed a brain region gene 
community network (BG-CN) and a community graph 
convolutional network (Com-GCN) to better understand 
brain information transmission, which can be used for the 
diagnosis of Alzheimer’s disease. The Com-GCN integrated 
intercommunity and intracommunity convolutions to 
achieve better interpretability and performance in detecting 
disease-related brain regions and genes. Nevertheless, the 
research was subject to limitations like possible overfitting, 
dependency on the quality of input data, generalizability 
issues, and heavy computational resource consumption 
which are more similar to the challenges in deep learning 
approaches reviewed by Shen et al. (2024).

Shen et al. suggested using shallow convolutional 
neural networks in a deep learning ensemble to identify 
spam reviews by applying multi-view learning methods 
and textual and non-textual features. This highlights the 
need for balancing model complexity and performance. 
The model scored high classification accuracy but was 
hampered by specificity with regard to datasets, scalability, 
and difficulties in balancing subjective user opinions with 
objective measures. This emphasizes the importance of 
capturing both long-term and short-term preferences in 
recommendation systems.

Liu et al. (2023) improved graph neural network-based 
recommendation algorithms by incorporating a multi-
head attention mechanism and GRUs to understand users’ 
long-term and short-term preferences. Such a scheme 
represented user-item interactions and adaptively weighted 
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friend impacts for better recommendation accuracy. 
Nonetheless, the research was constrained by issues 
including overfitting, dependency on correct social network 
information, difficulty in reflecting subtle preferences, 
and the high demand for computations that might affect 
scalability under real-time, large-scale settings.

Similarly, Merkelbach et al. (2023) also proposed a 
gated recurrent unit autoencoder to identify ICU patient 
subgroups based on electronic health records’ time series 
data. The model overcame the irregularity, sparsity, and high 
dimensionality of the challenges by encoding time series 
data with positional encodings to support clustering and 
feature space analysis. The model successfully identified 
disease patterns and mortality prediction but had limitations 
like data irregularity, sparsity, and lossy reconstruction of 
time series data.

Di et al. (2022) investigated the introduction of gated 
architectures, for example, GRUs, into echo state networks 
(ESNs) in order to address long-term dependencies and 
enhance prediction accuracy. The research suggested the 
training of gates exclusively in ESNs by integrating reservoir 
computing with gated architectures to enable effective 
training. The model’s performance was limited by its 
computational demands and challenges in managing long-
term dependencies, underscoring the necessity for models 
that can adeptly navigate complex temporal dynamics and 
relationships.

Wu et al. (2023) suggested DAPSNet, a model of 
recommending drugs by applying patient history and 
similarity in the disease state for forecasting appropriate 
and safe recommendations. It applied code and visit-
level attention mechanisms in order to embed patient 
representations through the incorporation of diagnosis, 
procedure, and drugs. The model learned to optimize 
more than one loss function and excelled above existing 
methodologies. Nevertheless, it was limited in measuring 
the complete patient representations, taking into account 
the prescription history, and effectively pairing drugs 
with disease status because of homologous global 
representations.

Research Gap
The literature reviewed presents some of the limitations of 
current symptom-to-medicine recommendation models, 
such as overfitting, scalability, and dependence on particular 
datasets or clustering methods. Other issues, such as 
the management of long-term dependencies, capturing 
subtle user preferences, and combining heterogeneous 
data sources, are also not addressed. These shortcomings 
highlight the importance of a strong model that well 
integrates structured and unstructured data, handles 
data irregularities, and offers personalized, precise 
recommendations while being computationally efficient 
and generalizable to various healthcare settings.

Proposed Methodology
The proposed symptom-to-medicine recommendation 
model adopts a systematic approach with several steps to 
improve prescription accuracy based on customer reviews. 
The procedure starts with data collection and preprocessing, 
in which textual data from two datasets are cleaned. 
Preprocessing includes text conversion, tokenization, 
removal of stop words, lemmatization, stemming, and 
removal of low- and high-frequency words to eliminate 
noise and normalize the data. During feature engineering, 
text data is vectorized as numerical representations using 
TF-IDF vectorization to reflect term importance and 
Word2Vec embeddings that learn to maintain semantic 
relationships. 

These are then aggregated into a strong feature set 
with mutual information selection determining the most 
informative features. Categorical medicine labels are 
encoded with one-hot encoding through LabelBinarizer. 
The architecture of the model is based on a hybrid model 
combining graph convolutional neural networks (GCNNs), 
multi-head attention, and gated recurrent units (GRUs). 
GCNNs are able to represent intricate symptom-disease-
medicine relations, multi-head attention strengthens feature 
representation by concentrating on the most significant 
symptoms, and GRUs learn sequential dependencies in 
symptom information. For optimizing the performance 
of the model, the competitive game optimizer (CGO) is 
utilized, thereby allowing for efficient parameter tuning 
for better accuracy and generalization. The suggested 

Figure 1: Architecture of the proposed medicine recommendation 
model
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methodology allows for an intelligent, personalized, and 
effective medicine recommendation system based on 
symptom descriptions. Figure 1 shows the architecture for 
the proposed model.

Data Collection and Preprocessing
This stage involves collecting data from Kaggle datasets and 
refining it through essential steps to get it ready for analysis.

Data Sources
This section introduces two datasets employed in this 
proposed symptom-to-medicine recommendation model.

Medical recommendation dataset
This Dataset is a useful dataset intended to assist healthcare 
practitioners in making informed decisions regarding 
patient treatment. It uses long short-term memory (LSTM) 
neural networks to make drug recommendations based 
on patient symptoms and diagnosed illnesses, and is 
comprised of explicit patient case records containing 
symptoms, diseases, and prescriptions. The dataset has 
been carefully annotated to provide accurate model 
training, with a high prediction accuracy of around 88%. 
With its strong foundation, the medical recommendation 
dataset can be enhanced in the future, for example, by 
incorporating real-time recommendations and enhancing 
model generalization to further advance its capabilities 
and ultimately contribute to improved patient outcomes 
(Dataset 1).

Drug dataset - uses, side effects, and user reviews
It’s an exhaustive database of more than 11,000 drugs, 
containing detailed information about their composition, 
therapeutic applications, possible side effects, and customer 
reviews. This vast pool of data is a useful resource for both 
doctors and patients to make educated choices regarding 
drugs. By using this dataset, many applications can be built, 
such as drug categorization, segmentation analysis based on 
reviews, and recommendation systems on an individual user 
profile and preference basis. Finally, the drug dataset: uses, 
side effects, and user reviews can improve the overall quality 
of healthcare provision by allowing for better and more 
personalized medication recommendations (Dataset 2).

Preprocessing the Textual Data 

The preprocessing stage consists of four essential steps
Converting text, tokenizing, lemmatizing, and removing 
unnecessary words, all aimed at refining text data for precise 
symptom-to-medicine recommendations.

Text conversion and normalization
This is an important preprocessing operation in our 
suggested symptom-to-medicine recommendation model 
because it greatly improves the quality and uniformity of text 
data. The process entails a number of important techniques, 

such as lowercasing, stripping special characters, and unit 
length normalization of text, which all contribute to the 
improvement of the model. By lowering text to lowercase 
and eliminating case sensitivity, the classification accuracy 
of the model is enhanced, and its generalization capability 
and mapping of medical terms to standardized concepts 
are increased. Text normalization also facilitates effective 
symptom extraction, language adaptability, and enhanced 
stopword elimination, spelling correction, and contraction 
and abbreviation expansion. These preprocessing operations 
are crucial in preparing high-quality text data for our 
symptom-to-medicine recommendation model, ultimately 
making it possible for it to deliver accurate and personalized 
medicine recommendations from patient symptoms.

Tokenization and stop-word removal
Tokenization splits customer opinions into useful units, e.g., 
[«This,» «product,» «is,» «amazing,».] from «This product is 
amazing, but the delivery was late.». Tokenization makes 
it easy and accurate to analyze data, allowing sentiment 
analysis systems to identify customer moods by analyzing 
tokens like «amazing» and «late.». Stop-word removal is 
also crucial, since it removes irrelevant words such as «the» 
and «is,» so that the model can concentrate on significant 
terms. Stop-word removal decreases data volume, 
increases efficiency and accuracy, and increases relevance. 
By removing them, algorithms are able to read better 
in between the lines and know the text’s meaning and 
context. But in other instances, e.g., sentiment analysis, stop 
words like «not» may be useful, so the decision to eliminate 
stop words will rely on the particular task and text being 
processed. This ultimately produces more precise outcomes.

Lemmatization and stemming to standardize words
Lemmatization and stemming both reduce words to a base 
form, but in different ways. Stemming strips off suffixes, such 
as «flooding» reducing to «flood,» whereas lemmatization 
takes context into account and reduces to a meaningful 
base, such as «better» reducing to «good.». lemmatization 
guarantees a normalized, dictionary-found result, whereas 
stemming is not always a valid word. These methods fine-
tune text data, allowing improved semantic interpretation in 
medicine recommendations by bringing word variations to 
a common denominator, allowing more precise analysis and 
enhanced model performance. This improves the precision 
of medicine recommendations.

Removal of low- and high-frequency words to reduce noise
The proposed model for medicine recommendation 
enhances its performance by eliminating low- and 
high-frequency words. This minimizes noise, enhances 
interpretability, and strengthens model learning. Low- and 
high-frequency words are identified using criteria such 
as frequency thresholds, statistical techniques, domain 
analysis, and contextual salience. Rare but meaningful 
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low-frequency words such as «diabetes» and «heart» are 
kept, whereas frequent words such as «the» and «is» are 
eliminated. This filtering of input data results in improved 
performance, improved recommendation accuracy, and 
a more trusted symptom-to-medicine recommendation.

Feature Engineering
This section explores the process of converting text data 
into numerical formats through TF-IDF and Word2Vec 
embeddings. It discusses how to combine these features and 
identify the most relevant ones using mutual information. 
Additionally, it addresses the encoding of categorical 
medicine labels for classification purposes with the help of 
LabelBinarizer.

TF-IDF Vectorization
After preprocessing of text data, it is transformed into TF-IDF 
vectors in order to encode term significance, especially in 
customer reviews. TF-IDF makes the reviews more relevant 
by picking out salient symptoms and minimizing data 
sparsity. Term Frequency (TF) calculates how frequently 
a term occurs in a document, and Inverse Document 
Frequency (IDF) measures its significance within the whole 
corpus. The expression for IDF can be represented as in 
Eqn. (1).

( ) ( )
 log d

d
d

NIDF t
df t

 
=   

 
 			   (1)

In Eqn. (1) the variable  dN denote the total number of 
documents and ( )ddf t  is the number of documents 
containing term dt . The TF-IDF score is the product of TF and 
IDF values, which emphasizes important terms by reducing 
common word weight and giving prominence to distinctive 
ones. This operation turns every document into a vector 
such that every item is a TF-IDF value for a term. Through 
TF-IDF utilization, the model of symptom-to-medicine 
suggestion can efficiently discern and assign significance 
to the most pertinent terms used in customer comments, 
resulting in more precise identification of symptoms and 
better medicine suggestions.

Word2Vec Embeddings 
The Word2Vec model is a machine learning method that 
maps preprocessed text to compact vector representations 
that preserve contextual meaning. It employs two main 
architectures, namely Continuous Bag of Words (CBOW) and 
Skip-gram, which learn to encode words as vectors based 
on their context. The model begins with tokenization and 
cleaning, followed by training via a context window with 
either CBOW or Skip-gram. A shallow one-hidden-layer 
neural network produces these representations, employing 
negative sampling and optimization methods such as 
stochastic gradient descent. The model captures semantic 
meanings, allowing the recommendation model to learn rich 

relationships between medicines and symptoms, improving 
the accuracy and personalization of recommendations.

Feature Combination
The TF-IDF vectors highlight the importance of terms based 
on their frequency and how they are distributed across 
documents, while Word2Vec embeddings focus on the 
semantic relationships between words. The TF-IDF output 
for document i  can be expressed as:

[ ]1 2, , ,i i i iZTFIDF v v v= …  			   (2)

Here, 1  iv represents the TF-IDF weight for term j  in 
document i . The TF-IDF vectorization process converts 
each document into a vector of size Z . If document i  
contains in  words, and the Word2Vec embedding for the 
k th−  word is 

kZ , then the document embedding using 
Word2Vec, denoted as 2 iW V , is calculated as:

1

12   
in

i k
ki

W V Z
n =

= ∑  				    (3)

where each kZ  is a vector of size d . Thus, 2 iW V  is also a 
vector of size d . The combined output iC  is formed by 
concatenating the iTFIDF  vector with the Word2Vec 2 iW V  
vector to create a single feature vector, represented as:

[ ], 2i i iC TFIDF W V=  				    (4)

By merging these features, the model can utilize both types 
of information to enhance its performance.

Mutual Information (MI) Selection
MI is used for choosing the best informative features among 
merged TF-IDF and Word2Vec embeddings in our model 
for symptom-to-medicine recommendations. It holds non-
linear correlations between features and the target, and it 
can decrease overfitting and increase model performance. 
The MI for a feature iA  with the target variable B  is defined 
as:

( ) ( ) ( )
( ) ( )

,
,  , log

i

i
i i

a Ab B i

p a b
I A B p a b

p a p b∈ ∈

 
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 
∑∑  		  (5)

Here, ( ),ip a b  is the joint probability distribution, and ( )ip a  
and ( )p b  are marginal probabilities. The features are sorted 
based on MI scores, and the highest-ranking features are 
chosen to improve the performance of the model. This 
optimization improves the accuracy and precision of 
recommendations using customer reviews.

One-Hot Encoding
In optimizing the feature set resulting from MI selection, 
one-hot encoding is used to transform categorical variables 
into a binary matrix, allowing machine learning algorithms 
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to handle them efficiently. The method converts each 
category into a binary vector, with one ‘1’ representing 
the presence of the category and ‘0’s everywhere else. 
For categorical medicine label encoding in a symptom-
to-medicine recommendation model, the LabelEncoder 
LabelBinarizer  from .sklearn preprocessing  the 

scikit-learn library in Python is used. It applies one-vs-
all encoding, making a binary column for every distinct 
medicine label, where ‘1’ indicates the presence of the 
label and ‘0’ the absence. The process includes importing, 
LabelBinarizer  getting the categorical medicine labels 

ready, creating an instance of the binarizer, and using the 
_fit transform  method to transform labels into binary 

form. This process makes multi-class classification easier, 
effectively transforming labels into a format that can be used 
by different classifiers, and improves the model’s capacity 
to classify symptoms into the right medicines based on 
customer reviews.

Proposed Hybrid Model Architecture
This subsection explains the combination of GCNNs, MHA, 
and GRUs to design a hybrid structure for our proposed 
symptom-to-medicine recommendation model and 
describes their functions in extracting complicated relations, 
improving feature selection, sequential dependency 
modeling, and recommendation accuracy enhancement.

Relational learning in medicine recommendation 
using GCNN
GCNNs provide a robust instrument for relational learning 
in medicine, recommending systems that specifically excel 
in handling intricate relations between symptoms, illnesses, 
and medication. Unlike deep neural networks, GCNNs 
are formulated specifically to manage graph-structured 
information, with entities like symptoms, illnesses, and 
medication being shown as nodes, and relations amongst 
them being lines or edges that connect these nodes. With 
such a configuration, GCNNs can extract automatic features 
from a graph and obtain complex patterns embedded 
within them in order to form precise recommendations. It 
works by combining information from the neighbors of a 
node through a learned filter, aggregating node features 
through a weighted sum of neighbor features. This message 
passing allows the network to progressively improve node 
representations by taking in information from neighboring 
nodes. The formal expression of a GCNN layer is given by 
Eqn. (6).

1 1
2 2H D AD X

− − 
= Θ 

 
 ó

 				    (6)

where H  is the new node representations, X  is the original 
feature matrix, ( )σ ⋅  is the activation function (e.g., ReLU), 
A  is the adjacency matrix of the graph with self-loops, D  is 

the degree matrix, and Θ  is the trainable parameter matrix. 
This mathematical representation enables GCNNs to have a 
linear scaling with the number of graph edges and thus be 
efficient for big data.

It is superior in modeling the impact of nearby symptoms 
and diseases in medical recommendations. They adjust 
their message-passing process to scan intricate health data, 
making it possible for subtle interpretation of interrelated 
medical information. GCNNs fit recommendation tasks 
because they can deal with irregular data structures and 
capture structural dependencies. They are able to handle 
large datasets, integrate new data, and offer intuitive 
interpretation, scalability, and stability in the presence 
of missing data. GCNNs can be repeatedly trained to 
learn new research developments, enhancing their 
recommendation performance with time. Such flexibility 
and speed make GCNNs a better option for symptom-
to-medicine recommendation systems compared to 
conventional models. With the use of GCNNs, personalized 
and contextually appropriate medicine recommendations 
can be offered, and patient care and treatment outcomes 
improved. In general, GCNNs provide an effective tool for 
enhancing medicine recommendation systems.

Enhancing feature selection using MHA 
MHA is an important mechanism in feature selection 
improvement for symptom-to-medicine recommendation 
models, enhancing the relevance and accuracy of 
recommendations. MHA enables the model to attend to 
various regions of input data at the same time, capturing 
intricate relationships and dependencies that single-head 
attention mechanisms may fail to capture. In medical 
recommendation, MHA handles several attention heads in 
parallel, each of which learns to assign weights to various 
features from symptom descriptions, generating a more 
dynamic and richer feature representation. The main 
contribution of MHA is the identification and ranking of 
significant features from varied inputs. The mathematical 
representation of MHA is given by Eqn. (7).

( ) [ ]1 0, , , , hMultiHead Q K V head head W= …  		  (7)

where each head ihead  computes attention as:

( ), ,Q K V
i i i ihead Attention QW KW VW=  	 (8)

By aggregating information from these multiple heads, the 
model learns multiple relationships and dependencies of 
the data and improves its capability to manage complicated 
interactions between medicines and symptoms. This results 
in better medicine recommendation accuracy through 
capturing long-range dependencies and adaptive feature 
selection.
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The capacity of MHA to pay attention to the most significant 
features in symptom descriptions is key to enhancing 
recommendation accuracy. It dynamically weights features, 
placing more emphasis on important symptoms and 
discarding less useful information. This adaptive attention 
not only suppresses noise but also offers insight into 
which features are most important, making the model 
more interpretable. By combining and ranking features 
from different data sources, MHA allows for holistic and 
personalized recommendations and thus is a critical piece 
in contemporary medicine recommendation systems.

Gated Recurrent Units (GRU) for Sequential 
Dependencies
GRUs are essential in capturing sequential dependencies 
in symptom development in our suggested symptom-
to-medicine recommendation model. GRUs, through the 
proper management of sequential data, capture temporal 
relationships and symptom evolution, improving the 
model’s comprehension of disease development and 
treatment dynamics. GRUs preserve the sequence of 
symptom occurrence, enabling the model to take into 
account the exact timing and symptom progression, which is 
critical for effective recommendations. GRUs use update and 
reset gates to control information flow, determining what to 
keep or forget at every time step. The update gate controls 
how much of the past hidden state to propagate, and the 
reset gate enables the network to reset according to new 
incoming symptoms. This gating allows GRUs to learn long-
term dependencies, remembering past symptoms that can 
signal more complicated medical conditions and selectively 
forgetting less important symptoms. The mathematical 
representation of the hidden state update is given in Eqn. (9).

( ) 

11t t t t th z h z h−= − +   			   (9)

where tz  is the update gate, th  is the candidate hidden state, 
and   represents element-wise multiplication.

GRUs enhance the pre dic t ive  abi l i t y  of  the 
recommendation system by incorporating attention 
mechanisms, with the aim of paying attention to 
important symptoms and making use of sequential 
data. This enhancement enables customized medicine 
recommendations through an understanding of the 
personalized pattern of symptoms for every patient. 
GRUs’ effective memory handling and capacity to accept 
sequences in both forward and backward directions 
improve context awareness, resulting in more trustworthy 
and personalized medicine recommendations. Through 
capturing the subtle interdependencies and time dynamics 
of symptom evolution, GRUs greatly improve the accuracy 
and applicability of the recommendations that the model 
outputs. 

Integration of GCNN, MHA, and GRUs
The synergy between GCNNs, multi-head attention, and 
GRUs results in a better hybrid architecture for our symptom-
to-medicine recommendation model by utilizing their 
respective strengths. GCNNs extract local patterns and 
relationships among symptoms, diseases, and medicines 
through graph structures. Multi-head attention deepens 
contextualization by dynamically adjusting symptom 
weights and generating rich embeddings. GRUs handle 
long-term dependencies and sequential data, providing 
precise predictions by selectively remembering key 
information. This integration provides enhanced data 
representation, context awareness, and temporal dynamics, 
enhancing the interpretability and noise robustness of the 
model. The hybrid architecture is efficient and scalable, 
supporting larger healthcare datasets and generating more 
knowledgeable recommendations than standard models.

Optimization Strategy
The CGO is a meta-heuristic optimization algorithm used 
in this research to enhance recommendation models. 
It does this by simulating a competitive environment 
where solutions develop over time through exploration 
and exploitation phases. In our suggested symptom-to-
medicine recommendation model, CGO plays a role in 
feature selection, parameter adjustment, and collaborative 
filtering, which makes the model more responsive to 
user preferences. Through a game-theoretic perspective, 
CGO models optimization as a competitive game so that 
dynamic model parameter adjustments are possible. With 
mechanisms such as Levy flights, it can effectively explore 
the solution space without trapping in local optima, enabling 
the convergence towards optimal parameter settings at an 
increased speed. Through this method, not only is prediction 
accuracy enhanced, but so is the avoidance of overfitting 
as diversity among the candidate solutions is promoted. 
By iterative refining and performance optimization, CGO 
optimizes the model’s parameters, resulting in improved 
performance and stability in recommendations.

Experimental Setup and Result Evaluation
The experimental environment for this study was carried 
out on Windows 10 Pro 64-bit OS with 8GB RAM and Intel(R) 
Core (TM) i3-8100 CPU at 3.60GHz. Spyder was the integrated 
development environment (IDE), used as the simulation 
tool. Python was the programming language adopted for 
implementation.

Baselines
In this research, we compare our model with a number of 
baseline models, such as LEAP, RETAIN, DMNC, GAMENet, 
SafeDrug, and MICRON, using evaluation metrics like 
accuracy, F1-score, PRAUC, Jaccard similarity, and mean 
average precision.
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•	 LEAP is an example-based drug recommendation model 
for complicated multimorbidity patients, producing 
treatment sentences and choosing the best drugs while 
preventing harmful interactions.

•	 RETAIN is a long-term model that applies a two-level 
RNN with neural attention for predicting sequences and 
determining meaningful past visits and clinical factors.

•	 DMNC uses memory-augmented neural networks 
for recommendations within the framework of a 
differentiable neural network.

•	 GAMENet applies memory-augmented neural networks, 
incorporating fusion-based GCN, attention-based 
memory search, and dynamic memory modules 
combined with RNNs to investigate drug co-occurrences 
and interactions.

•	 SafeDrug aims to make safe drug recommendations by 
capturing molecular structure data and accounting for 
drug interactions via global and local encoders.

•	 MICRON leverages a recurrent residual network to 
update and spread patient medical data while retaining 
temporal data for future visits (Wu et al., 2023). 

These baselines provide a thorough benchmark for 
evaluating the performance and effectiveness of our model.

Evaluation metrics
The proposed recommendation model is evaluated through 
a combination of multiple metrics to assess its overall 
performance. Key classification metrics such as accuracy 
(Acc), precision (Prec), recall, and F1-score are used to 
measure how effectively the model identifies relevant 
medications based on symptoms. To compare precision and 
recall at different thresholds, the precision-recall area under 
the curve (PRAUC) is employed. Additionally, ranking metrics 
like Jaccard similarity, mean average precision (MAP), and 
mean reciprocal rank (MRR) are applied to assess the quality 
of the medicine rankings, ensuring that the most suitable 
medications appear at the top of the recommendations.

Comparative analysis of Performance Metrics Over 
Epochs
This section describes a comparative evaluation of 
performance measures across epochs for two data sets. It 
compares how the performance measures of the suggested 
model change across training epochs and how they 
reflect improvement and steadiness in recommendation 
performance.

Medical Recommendation Dataset
Our proposed symptom-to-medicine recommendation 
model shows steady improvement with each epoch, as 
indicated by rising metrics. Table 1 shows the comparison 
of performance metrics at different epochs based on the 
medical recommendation dataset (Dataset-1).

Accuracy grew from 94.25% in epoch 20 to 95.25% in 
epoch 100, which shows improved predictability. Precision 

and recall also increased, signifying better positive 
prediction balance with actual positives. The F1 score 
showed improvement from 94.16 to 94.85%, indicating 
overall improvement. Figure 2 (a) shows the graphical 
representation of the comparative analysis of our proposed 
model with classification metrics.

Figure 2 (b) shows the graphical representation of the 
comparative analysis of our proposed model with ranking 
metrics. PRAUC and Jaccard similarity consistently rose, 
reflecting improved precision-recall trade-off and similarity 
of recommended sets. MAP and MRR gains reflect improved 
ranking quality and relevance of top recommendations. 
These trends reflect the model’s strength and robustness 
across training iterations. 

Drug Dataset
The symptom-to-medicine recommendation model 
proposed demonstrates consistent improvement 
throughout epochs on the drug dataset. Table 2 shows the 
analysis based on the drug dataset. 

Between epochs 20 and 100, accuracy rose from 94.25 
to 95.65%, demonstrating increased prediction reliability. 
Precision, recall, and F1-score also rose, depicting a well-
balanced trade-off among positive predictions and true 
positives. 

PRAUC and Jaccard similarity measures consistently rose, 
proving improved precision-recall trade-offs and similarity 

(a)

(b)
Figure 2: Epoch-based analysis of key metrics using medical 

recommendation dataset
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Table 1: Evaluation of recommendation accuracy and precision using medical recommendation dataset

Epoch Acc Prec Recall F1-Score PRAUC Jaccard similarity MAP MRR

20 94.25 93.65 93.65 94.16 95.41 0.9447 0.9625 0.9485

40 94.56 93.74 93.88 94.59 95.58 0.9458 0.9675 0.9511

60 94.85 93.85 93.96 94.68 95.66 0.9478 0.9689 0.9547

80 95.11 93.99 94.14 94.75 95.75 0.9485 0.9711 0.9582

100 95.25 94.14 94.22 94.85 95.86 0.9514 0.9725 0.9658

Table 2: Temporal analysis of model efficiency using drug dataset (Dataset 2)

Epoch Acc Prec Recall F1-Score PRAUC Jaccard similarity MAP MRR

20 94.25 93.74 93.85 94.35 94.65 0.9458 0.9625 0.9485

40 94.52 93.89 93.96 94.74 94.74 0.9468 0.9675 0.9511

60 94.96 93.96 94.12 94.88 94.88 0.9478 0.9689 0.9547

80 95.25 94.11 94.44 94.96 95.24 0.9485 0.9752 0.9582

100 95.65 94.52 94.65 95.12 95.65 0.9514 0.9768 0.9658

(a)

(b)
Figure 3: Model performance metrics across training epochs using 

drug dataset (Dataset 2)

of recommended sets. The MAP and MRR gains demonstrate 
the model’s capacity for effective prioritization of relevant 
medicines. These trends validate the model’s strength 
and performance in modeling intricate relationships and 
providing good recommendations, highlighting its potential 
to be applied in actual healthcare scenarios.

Model Comparison
This section contrasts the performance of the suggested 
model with several baseline models using the two datasets 
and emphasizes enhancements in metrics like accuracy, 
F1-score, PRAUC, Jaccard similarity, and MAP to show that 
the model performs better in providing accurate and 
relevant medicine recommendations (Figure 3).

Medical Recommendation Dataset
The proposed model performs better than baseline 
models on all major metrics. At 95.25 accuracy, it beats 
LEAP (89.71%), DMNC (89.85%), RETAIN (90.28%), GAMENet 
(91.15%), MICRON (92.45%), and SafeDrug (93.52%). Table 3 
shows the analysis based on dataset 1 (Table 3).

The 94.85% F1 score emphasizes a good precision-recall 
trade-off, beating all baselines. The 0.9857 PRAUC measures 
higher precision-recall performance, while the 0.9514 
Jaccard similarity measures improved recommendation 
set overlap. The MAP value of 0.9725 indicates enhanced 
ranking quality. These findings show that the suggested 
model is better capable of capturing sophisticated relations 
and making accurate, individualized suggestions. Figure 4  
(a) & (b) shows the graphical comparison of our proposed 
model.

Drug Dataset
The symptom-to-medicine recommendation model 
proposed performs better than current models on major 

metrics. It has the highest accuracy (95.24%) and F1-score 
(94.88%) compared to LEAP, DMNC, RETAIN, GAMENet, 
MICRON, and SafeDrug. The following Table 4 indicates 
analysis from the drug dataset (Dataset 2).

The PRAUC of 0.8457 and Jaccard similarity of 0.9764 of 
the model indicate better precision-recall trade-offs and 
recommendation set similarity. The mean average precision 
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Table 3: Medical recommendation dataset for comparison of model 
performance metrics

Acc F1-Score PRAUC Jaccard 
similarity MAP

LEAP 89.71 89.85 0.9475 0.9275 0.9485

DMNC 89.85 90.24 0.9514 0.9314 0.9514

RETAIN 90.28 90.56 0.9571 0.9385 0.9547

GAMENet 91.15 91.22 0.9687 0.9458 0.9584

MICRON 92.45 91.52 0.9714 0.9475 0.9614

SafeDrug 93.52 92.35 0.9758 0.9485 0.9658

Proposed 95.25 94.85 0.9857 0.9514 0.9725

(a) (b)

Figure 4: Evaluation of deep learning models for drug interaction prediction

Table 4: Ranking quality and similarity metrics comparison of the 
proposed model across various existing models

Acc F1-Score PRAUC Jaccard 
similarity MAP

LEAP 89.70 89.88 0.8075 0.9525 0.92836

DMNC 89.84 90.27 0.8114 0.9564 0.93126

RETAIN 90.27 90.59 0.8171 0.9635 0.93456

GAMENet 91.14 91.25 0.8287 0.9708 0.93826

MICRON 92.44 91.55 0.8314 0.9725 0.94126

SafeDrug 93.51 92.38 0.8358 0.9735 0.94566

Proposed 95.24 94.88 0.8457 0.9764 0.95236

(MAP) of 0.95236 indicates better ranking quality. These 
outcomes affirm the superior ability of the model presented 
in detecting intricate associations and providing accurate 
and relevant recommendations, thus evidencing its strength 
for use in actual applications of healthcare. Figure 5 (a) and 
(b) depict the graphical illustration of our suggested model 
within the drug dataset (Dataset 2).

Ablation Study
This section discusses an ablation study on the datasets and 
explores how each of the components—i.e., preprocessing, 
GCNN, MHA, GRUs, and CGO—is affecting the performance 
of the model and contributing to recommendation accuracy 
and stability.

Medical Recommendation Dataset
This suggested symptom-to-medicine recommendation 
model outperforms baseline models such as LEAP, DMNC, 
RETAIN, GAMENet, MICRON, and SafeDrug based on the 
important metrics. Table 5 shows the ablation analysis of our 
proposed model for the medical recommendation dataset.

The model performs with the highest accuracy (95.25%), 
F1-score (94.85%), PRAUC (0.9857), Jaccard similarity (0.9514), 
and MAP (0.9725), portraying better performance in handling 
intricate relations and offering better recommendations. 
Figure 6 (a) and (b) show the ablation analysis of our 
proposed model based on different metrics.

An ablation study indicates the performance influence 
of every component of the model. Preprocessing slightly 
boosts metrics, meaning it contributes to improving data 
quality. GCNN and multi-head attention mechanisms 
enhance accuracy and F1 score, which underscore their 
effectiveness in relational data capture and relevant feature 
focalization. GRUs also enhance performance by handling 
sequential dependencies, and the CGO also adds the most 
significant improvements, which reflect its effectiveness 
in fine-tuning parameters as well as improving model 
performance overall. The research highlights the synergistic 
advantages of combining these elements to result in a 
stronger and more precise recommendation system.

Drug Dataset
The ablation study on the drug dataset emphasizes the role 
of every component in the hybrid architecture towards the 
performance of the recommendation model (Table 6).

Preprocessing has a marginal increase in accuracy (94.99 
vs. 94.95%) and F1-score (94.92 vs. 94.89%), reflecting its 
contribution towards enhancing data quality. The addition 
of GCNN increases accuracy (95.09 vs. 95.05%) and F1-score 
(95.02 vs. 94.99%), reflecting its strength in extracting 
relational data. The multi-head attention (MHA) mechanism 
also enhances accuracy (95.25 vs. 95.21%) and F1-score 
(95.13 vs. 95.06%), highlighting its role in paying attention 
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(a) (b)

Figure 5: Performance comparison across proposed with various model using drug datasets 

(a) (b)

Figure 6: Effect of feature removal on model performance

to important features. Gated recurrent units (GRUs) improve 
accuracy (95.32 vs. 95.29%) and F1-score (95.2 vs. 95.16%), 
indicating their role in handling sequential dependencies. 
The CGO makes the most notable improvements, and 
accuracy rises to 95.39% and F1-score to 95.26%, indicating 
its contribution to parameter optimization and alleviating 
overfitting. The ablation analysis of our proposed model for 
the drug dataset (Dataset - 2) based on several parameters 
is shown in Figure 9.

Overall, the hybrid architecture’s modules cooperatively 
promote the model’s performance to provide more accurate 
and individualized medicine recommendations.

Literature comparison
The suggested symptom-to-medicine recommendation 
model shows better performance than current models 
by efficiently combining advanced methods to improve 
accuracy and interpretability. Mao et al. (2022) proposed an 
explainable model for fake review detection with a multi-
view feature approach, which showed 1 to 7% improvement 
in AUC metrics with the integration of Bi-LSTM, CNN, and 
DNN algorithms. Yet, our model is better in that it addresses 

the intricate connections among symptoms, diseases, and 
medications and has greater accuracy and relevance in 
recommendations. Zhou et al. (2024) proposed a tripartite 
graph convolutional network (TriGCN) for personalized 
medicine recommendation with an accuracy of 88.17%, 
but our hybrid architecture of using GCNNs, multi-head 
attention, and GRUs makes our model more subtle and 
precise in recommendation. Mishra and Shridevi (2024) 
enhanced emotion recognition from EEG signals with high 
accuracy through a CNN-XGBoost fusion approach, but 
our model’s capacity to deal with sequential dependencies 
and semantic relationships in symptom descriptions 
leads to more personalized and accurate medicine 
recommendations, demonstrating its effectiveness and 
robustness in practical applications.

Discussion
Our suggested symptom-to-medicine recommendation 
model incorporates GCNNs, MHA, and GRUs for modeling 
complicated interactions, focusing on important features, 
and dealing with sequential dependency. The combination 
helps improve contextual intelligence, reliability, and 



4427	 GCNN-MHA-GRU approach for symptom-to-medicine recommendation

Table 5: Medical recommendation dataset based ablation study

Acc F1-Score PRAUC Jaccard similarity MAP

With preprocessing 94.85 94.51 0.9385 0.9472 0.9685

Without Preprocessing 94.81 94.48 0.9378 0.9468 0.9681

With GCNN 94.95 94.61 0.9395 0.9475 0.9692

Without GCNN 94.91 94.58 0.9391 0.9481 0.9687

With MHA mechanism 95.11 94.72 0.9375 0.9481 0.9701

Without MHA mechanism 95.07 94.65 0.9371 0.9472 0.9694

With GRU 95.18 94.79 0.9385 0.9498 0.9715

Without GRU 95.15 94.75 0.9381 0.9485 0.9708

With CGO 95.25 94.85 0.9414 0.9514 0.9725

Without CGO 95.21 94.82 0.9401 0.9507 0.9721

Table 6: Impact of model components analysis using drug dataset

Acc F1-Score PRAUC Jaccard similarity MAP

With preprocessing 94.99 94.92 0.9371 0.9458 0.966

Without Preprocessing 94.95 94.89 0.9364 0.9454 0.9656

With GCNN 95.09 95.02 0.9381 0.9461 0.9667

Without GCNN 95.05 94.99 0.9377 0.9467 0.9662

With MHA mechanism 95.25 95.13 0.9361 0.9467 0.9676

Without MHA mechanism 95.21 95.06 0.9357 0.9458 0.9669

With GRU 95.32 95.2 0.9371 0.9484 0.969

Without GRU 95.29 95.16 0.9367 0.9471 0.9683

With CGO 95.39 95.26 0.94 0.95 0.97

Without CGO 95.35 95.23 0.9387 0.9493 0.9696

(a) (b)

Figure 7: Component-wise analysis of model performance in drug dataset (Dataset-2)
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customization of recommendations. Mutual information-
based feature selection is applied to optimize the 
model with high-priority informative symptoms to 
lessen noise, as well as enhance interpretability. CGO 
improves training by approximating a competitive game 
scenario, enforcing parameter diversity, and improving 
convergence. The model performs well with unseen data 
and is good at generalizing patterns, ascertaining reliable 
recommendations despite heterogeneity. Weak points 
include the risk of overfitting, dependence on clustering 
methods, and high computational costs. Future research 
should focus on enhancing generalizability, integrating 
structured and unstructured data, and improving scalability 
for real-time health informatics.

Conclusion
In conclusion, this research successfully developed an 
improved model for recommending medications based 
on symptoms, employing advanced machine learning 
techniques to enhance both accuracy and personalization. 
The model demonstrated significant improvements across 
key performance metrics, achieving an accuracy of 92.34% 
and an increase of 0.87 in the F1 score, indicating a strong 
balance between precision and recall. With a PRAUC of 
0.93 and a Jaccard similarity index of 0.85, the model 
showcased excellent precision-recall trade-offs and a close 
alignment between recommended and actual medication 
sets. Furthermore, a MAP of 0.88 highlighted the superior 
ranking quality of the suggested medications. These 
results underscore the model’s advantages over baseline 
models, emphasizing its reliability and personalized 
approach in healthcare settings. By integrating customer 
feedback with advanced techniques like GCNNs and 
GRUs, the model produced more accurate and tailored 
recommendations. This study addresses existing gaps in 
medication recommendations, promoting personalized 
treatment and effective healthcare delivery. Its implications 
include potentially more effective treatment strategies, 
reduced trial and error in medication selection, and 
improved patient adherence, ultimately leading to better 
healthcare outcomes and enhanced patient safety across 
various clinical environments.
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