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Abstract

The growth of Internet of Things devices and their uses have introduced ample challenges in handling dynamic and heterogeneous
traffic patterns. This also has affected the area of Software Defined Networking (SDN). The key parameters like scalability, latency and
resilience are the concerns in centralized SDN approach, especially in the case of large-scale loT deployments. This research introduces
a new method, Distributed SDN Control for loT networks: A Federated Meta Reinforcement Learning Solution for Load Balancing. This
method combines Federated Learning (FL) with the key features of Meta Reinforcement Learning (Meta-RL) to enable intelligent and
privacy preserving load balancing across distributed SDN controllers. The system functions in two phases. In the first phase, traffic
distribution models across are trained with FL without sharing raw data. Security is added to this by differential privacy and Byzantine-
resilient aggregation. In the second phase, fast adaptation to non-stationary traffic patterns is achieved using Meta-Learning and
Proximal Policy Optimization (PPO). The performance evaluations show that the proposed method improves load balancing efficiency.
It also reduces the response time and maintains resilience in dynamic traffics.

Keywords: Internet of Things, Load Balancing, SDN - IoT, QoS, Software Defined Networking, Proximal Policy Optimization.

Introduction

The modern digital ecosystems are deeply affected by the
rapid growth of Internet of Things (loT). Interconnected with
billions of devices, it continuously produces and process
vast amount of data (Allioui et al., 2023). Because of these
advancements, immense opportunities have been created
in automation, monitoring and real time decision making.
And the fields include health care, smart cities, agriculture
and etc., (Angelpreethi et al., 2016). This also affects the
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traditional network especially the parameters such as
scalability, adaptability, latency and load management
(Sinduja et al., 2025).

Software Defined Networking introduces a changein the
network management with flexibility and programmability.
It is done by decoupling the functionalities of control
plane from data plane. The centralized control gives
global view to the network administrator. It makes easy
to optimize routing, enforce policies and manage traffic.
But in the case of geographically distributed loT networks,
the centralized approach becomes a blockage. It can lead
to latency, poor fault tolerant and single point of failure
while handling dynamic and high throughput loT network
(Kazmi et al., 2023). To solve this issue, Distributed SDN is
introduced. Multiple controllers are deployed to manage
the network responsibilities. As the result, scalability, fault
tolerance and responsiveness are improved. But it suffers
in load balancing, especially in the unpredictable and
heterogeneous loT environment (Mathanraj et al., 2024).
As a solution, intelligent decision making system is need
for optimal resource allocation, low latency and improving
other network parameters (Bannour et al., 2018).

To face these challenges, Machine Learning based
solutions tend to be serving better in dynamic traffic
management. While considering all the machine learning
approaches, Reinforcement Learning (RL) servers better in
optimizing network resource allocation through continuous

Published : 30/06/2025
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learning from the environment. Reinforcement Learning
depends on centralized training. It creates a concern for
privacy, scalability, and resistance to security attacks,
especially in distributed network (Zhuang et al., 2023). Here,
Federated Learning the solution by offering decentralized
training framework, where collaborative training occurs
with multiple SDN controllers without exchanging the raw
data. Thus it preserves privacy and scalability. But it lacks
to manage against malicious participant such as Byzantine
attacker (Raza et al., 2024).

To handle all these challenges, this research proposes
a holistic solution to the SDN IoT decentralized limitations.
The proposed method is “Distributed SDN control for loT
Networks: A Federated Meta-Reinforcement Learning
Solution for Load Balancing”. The proposed Federated
Meta-Reinforcement learning based Load Balancing
(FMRLB) has the following components. Federated Learning
phase is used for privacy preserving model training. Meta
Reinforcement Learning is used for rapid adaptation to
localized traffic conditions (Kazmi et al.,2023). Stable and
efficient decision making is achieved by Proximal Policy
Optimization. Long Short Term Memory provides proactive
traffic prediction. Byzantine filtering is used for protecting
the federated model against misleading updates (Chien et
al., 2024). This integrated approach makes SDN controller to
provide intelligent, privacy aware load balancing decisions.
The design produces low latency, faster adaptability to
dynamic network and resistance to threats.

Related Work
The authors (Zormati and Lakhlef, 2023) proposed a
distributed intelligent network system. They suggested
five layer approaches with Application, Control,
Virtualization Learning and infrastructure layers. These
layers collaboratively manage the complexity and
scalability issues in 10T networks. Here SDN provides
centralized programmability. NFV provides flexible and on
demand deployment of network. In this proposed model,
distributed hierarchical SDN control is used with a root
controller. Federated Learning provides privacy preserving
decentralized capacities. The proposed method shows
how distributed intelligence reduces communication
overhead through federated learning. But this does not
have intelligent load balancing for dynamic load balancing.
A federated learning framework tailored for Software-
Defined Networking (SDN) environments was introduced
by (Tran and Tran, 2024). This research addresses the critical
issues in distributed and heterogeneous network. It aims
to provide solution through decentralized model training
across multiple SDN controllers. Instead of sharing the
raw data, local model are trained in each SDN controller
maintaining privacy. Then they are aggregated for collective
learning. The proposed system also addresses the issues of
communication overhead and system heterogeneity. This is

done by optimizing the aggregation of local models. Here
aggregation optimization is achieved but it is not adaptive
to traffic patterns.

Theauthorsin (Ma et al., 2022) make a survey to study the
potential application of Federated Learning with Software
defined networking. This study explores the centralized
control capabilities of SDN and decentralized learning
mechanisms of Federated Learning. The study indicates
several key challenges that occur at the interactions of these
two technologies. One challenge is to manage the need for
effective incentive system to motivate data and resource
sharing. Another challenge is the privacy preserving
and security during the model training and exchange.
Aggregating heterogeneous models in diverse networks
stands as another key challenge. As the authors review these
challenges, they also suggest potential enhancements. They
are privacy preserving mechanisms, adaptive aggregation
system and incentive models mainly for SDN environments.

A security based model based on Deep Federated
Learning was introduced by the author (Albogami, 2025)
. This research focuses on improving security aspects in
Internet of Things. This system uses a Federated Hybrid
Deep Belief Network to analyse temporal data generated by
edge sensorsin loT networks. This mechanism of processing
data locally enables privacy preserving machine learning.
The pre processing steps of data normalization and feature
selection is done using Golden Jackal Optimization. This
utilizes the Dung Beetle Optimizer for fine tuning hyper
parameters. It lacks SDN integration and network level
controlling mechanism.

The authors (Mahmod et al., 2025) proposed a Software
Defined Networking enhanced framework to optimize
client selection in federated learning. This research aims
to improve client selection in loT and edge computing
environments. Traditional methods used to select clients
randomly for training data. This caused inefficiencies
because of variances in capabilities of devices and network
conditions. To manage this, the proposed method used
the advantage of SDN to monitor the network metrics
like bandwidth, latency, energy levels and client specific
factors like computational power and data quality globally.
Because of this, the system was able to intelligently select
the clients with stable connectivity, high quality dataset and
sufficient processing capabilities. Mininet emulator was used
to evaluate this proposed method. The result shows that
there is a significant level of reduction in communication
overhead. This work focuses mainly on training phase and
no real time operations.

A multi agent solution for dispatching the requestsin a
distributed SDN environment was introduced by the authors
(Huang et al., 2023). This research work focuses on requests
dispatching in distributed software defined networking in
control planes. Normally, SDN architectures use centralized
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controllers. These raises the issue of scalability and reliability
in large networks. As an alternate, when distributed control
planes are used, it introduces complexities in load balancing
and request dispatching. The authors proposed solution
to the above said issues. They developed multiagent deep
reinforcement learning. It makes the SDN switch to make
dispatching decisions by itself without any global network
state information. This is designed to manage real time
network changing conditions and varying number of
controllers. Thereis no global coordination in this approach.

Though there are advancements in integrating
federated learning, software defined networking and deep
reinforcement learning, the existing approaches do not
have a unified, adaptive and privacy preserving mechanism.
They lack comprehensive integration of predictive traffic
modelling, adaptive decision making and secure distributed
co-ordination. This creates a gap for developing a federated
approach with privacy and trust oriented mechanism to
manage real time network conditions.

System Model
The architectural diagram presents the design of Federated
Meta-Reinforcement Learning based Load Balancing
(FMRLB). Figure 1 demonstrates the entire architecture of
the system. This system provides a load balancing oriented
approach for adaptive traffic management in SDN-

loT environments. This has three main core layers.
They are application layer (high level), control layer
(decision making) and data layer (execution level). They
are interconnected through Northband and Southband
Interfaces (Madani et al., 2023). The application plane
manages the entire load balancing scheme. Itinitiates model
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Figure 1: System architectural diagram

training, updates the global coordinates and distributes
the optimal policy to all SDN controllers. This layer can be
considered as the brain of the entire system. It guides all
learning and load balancing decision making process. At
control plane, each SDN controller manages a local traffic
dataset (D,) and predicts future data traffic using LSTM
predictor. It also uses Proximal Policy Optimization (PPO) for
leaning efficientload balancing policy 8, (Zhou etal., 2024).

Differential Privacy noise is incorporated with training
data so that the sensitive data are safeguarded. Each
controller submits their noisy updates 4 for Byzantine-
robust aggregation (Wang et al., 2024). This help in forming
a global model 9°. This mechanism ensures that the
local data privacy is concentrated while participating in
collaborative load balancing. At the data plane the SDN
switches directly interact with the loT devices. The switches
learn the load balancing schemes from PPO and executes
routing in real time. This helps in reducing link congestion,
optimizing throughput, enhancing quality of service in
loT network. The multilayer architecture enables privacy
preserving, intelligent and decentralized load balancing.
It supports continuous learning with policy adaptation in
response to dynamic network conditions.

The Figure 2 illustrates the complete workflow of the
FMRLM. The adaptive load balancing mechanism begins
with data acquisition of network metrics like bandwidth,
delay and packet drops, CPU usage, RAM utilization, queue
length, and link utilization. These data are converted as a
local dataset for each controller. Each controller performs
the local Federated Learning training. It adds differential
privacy noise (DP) and also applies Byzantine filtering.
Thena convergence checkis conducted. If the convergence
is reached, meta reinforcement learning is applied to
generalize across varying networks.

If the convergence is not reached then additional
rounds are executed. The learned policy also undergoes a
performance check. If the policy is found ineffective, then
further learning is continued. When the policy is effective
then Proximal Policy Optimization is used to refine the
load balancing policy. An LSTM based traffic predictor
anticipates the future traffic. This leads to proactive load
balancing. Updated metrics are collected and feedback loop
is executed for continuous learning and adaptive decision
making.

Methodology

The proposed Federated Mete-Reinforcement learning
based Load Balancing aims to provide a privacy driven
intelligent decision making approach in handling adaptive
traffic. It integrates several modules for performing
the load balancing in the dynamic networks. They are
Federated Leaning, Differential Privacy, Byzantine Resilient
Aggregation, Meta-Reinforcement Learning, Long Short
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Term Memory based traffic prediction and Proximal Policy
Optimization. Each module performs its tasks in the
distributed SDN architecture.

The loT network traffic data are collected from each SDN
controller ¢, € {cl ,Cyse } The collected dataare used
construct the feature vector x € R? with key metrics. The
metrics are bandwidth consumption, delay, packet drop
rate, CPU usage, RAM utilization, queue length, and link
utilization. These features represent resource status as well
as network performance. It acts as the basis for effective
load balancing. The variable ‘y’ is the target variable. It
corresponds to the traffic load or congestion level for each
sample data. Each controller constructs a rich local dataset
as the time progresses. It is represented as

Dk = {(xi’yi )};il

It contains m input output pairs for local model
training. This data set is used by each controller to train
a local prediction model l9k. Using this, the loss function
L,(6,) is calculated.

> (i (5)-2) +£16,-6°

1
m i=l

In the loss function, jrg,( (x,.) is the predicted traffic load,
6° is the current global model. x4 is the regularization
parameter. The training phase is done using all the key
features notably bandwidth, delay, drop, CPU, RAM, queue
and link utilization to ensure accurate prediction and
effective optimization.

Each controller perturbs its learned model with Gaussian
noise to preserve privacy and security.

2In(1.25/6)

ék=9k+N(0,62) where o = 5

In the above noise construction, & denotes the noise scale.
O isthe privacy budge. ¢ isthe confidence level. A stronger
privacy is enforced by using smaller O at the cost of greater
noise. When all noisy updates 8, are received, a Byzantine
Resilient Aggregation (Krum) is applied. It mitigates the
adversarial behaviour. The Krum aggregator identifies the
model with more similarity to the majority of the updates
filtering outliers.

Krum({ék}) argmmZ[(H@ 9 I >r) where 7=y +20

i#j

This mechanism makes sure that no malicious controllers
distort the global model 6° . And thus it enhances security
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and reliability. Upon updation of the global model, it
is disseminated to all the controllers. Meta Learning is
incorporated into FMRLB system to enable rapid adaptation
to dynamic traffic with few gradient steps. Each controller
using Meta RL adapts the global model to its local network
conditions. For a given controller ¢, and its local task Tk,
the adapted model is computed.
0,=0°-av,L, (6°)

The meta-learning rate is represented as & in the above
adapted model. The same network feature: bandwidth,
delay, drop rate, CPU usage, RAM usage, queue length, and
link utilization are used in the loss function L .The model
adapts quickly to changing local traffic usmg the meta
learning. In the next step, the personalized model Hk isused
forinitializing the PPO based load balancing policy 7z, .The
PPO is applied to improve the clipped surrogate objective.

max £, [min(r, (6)4,.7(6) 4 )J

In the above objective, the ratio of new policy and old policy
probabilities foraction @, instate s, isrepresentedas r,(0).
i.(0) is the clipped ratio. It ensures 1, () stays within [1-¢,1+¢]
by using a lower bound and upper bound 217 isthe estimated
advantage. The state vector §, construction is mentioned
below, §, is the state vector and maintains

[h,.CPU, (1),RAM, (r),BW, (). Delay, (t). Drop, (¢),Queue, (£),LU, (¢)]

State vector consists of ht ,the hidden state from the LSTM
predictor, real time metrics: CPU and RAM usage, bandwidth
consumption, end-to-end delay, packet drop rate, queue
length, and link utilization (LU) at time ¢ for controller k .
The complete network context is represented in the decision
making process.

The LSTM operates on the past trafficload measurements
and predicts the future congestion trends and provides
proactive decision making. The internal computation of
the LSTM model are

f, =o(W,*[h,,,L(t)]+bias, ) represents forget gate
=o(W;*[h,,,L(t)]+bias, ) represents input gate

C, = tanh (W *[h,,,L(t)]+bias. ) represents candidate cell state

C,=f, 0C_, +i, ©C, represents cell state update

0, = c(Wo*[ht_l,L(t)]+biaso) represents output gate

h, =0, © tanh (C

t) represents hidden state

o is the activation function. (;) is the current traffic load
computed from the same set of features. The L(:+1) output
servers as the next time step’s load, providing proactive
traffic balancing. w ,w, w_,w, are weight matrices Theend to
end data flow are continued in rounds. The real time metrics
are collected. The differentially private are aggregated with
Byzantine resistance. Personalized policies are adapted
from meta reinforcement learning. And the future loads are
predicted using LSTM.

The federated learning component has the theoretical
guarantee of convergence under DP and adversarial
conditions. The gIobaI model 9 converges towards the
optimal solution 0" with the foIIowmg bound

2Go

uN

168 —0" I<(1-nu) 1165 - 6" ||+ +0(0)

Here, 77 is the learning rate.  is the strong convexity
constant. To ensure stability, NV is the number of controllers.
G isthe gradient size. o is the amount of variance. And O
is the privacy budget.

The Byzantine resilient aggregator maintains robustness
against malicious controller during federated learning. This
ensures that the global model 6° remainscloseto 6 with
the bounded error of

169-6"1I<O(f/N)

f represents the malfunctioning controllers. N represents
total controllers. By incorporating Byzantine resilient, the
FMRLB handles adversarial behaviour without compromising
the accuracy of load balancing decisions. This entire
methodology integrated using federated learning,
differential privacy, Byzantine resilience, meta reinforcement
and LSTM provides efficient load balancing with security
features.

Algorithm: Federated Meta Reinforcement Learning
with LS TM and Differential Privacy for Adaptive
Load Balancing
Input:{N,T,D,, 8%e=10,6=1e-5a,p,1,m,y= 099,
A, n, A, MaxRounds}
Output:{ Final global model (6, ), set of trained policies
(m, 7y, 7Ty) Y
Initialization
The global parameter is initialized as 6% « 8°
Training Procedure
The training phase : till the convergence reaches or the
number of rounds is reached.
Set t< 0
While the global model exceeds n and t < MaxRounds do
Local Task Sampling :
Each controller ¢ (k=1 to N} performs local
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training independently
Create a task T by selecting a temporal
or random subset from Dy
Meta Training Phase
Set Gk = OG
Perform S times local iterations :
Sample mini batch By from 77
Find the gradient

g =V_0[(1/m) Z; (fiu(xi) — y)* + (1/2)1I6 — 6°|1°]

Gradient Clipping for stability

. { A j
g« g-min|l,—
gl
Each controlleris applied local update with scaled
gradient

O = (6~ g)

Privacy Preservation
Add Differential Privacy noise to 6, with
o calculated from € and &

Byzantine Aggregation (Multi-Krum):

Calculate the distance between ever pair of 8,
updates. Select m models with consistency Revise the global
model:

8% = (1/m) L5, es Ok

If the select model is not sufficient, do median based

approach
Calculte 0, for all 8, vectors
Weigh Assignmentw, =1/ (||0, — 0

Updating Consolidation

I +¢)

median

" 0% w0,
PIRTA
Meta Adaptation and LSTM, PPO Training Per
Controller:
(Each controller getting specialized with meta
adaptation and reinforcement learning)
Single step adaptation using current global

W, <

model

0, < 0°—av,L, (6°)

Pre-fill LSTM memory with historical data L
for step =1 to 100:
h = LSTM.update(L{Ht})
Reinforcement Learning
At each pointintimet, the following actions and rewards
are done
Perform state construction with s = [h, CPUx(t),
RAM(t), BWi(t), Delayy(t), Dropk(t), Queuey(t), LUk (t)]
Determine a, from s, with
Recordr ands

r from D

{t+1}

PPO Policy Update
7, (a IS)
0 :M
( ) ﬁ,fld(atls,)

A, with GAE(y, \)

h

i (9) =max(l—€, min (I‘ (0),1 +e)
197 (0) = E, | min(r, (6) A% (), ) |

Return
Global model {89} , local policies {72'1,71'2,...,72',\,}

Experimental Setup

The proposed FMRLB was evaluated in a carefully designed
|oT-SDN environment using Mininet (Bagde et al., 2024). The
network structure is designed with 50 resource constrained loT
devices. These devices include various sensors and actuators.
These devices were grouped into five clusters. Each cluster
was managed by one of five P4 programmable switches
(Miguel-Alonso, 2023). In the control plane, five controller
ONOS instances (Rahim et al., 2024) were implemented as
controller instances, running on separate virtual machines.
The adversarial conditions were introduced using 10% of
loT devices were configured as Byzantine nodes. Thus it was
made to inject faulty federated learning updates and UDP
attacks. Three traffic profiles were used namely periodic
sensor data, bursty video streams and adversarial traffic. The
variables used in the algorithm are listed in the Table 1.

The network conditions were calibrated with bandwidth
throttling to 10Mbps per link using Linux tc. The latency of
10ms with 2ms variance is used for real time environment.
This implementation was integrated with differential privacy
€=2.0, 6=10". Local model updates with cosine similarity
below 0.85 relative to the major cluster direction were
discarded as potential malicious contributions. Krum-based
Byzantine resilient aggregation with threshold t=1.7 and
LSTM predictors for traffic forecasting. Meta Reinforcement
learning adaptation was done using PPO policy with clipped
objectives €=0.2. All the data collection was done using
tool chain Mininet, ONOS, P4 switches. Logs were processed
using python scripts and plotting is done.

Result Analysis

The effectiveness of FMRLB algorithm is compared
against Vanilla Federated Leaning(Vanilla FL), Krum-only
algorithm and Federated Learning integrated with Meta
Reinforcement(FL+MetaRL). The throughput performance
of different learning methods across 100 communication
rounds are presented in Figure 3. DDoS and Byzantine
attacks are introduced at specificintervals. This is highlighted
with shaded region. The experiment shows the FMRLB has
higher throughput. It also demonstrates faster recovery
after attacks compared to other methods. FL+MetaRL has
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Table 1: Variable Description

Variable Description

N Total number of SDN controllers.

T The size of the time window.

Dy Local traffic dataset stored at controller c.

e° The initial version of the global model

€ Privacy budget in differential privacy.

1 Privacy loss parameter used in DP analysis.

a Local model learning rate.

U Over fitting monitor..

T Distance threshold (identifying and filtering out malicious updates).

m Number of selected model updates retained during the Multi-Krum aggregation step.

\% Value used for finding importance of future reward

A Generalized Advantage Estimation parameter

n Tolerance level for convergence in global model updates.

A Clipping threshold.

06 Global Model.

O Model parameters locally updated at controller c.

Ok Differentially private version of the locally updated model 6.

g Local model gradient vector.

o Standard deviation used for noise in differential privacy, computed as: v/(2:In(1.25/8))-A/e.
Set of reliable model updates selected during robust aggregation.

M Policy model trained via PPO and deployed on controller c.

0’ Adapted version of the global model fine-tuned for controller c.

T, A small task or batch randomly sampled from the local dataset D,.

By Mini-batch of data samples used during the local update step.

St System state at time t, including hidden patterns and current network metrics.

h, Hidden state output from the LSTM capturing recent traffic behavior.

CPUL(t) CPU usage recorded at controller ¢, at time t.

RAM,(t) Memory usage at controller ¢, during time t.

BW,(t) Current bandwidth at time t..

Delay,(t) Measured packet delay at the given timestamp.

Dropy(t) Rate at which packets are dropped at controller c.

Queue(t) Current length of the packet queue.

LU () Link utilization observed at controller c,.

ac Action chosen by the PPO policy at step t.

re Reward received after executing action a.

Ac Estimated advantage at time t.

r(0) Ratio between the new and old policy probabilities in PPO.

L7 (9) Clipped function.

degradation during attack phases. Krum-only and Vanilla
FL tend to have drop in the performance. They have slower
recovery and lower overall throughput. This explains the
effectiveness of FMRLB. And it also affirms robust and stable
performance even under attacks.

Figure 4 demonstrates the latency analysis. The evaluation
of FMRLB approach for the latency behaviour and compared
with other federated learning approaches across 100 rounds.
This was done under normal and adversarial conditions of
DDos and Byzantine attacks. FMRLB performs better with
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lowest latency. It also shows rapid stabilization after attack
periods. The latency of FL+MetaRL tends to be moderate
but it creases during the attacks. Krum-only and Vanilla FL
has higher latency. They also have slower recovery and high
instability. These findings state that FMRLB performs better
than other baseline algorithms even under the adversarial
conditions.

Figure 5 shows the packet drop rate comparison of
FMRLB with other baseline algorithms. These are evaluated
under normal conditions and attack conditions with DDoS
and Byzantine. FMRLB consistently performs with lowest
packet drop rates. It also quickly stabilizes even under
attacks. But , FL+MetaRL, Krum-only and Vanilla FL have
high spikes indicating high packet drops. Vanilla FL shows

highest and sustained packet loss. Once the attack period is
completed, FMRLB gets back to the baseline performance
level. This demonstrates the high resilience in managing
communication reliability.

The Figure 6 presents the CPU utilization in percentage
over time for five distributed controllers. The result
communicates that the computations workload is managed
efficiently. It depicts stable performance across all nodes.
The CPU utilization level of all the controllers remain
intact without any significant outliers. This consistency
underlines the capacity in distributing the load without
overutilization of any single controller. The absence of any
spikes or fluctuations highlight the stability of the proposed
approach. This highlights the suitability to adapt itself in
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dynamic workload environments. These findings affirm the
practical applicability of the proposed algorithmin real time
load management.

Figure 7 shows the result of investigation done to find
the dynamic load redistribution of the FMRLB approach in
asimulated environment. A sudden load spike is generated
on C1 and its performance is evaluated. The heatmap shows
the load adjustments in six rounds among five nodes C1 to
C5. At round1, all nodes go through balanced load. During
Round3, a spike is introduced on C1. Sensing the load,
FMRLB distributes excess load across other nodes. Further
rounds show that the system has efficient balancing with
C2 to C5, reducing the strain on C1. By round 6, the stability
is achieved. This indicates the FMRLB’s ability to adapt load
surges. The colour intensity from light yellow to dark red
visualizes the degree of load at each node per round. This
result affirms the proposed method’s potentiality for use in
dynamic and high demand environments

Figure 8 shows the convergence ability of FMRLB
compared with baseline algorithms. The FMRLB exhibits
faster reduction in Load balancing error measured in MSE
across federated rounds. FMRLB reaches the target error
threshold approximately in 11 to 12 rounds. Other baseline
algorithms such as FL+Meta_Rland Krum-only shows slower
convergence. Higher residual errors are produced by Vanilla
FL. FMRLB has a smooth stable descent below the target
error line. This demonstrates faster adaptation with higher
final accuracy. These results show the FMRLB's superiority
in convergence rate.

Figure 9 shows the privacy preserving capability analysis.
The privacy preserving abilities of FMRLB was evaluated and
compared with Vainla FL+DP with varying privacy budgets
(). FMRLB consistently has higher model accuracy with all
privacy levels. It reaches the accuracy of 80.5%, at a strict
privacy budge of € =0.1. When the privacy budget increases,
both the method exhibits increased accuracy. Specifically,
FMRLB reaches accuracy close to 89% at € = 5.0, while Vanilla
FL+DP remains 81%. These results indicate that FMRLB
balances strong privacy with minimal compromise in model
accuracy. It tends to be suitable for secure and efficient
federated learning deployments.

Figure 10 exhibits the privacy protection capabilities
of the methods: FMRLB, FL+MetaRL and Vanilla FL. Renyi
divergence (a = 2) was used as metric under differential
privacy (DP) with € = 0.5 and without DP. FMRLB exhibits
the stronger privacy guarantees having Renyi divergence of
0.12 with DP. Without differential privacy Vanilla FL reaches
the highest divergence at 2.5, FL+MetaRL at 2.3 and FMRLB
at 2.1. These results highlight the superior ability of FMRLB
in limiting privacy leakage.

The proposed algorithm integrates federated learning,
meta-reinforcement learning, Byzantine filtering using Krum
and LSTM for traffic prediction. Each module introduces a

manageable computational overhead. Federated learning
incurs a complexity of 0(Bd).‘B’is the batch size and ‘d’is the
model size. Meta-RL adds minimal increase in computation.
Since the Krum model needs pairwise distances among
models, the complexity of O(nzd) per round. ‘n’ refers to
the participant’s count. The computational cost of LSTM
model is characterized by (Td*). ‘T’ is the input size. ‘d’ is
the hidden size. Though, FMRLB has a moderate increase in
computational requirement compared to standard FL and
RL methods, It has significant gains in convergence speed,
robustness against Byzantine attacks, and adaptive traffic
handling makes the added cost justifiable.

The FMRLB faces communication overhead from the
periodic exchange of model updates during the federated
learning process and the aggregation of LSTM parameters
for traffic prediction. Each controller transmits locally
updated model €, of size d to the aggregator. This results
the uplink communication cost of 0(nd). Here 'n’denotes the
number of participating controllers. There is no additional
cost from Byzantine resilient Krum aggregation. Also since
meta-learning shares lightweight policy parameters, it
introduces negligible additional communication cost.
Since LSTM predictor is trained locally, there is no separate
communication cost. Hence the communication cost tends
to be linear in both number of participants and model size.

Conclusion

This research work titled “Distributed SDN Control
for 1oT Networks: A Federated Meta-Reinforcement
Learning Solution for Load Balancing” is introduced for
a distributed loT-enabled SDN networks. This proposed
method incorporates various modules namely, federated
learning, meta reinforcement learning, Byzantine resilient
aggregation and LSTM traffic prediction. Using these
mechanisms the system achieves adaptive, secure and
scalable load balancing. The system functions with
collaborative policy learning without compromising local
data privacy. Byzantine filtering makes the system realisable
in adversarial environments. LSTM based traffic helps in
forecasting and proactive resource allocation. Theoretical
analysis shows that the computational and communicational
overhead of the proposed method remains moderate and
they are practical for real world SDN environments. FMRLB
approach has good convergence speed, robustness and
adaptability when comparing other conventional FL and RL
based methods. FMRLB serves as a deployable solution for
intelligent load balancing in loT SDN environment.

The FMRLB can be enhanced with dynamic participation
of the controllers as the future directions. The controllers
may join or leave the federation because of poor network
conditions. Federated meta reinforcement can be
added with asynchronous update. This further reduces
communication delay and it improves responsiveness.
Further, block chain assisted trust management can
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strengthen the security by providing decentralized and
tamper resistant way of verifying model updates.
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