
Abstract
The growth of Internet of Things devices and their uses have introduced ample challenges in handling dynamic and heterogeneous 
traffic patterns. This also has affected the area of Software Defined Networking (SDN). The key parameters like scalability, latency and 
resilience are the concerns in centralized SDN approach, especially in the case of  large-scale IoT deployments. This research introduces 
a new method, Distributed SDN Control for IoT networks: A Federated Meta Reinforcement Learning Solution for Load Balancing. This 
method combines Federated Learning (FL) with the key features of Meta Reinforcement Learning (Meta-RL) to enable intelligent and 
privacy preserving load balancing across distributed SDN controllers. The system functions in two phases. In the first phase, traffic 
distribution models across are trained with FL without sharing raw data. Security is added to this by differential privacy and Byzantine-
resilient aggregation. In the second phase, fast adaptation to non-stationary traffic patterns is achieved using Meta-Learning and 
Proximal Policy Optimization (PPO). The performance evaluations show that the proposed method improves load balancing efficiency. 
It also reduces the response time and maintains resilience in dynamic traffics.
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Introduction
The modern digital ecosystems are deeply affected by the 
rapid growth of Internet of Things (IoT). Interconnected with 
billions of devices, it continuously produces and process 
vast amount of data (Allioui et al., 2023). Because of these 
advancements, immense opportunities have been created 
in automation, monitoring and real time decision making. 
And the fields include health care, smart cities, agriculture 
and etc., (Angelpreethi et al., 2016). This also affects the 
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traditional network especially the parameters such as 
scalability, adaptability, latency and load management 
(Sinduja et al., 2025).

Software Defined Networking introduces a change in the 
network management with flexibility and programmability. 
It is done by decoupling the functionalities of control 
plane from data plane. The centralized control gives 
global view to the network administrator. It makes easy 
to optimize routing, enforce policies and manage traffic. 
But in the case of geographically distributed IoT networks, 
the centralized approach becomes a blockage. It can lead 
to latency, poor fault tolerant and single point of failure 
while handling dynamic and high throughput IoT network 
(Kazmi et al., 2023). To solve this issue, Distributed SDN is 
introduced. Multiple controllers are deployed to manage 
the network responsibilities. As the result, scalability, fault 
tolerance and responsiveness are improved. But it suffers 
in load balancing, especially in the unpredictable and 
heterogeneous IoT environment (Mathanraj et al., 2024). 
As a solution, intelligent decision making system is need 
for optimal resource allocation, low latency and improving 
other network parameters (Bannour et al., 2018).

To face these challenges, Machine Learning based 
solutions tend to be serving better in dynamic traffic 
management. While considering all the machine learning 
approaches, Reinforcement Learning (RL) servers better in 
optimizing network resource allocation through continuous 
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learning from the environment. Reinforcement Learning 
depends on centralized training. It creates a concern for 
privacy, scalability, and resistance to security attacks, 
especially in distributed network (Zhuang et al., 2023). Here, 
Federated Learning the solution by offering decentralized 
training framework, where collaborative training occurs 
with multiple SDN controllers without exchanging the raw 
data. Thus it preserves privacy and scalability. But it lacks 
to manage against malicious participant such as Byzantine 
attacker (Raza et al., 2024).

To handle all these challenges, this research proposes 
a holistic solution to the SDN IoT decentralized limitations. 
The proposed method is “Distributed SDN control for IoT 
Networks: A Federated Meta-Reinforcement Learning 
Solution for Load Balancing”. The proposed Federated 
Meta-Reinforcement learning based Load Balancing 
(FMRLB) has the following components. Federated Learning 
phase is used for privacy preserving model training. Meta 
Reinforcement Learning is used for rapid adaptation to 
localized traffic conditions (Kazmi et al.,2023). Stable and 
efficient decision making is achieved by Proximal Policy 
Optimization. Long Short Term Memory provides proactive 
traffic prediction. Byzantine filtering is used for protecting 
the federated model against misleading updates (Chien et 
al., 2024). This integrated approach makes SDN controller to 
provide intelligent, privacy aware load balancing decisions. 
The design produces low latency, faster adaptability to 
dynamic network and resistance to threats.

Related Work
The authors (Zormati and Lakhlef, 2023) proposed a 
distributed intelligent network system. They suggested 
f ive layer approaches with Application, Control, 
Virtualization Learning and infrastructure layers. These 
layers collaboratively manage the complexity and 
scalability issues in IoT networks. Here SDN provides 
centralized programmability. NFV provides flexible and on 
demand deployment of network. In this proposed model, 
distributed hierarchical SDN control is used with a root 
controller. Federated Learning provides privacy preserving 
decentralized capacities.  The proposed method shows 
how distributed intelligence reduces communication 
overhead through federated learning. But this does not 
have intelligent load balancing for dynamic load balancing.

A federated learning framework tailored for Software-
Defined Networking (SDN) environments was introduced 
by (Tran and Tran, 2024). This research addresses the critical 
issues in distributed and heterogeneous network. It aims 
to provide solution through decentralized model training 
across multiple SDN controllers. Instead of sharing the 
raw data, local model are trained in each SDN controller 
maintaining privacy. Then they are aggregated for collective 
learning. The proposed system also addresses the issues of 
communication overhead and system heterogeneity. This is 

done by optimizing the aggregation of local models. Here 
aggregation optimization is achieved but it is not adaptive 
to traffic patterns.

The authors in (Ma et al., 2022) make a survey to study the 
potential application of Federated Learning with Software 
defined networking. This study explores the centralized 
control capabilities of SDN and decentralized learning 
mechanisms of Federated Learning. The study indicates 
several key challenges that occur at the interactions of these 
two technologies. One challenge is to manage the need for 
effective incentive system to motivate data and resource 
sharing. Another challenge is the privacy preserving 
and security during the model training and exchange. 
Aggregating heterogeneous models in diverse networks 
stands as another key challenge. As the authors review these 
challenges, they also suggest potential enhancements. They 
are privacy preserving mechanisms, adaptive aggregation 
system and incentive models mainly for SDN environments. 

A security based model based on Deep Federated 
Learning was introduced by the author (Albogami, 2025) 
. This research focuses on improving security aspects in 
Internet of Things. This system uses a Federated Hybrid 
Deep Belief Network to analyse temporal data generated by 
edge sensors in IoT networks. This mechanism of processing 
data locally enables privacy preserving machine learning. 
The pre processing steps of data normalization and feature 
selection is done using Golden Jackal Optimization. This 
utilizes the Dung Beetle Optimizer for fine tuning hyper 
parameters. It lacks SDN integration and network level 
controlling mechanism. 

The authors (Mahmod et al., 2025) proposed a Software 
Defined Networking  enhanced framework to optimize 
client selection in federated learning. This research aims 
to improve client selection in IoT and edge computing 
environments. Traditional methods used to select clients 
randomly for training data. This caused inefficiencies 
because of variances in capabilities of devices and network 
conditions. To manage this, the proposed method used 
the advantage of SDN to monitor the network metrics 
like bandwidth, latency, energy levels and client specific 
factors like computational power and data quality globally. 
Because of this, the system was able to intelligently select 
the clients with stable connectivity, high quality dataset and 
sufficient processing capabilities. Mininet emulator was used 
to evaluate this proposed method. The result shows that 
there is a significant level of reduction in communication 
overhead. This work focuses mainly on training phase and 
no real time operations. 

A multi agent solution for dispatching the requests in a 
distributed SDN environment was introduced by the authors 
(Huang et al., 2023). This research work focuses on requests 
dispatching in distributed software defined networking in 
control planes. Normally, SDN architectures use centralized 
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controllers. These raises the issue of scalability and reliability 
in large networks. As an alternate, when distributed control 
planes are used, it introduces complexities in load balancing 
and request dispatching. The authors proposed solution 
to the above said issues. They developed multiagent deep 
reinforcement learning. It makes the SDN switch to make 
dispatching decisions by itself without any global network 
state information. This is designed to manage real time 
network changing conditions and varying number of 
controllers. There is no global coordination in this approach.

Though there are advancements in integrating 
federated learning, software defined networking and deep 
reinforcement learning, the existing approaches do not 
have a unified, adaptive and privacy preserving mechanism. 
They lack comprehensive integration of predictive traffic 
modelling, adaptive decision making and secure distributed 
co-ordination. This creates a gap for developing a federated 
approach with privacy and trust oriented mechanism to 
manage real time network conditions.

System Model
The architectural diagram presents the design of Federated 
Meta-Reinforcement Learning based Load Balancing 
(FMRLB). Figure 1 demonstrates the entire architecture of 
the system. This system provides a load balancing oriented 
approach for adaptive traffic management in SDN-

IoT environments. This has three main core layers. 
They are application layer (high level), control layer 
(decision making) and data layer (execution level). They 
are interconnected through Northband and Southband 
Interfaces (Madani et al., 2023). The application plane 
manages the entire load balancing scheme. It initiates model 

training, updates the global coordinates and distributes 
the optimal policy to all SDN controllers. This layer can be 
considered as the brain of the entire system. It guides all 
learning and load balancing decision making process. At 
control plane, each SDN controller manages a local traffic 
dataset ( iD ) and predicts future data traffic using LSTM 
predictor. It also uses Proximal Policy Optimization (PPO) for 
leaning efficient load balancing policy ið  (Zhou et al., 2024).

Differential Privacy noise is incorporated with training 
data so that the sensitive data are safeguarded. Each 
controller submits their noisy updates iθ  for Byzantine-
robust aggregation (Wang et al., 2024). This help in forming 
a global model Gθ .  This mechanism ensures that the 
local data privacy is concentrated while participating in 
collaborative load balancing. At the data plane the SDN 
switches directly interact with the IoT devices. The switches 
learn the load balancing schemes from PPO and executes 
routing in real time. This helps in reducing link congestion, 
optimizing throughput, enhancing quality of service in 
IoT network. The multilayer architecture enables privacy 
preserving, intelligent and decentralized load balancing. 
It supports continuous learning with policy adaptation in 
response to dynamic network conditions. 

The Figure 2 illustrates the complete workflow of the 
FMRLM. The adaptive load balancing mechanism begins 
with data acquisition of network metrics like bandwidth, 
delay and packet drops, CPU usage, RAM utilization, queue 
length, and link utilization. These data are converted as a 
local dataset for each controller. Each controller performs 
the local Federated Learning training. It adds differential 
privacy noise (DP) and also applies Byzantine filtering. 
Then a convergence check is conducted. If the convergence 
is reached, meta reinforcement learning is applied to 
generalize across varying networks. 

If the convergence is not reached then additional 
rounds are executed. The learned policy also undergoes a 
performance check. If the policy is found ineffective, then 
further learning is continued. When the policy is effective 
then Proximal Policy Optimization is used to refine the 
load balancing policy. An LSTM based traffic predictor 
anticipates the future traffic. This leads to proactive load 
balancing. Updated metrics are collected and feedback loop 
is executed for continuous learning and adaptive decision 
making.

Methodology
The proposed Federated Mete-Reinforcement learning 
based Load Balancing aims to provide a privacy driven 
intelligent decision making approach in handling adaptive 
traffic. It integrates several modules for performing 
the load balancing in the dynamic networks. They are 
Federated Leaning, Differential Privacy, Byzantine Resilient 
Aggregation, Meta-Reinforcement Learning, Long Short Figure 1: System architectural diagram
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Term Memory based traffic prediction and Proximal Policy 
Optimization. Each module performs its tasks in the 
distributed SDN architecture.

The IoT network traffic data are collected from each SDN 
controller { }1 2, , ,k Nc c c c∈ … . The collected data are used 
construct the feature vector dx R∈  with key metrics. The 
metrics are bandwidth consumption, delay, packet drop 
rate, CPU usage, RAM utilization, queue length, and link 
utilization. These features represent resource status as well 
as network performance. It acts as the basis for effective 
load balancing. The variable ‘y’ is the target variable. It 
corresponds to the traffic load or congestion level for each 
sample data. Each controller constructs a rich local dataset 
as the time progresses. It is represented as

	 ( ){ 1, }m
k i i iD x y ==

 It contains m  input output pairs for local model 
training. This data set is used by each controller to train 
a local prediction model kθ . Using this, the loss function 

( )k kL θ  is calculated.
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In the loss function, ( )
k if xθ  is the predicted traffic load, 

Gθ  is the current global model.  µ  is the regularization 
parameter. The training phase is done using all the key 
features notably bandwidth, delay, drop, CPU, RAM, queue 
and link utilization to ensure accurate prediction and 
effective optimization.

Each controller perturbs its learned model with Gaussian 
noise to preserve privacy and security.

( ) ( )2 2ln 1.25 /
0,   where  k k N

δ
θ θ σ σ= + =

ò

In the above noise construction, σ  denotes the noise scale. 
ò  is the privacy budge. δ  is the confidence level. A stronger 
privacy is enforced by using smaller ò  at the cost of greater 
noise. When all noisy updates kθ  are received, a Byzantine 
Resilient Aggregation (Krum) is applied. It mitigates the 
adversarial behaviour. The Krum aggregator identifies the 
model with more similarity to the majority of the updates 
filtering outliers.

{ }( ) ( )2Krum arg min  where 2
k

k i j
i j

I
θ

θ θ θ τ τ µ σ
≠

= − > = +∑  



This mechanism makes sure that no malicious controllers 
distort the global model Gθ . And thus it enhances security Figure 2: Flow Diagram of the System
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and reliability. Upon updation of the global model, it 
is disseminated to all the controllers. Meta Learning is 
incorporated into FMRLB system to enable rapid adaptation 
to dynamic traffic with few gradient steps. Each controller 
using Meta RL adapts the global model to its local network 
conditions. For a given controller kc  and its local task kT , 
the adapted model is computed.

	 ( )'
k

G G
k TLθθ θ α θ= − ∇

The meta-learning rate is represented as α  in the above 
adapted model. The same network feature: bandwidth, 
delay, drop rate, CPU usage, RAM usage, queue length, and 
link utilization are used in the loss function 

kTL . The model 
adapts quickly to changing local traffic using the meta 
learning. In the next step, the personalized model '

kθ  is used 
for initializing the PPO based load balancing policy kπ . The 
PPO is applied to improve the clipped surrogate objective.

	 ( ) ( )( )max min ˆ,ˆ
t t t t tE r A r A

π
θ θ 

 


In the above objective, the ratio of new policy and old policy 
probabilities for action ta  in state  ts is represented as ( )tr θ . 

 is the clipped ratio. It ensures  stays within [ ]1 ,1− +   
by using a lower bound and upper bound ˆ

tA  is the estimated 
advantage. The state vector ts  construction is mentioned 
below,   ts  is the state vector and maintains
	

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,CPU ,RAM ,BW ,Delay ,Drop ,Queue , LUt k k k k k k kh t t t t t t t  

State vector consists of th , the hidden state from the LSTM 
predictor, real time metrics: CPU and RAM usage, bandwidth 
consumption, end-to-end delay, packet drop rate, queue 
length, and link utilization (LU) at time t  for controller k .  
The complete network context is represented in the decision 
making process.

The LSTM operates on the past traffic load measurements 
and predicts the future congestion trends and provides 
proactive decision making. The internal computation of 
the  LSTM model are

 represents forget gate

 represents input gate

( )( )t C t 1 CC tanh W * h ,L t bias− = + 
  represents candidate cell state

t t t 1 t tC f C i C−= + 





 represents cell state update

 represents output gate

( )tanht t th o C=   represents hidden state

 σ  is the activation function. ( ) L t  is the current traffic load 
computed from the same set of features. The  ( )ˆ 1L t +  output 
servers as the next time step’s load, providing proactive 
traffic balancing. , , ,f i C oW W W W  are weight matrices The end to 
end data flow are continued in rounds. The real time metrics 
are collected. The differentially private are aggregated with 
Byzantine resistance. Personalized policies are adapted 
from meta reinforcement learning. And the future loads are 
predicted using LSTM. 

The federated learning component has the theoretical 
guarantee of convergence under DP and adversarial 
conditions. The global model G

Tθ  converges towards the 
optimal solution *θ  with the following bound

	 ( ) ( )* *
0

21 TG G
T

G O
N
σθ θ ηµ θ θ

µ
− ≤ − − + +    ò

Here, η  is the learning rate. µ  is the strong convexity 
constant. To ensure stability, N  is the number of controllers. 
G  is the gradient size. σ  is the amount of variance. And ò  
is the privacy budget.
The Byzantine resilient aggregator maintains robustness 
against malicious controller during federated learning. This 
ensures that the global model Gθ  remains close to *θ  with 
the bounded error of

	 ( )* /G O f Nθ θ− ≤ 

f  represents the malfunctioning controllers. N represents 
total controllers. By incorporating Byzantine resilient, the 
FMRLB handles adversarial behaviour without compromising 
the accuracy of load balancing decisions. This entire 
methodology integrated using federated learning, 
differential privacy, Byzantine resilience, meta reinforcement 
and LSTM provides efficient load balancing with security 
features.

Algorithm: Federated Meta Reinforcement Learning 
with LS TM and Differential Privacy for Adaptive 
Load Balancing

Input: { N, T , 𝓓k,  θ⁰, ε = 1.0, δ = 1e-5,α , μ, τ , m, γ =  0.99,  
λ,  η,  Δ, MaxRounds } 

Output:{ Final global model ( )Gθ , set of trained policies 

1(π , 2π ,…  )Nπ  }
Initialization
	 The global parameter is initialized as    θᴳ ← θ⁰
Training Procedure
The training phase : till the convergence reaches or the 

number of rounds is reached.
	 Set  t ← 0
While the global model exceeds η and t < MaxRounds do
	 Local Task Sampling :
		  Each controller  cₖ (k=1 to N} performs local 
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training independently
		  Create a task 𝒯ₖ by selecting a temporal 

or random subset from 𝓓ₖ
		  Meta Training Phase
	 Set θₖ  = θᴳ
  	 Perform S times local iterations :
    	 Sample mini batch Bₖ  from 𝒯ₖ
         Find the  gradient
g = ∇_θ [(1/m) Σᵢ (fₖ(xᵢ) − yᵢ)² + (μ/2)‖θ − θᴳ‖²]

 	   Gradient Clipping for stability

                     min 1,g g
g

 ∆
← ⋅  

  

   	

	 Each controller is applied local update with scaled 
gradient 

	 ( )k k gθ θ α= − ⋅

                  Privacy Preservation
		       Add Differential Privacy noise to θₖ with 

σ calculated from ε and δ

Byzantine Aggregation (Multi-Krum):
	 Calculate the distance between ever pair of θ̃ₖ 

updates. Select m models with consistency Revise the global 
model:

        		  θᴳ = (1/m) Σ{ θ̃ₖ ∈ S} θ̃ₖ

If the select model is not sufficient, do median based 
approach

	 Calculte  θmedian for all θ̃ₖ vectors
	 Weigh Assignment wₖ = 1 / (‖θ̃ₖ − θmedian‖ + ε)
Updating Consolidation

	 , Gk
k k k

k

ww w
w

θ θ← ←∑ ⋅
∑



	 Meta Adaptation and LSTM, PPO Training Per 
Controller:

	 (Each controller getting specialized with meta 
adaptation and reinforcement learning)

	 Single step adaptation using current global 
model

	 ( )k

G G
k TLθθ θ α θ′ ← − ∇

Pre-fill LSTM memory with historical data L{t−T:t} from 𝓓ₖ:
                    for step = 1 to 100:
                        ht = LSTM.update(L{t−T:t})
		  Reinforcement Learning
At each point in time t, the following actions and rewards 

are done
Perform state construction with  st = [ht, CPUₖ(t), 

RAMₖ(t), BWₖ(t), Delayₖ(t), Dropₖ(t), Queueₖ(t), LUₖ(t)]
                      Determine at from sₜ with πₖ 
                      	 Record rt and s{t+1}

	           PPO Policy Update

        ( ) ( )
( )old

k t t
t

k t t

a s
r

a s
π

θ
π

=
|

|

          Aₜ with GAE(γ, λ)

Return
Global model { }Gθ  ,  local policies { }1 2, ,..., Nπ π π  

Experimental Setup
The proposed FMRLB was evaluated in a carefully designed 
IoT-SDN environment using Mininet (Bagde et al., 2024). The 
network structure is designed with 50 resource constrained IoT 
devices. These devices include various sensors and actuators. 
These devices were grouped into five clusters. Each cluster 
was managed by one of five P4 programmable switches 
(Miguel-Alonso, 2023). In the control plane, five controller 
ONOS instances (Rahim et al., 2024) were implemented as 
controller instances, running on separate virtual machines. 
The adversarial conditions were introduced using 10% of 
IoT devices were configured as Byzantine nodes. Thus it was 
made to inject faulty federated learning updates and UDP 
attacks. Three traffic profiles were used namely periodic 
sensor data, bursty video streams and adversarial traffic. The 
variables used in the algorithm are listed in the Table 1.

The network conditions were calibrated with bandwidth 
throttling to 10Mbps per link using Linux tc. The latency of 
10ms with 2ms variance is used for real time environment. 
This implementation was integrated with differential privacy 
ε=2.0, δ=10-⁵. Local model updates with cosine similarity 
below 0.85 relative to the major cluster direction were 
discarded as potential malicious contributions. Krum-based 
Byzantine resilient aggregation with threshold τ=1.7 and 
LSTM predictors for traffic forecasting. Meta Reinforcement 
learning adaptation was done using PPO policy with clipped 
objectives ε=0.2.  All the data collection was done using 
tool chain Mininet, ONOS, P4 switches. Logs were processed 
using python scripts and plotting is done.

Result Analysis
The effectiveness of FMRLB algorithm is compared 
against Vanilla Federated Leaning(Vanilla FL), Krum-only 
algorithm and Federated Learning integrated with Meta 
Reinforcement(FL+MetaRL). The throughput performance 
of different learning methods across 100 communication 
rounds are presented in Figure 3. DDoS and Byzantine 
attacks are introduced at specific intervals. This is highlighted 
with shaded region. The experiment shows the FMRLB has 
higher throughput. It also demonstrates faster recovery 
after attacks compared to other methods. FL+MetaRL has 
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Table 1: Variable Description

Variable Description

N Total number of SDN controllers.

T The size of the time window.

Dₖ Local traffic dataset stored at controller cₖ.

θ⁰ The initial version of the global model

ε Privacy budget in differential privacy.

δ Privacy loss parameter used in DP analysis.

α Local model learning rate.

μ Over fitting monitor..

τ Distance threshold (identifying and filtering out malicious updates).

m Number of selected model updates retained during the Multi-Krum aggregation step.

γ Value used for finding importance of future reward

λ Generalized Advantage Estimation parameter

η Tolerance level for convergence in global model updates.

Δ Clipping threshold.

θᴳ Global Model.

θₖ Model parameters locally updated at controller cₖ.

θ̃ₖ Differentially private version of the locally updated model θₖ.

g Local model gradient vector.

σ Standard deviation used for noise in differential privacy, computed as: √(2·ln(1.25/δ))·Δ/ε.

S Set of reliable model updates selected during robust aggregation.

πₖ Policy model trained via PPO and deployed on controller cₖ.

θₖ′ Adapted version of the global model fine-tuned for controller cₖ.

kT A small task or batch randomly sampled from the local dataset Dₖ.

Bₖ Mini-batch of data samples used during the local update step.

sₜ System state at time t, including hidden patterns and current network metrics.

hₜ Hidden state output from the LSTM capturing recent traffic behavior.

CPUₖ(t) CPU usage recorded at controller cₖ at time t.

RAMₖ(t) Memory usage at controller cₖ during time t.

BWₖ(t) Current bandwidth at time t..

Delayₖ(t) Measured packet delay at the given timestamp.

Dropₖ(t) Rate at which packets are dropped at controller cₖ.

Queueₖ(t) Current length of the packet queue.

LUₖ(t) Link utilization observed at controller cₖ.

aₜ Action chosen by the PPO policy at step t.

rₜ Reward received after executing action aₜ.

Aₜ Estimated advantage at time t.

( )tr θ Ratio between the new and old policy probabilities in PPO.

( )CLIPL θ Clipped function.

degradation during attack phases. Krum-only and Vanilla 
FL tend to have drop in the performance. They have slower 
recovery and lower overall throughput. This explains the 
effectiveness of FMRLB. And it also affirms robust and stable 
performance even under attacks.

Figure 4 demonstrates the latency analysis. The evaluation 
of FMRLB approach for the latency behaviour and compared 
with other federated learning approaches across 100 rounds. 
This was done under normal and adversarial conditions of 
DDos and Byzantine attacks.  FMRLB performs better with 
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Figure 4: Latency Analysis

Figure 3: Throughput Analysis

Figure 5: Packet Drop Rate Analysis
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Figure 6: CPU Utilization Comparisons

Figure 7: Controller Load Distribution 

Figure 8: Learning Convergence Analysis
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lowest latency. It also shows rapid stabilization after attack 
periods. The latency of FL+MetaRL tends to be moderate 
but it creases during the attacks. Krum-only and Vanilla FL 
has higher latency. They also have slower recovery and high 
instability. These findings state that FMRLB performs better 
than other baseline algorithms even under the adversarial 
conditions.

Figure 5 shows the packet drop rate comparison of 
FMRLB with other baseline algorithms. These are evaluated 
under normal conditions and attack conditions with DDoS 
and Byzantine.  FMRLB consistently performs with lowest 
packet drop rates. It also quickly stabilizes even under 
attacks. But , FL+MetaRL, Krum-only and Vanilla FL have 
high spikes indicating high packet drops. Vanilla FL shows 

highest and sustained packet loss. Once the attack period is 
completed,  FMRLB gets back to the baseline performance 
level. This demonstrates the high resilience in managing 
communication reliability.

The Figure 6 presents the CPU utilization in percentage 
over time for five distributed controllers. The result 
communicates that the computations workload is managed 
efficiently. It depicts stable performance across all nodes. 
The CPU utilization level of all the controllers remain 
intact without any significant outliers. This consistency 
underlines the capacity in distributing the load without 
overutilization of any single controller. The absence of any 
spikes or fluctuations highlight the stability of the proposed 
approach. This highlights the suitability to adapt itself in 

Figure 9: Privacy Preserving Comparison

Figure 10: Privacy Preserving Analysis
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dynamic workload environments. These findings affirm the 
practical applicability of the proposed algorithm in real time 
load management. 

Figure 7 shows the result of investigation done to find 
the dynamic load redistribution of the FMRLB approach in 
a simulated environment. A sudden load spike is generated 
on C1 and its performance is evaluated. The heatmap shows 
the load adjustments in six rounds among five nodes C1 to 
C5. At round1 , all nodes go through balanced load. During 
Round3, a spike is introduced on C1. Sensing the load, 
FMRLB distributes excess load across other nodes. Further 
rounds show that the system has efficient balancing with 
C2 to C5, reducing the strain on C1. By round 6, the stability 
is achieved. This indicates the FMRLB’s ability to adapt load 
surges. The colour intensity from light yellow to dark red 
visualizes the degree of load at each node per round. This 
result affirms the proposed method’s potentiality for use in 
dynamic and high demand environments

Figure 8 shows the convergence ability of FMRLB 
compared with baseline algorithms. The FMRLB exhibits 
faster reduction in Load balancing error measured in MSE 
across federated rounds. FMRLB reaches the target error 
threshold approximately in 11 to 12 rounds. Other baseline 
algorithms such as FL+Meta_Rl and Krum-only shows slower 
convergence. Higher residual errors are produced by Vanilla 
FL. FMRLB has a smooth stable descent below the target 
error line. This demonstrates faster adaptation with higher 
final accuracy. These results show the FMRLB’s superiority 
in convergence rate.

Figure 9 shows the privacy preserving capability analysis. 
The privacy preserving abilities of FMRLB was evaluated and 
compared with Vainla FL+DP with varying privacy budgets 
(ε). FMRLB consistently has higher model accuracy with all 
privacy levels.  It reaches the accuracy of 80.5%, at a strict 
privacy budge of ε = 0.1. When the privacy budget increases, 
both the method exhibits increased accuracy. Specifically, 
FMRLB reaches accuracy close to 89% at ε = 5.0, while Vanilla 
FL+DP remains 81%.  These results indicate that FMRLB 
balances strong privacy with minimal compromise in model 
accuracy. It tends to be suitable for secure and efficient 
federated learning deployments.

Figure 10 exhibits the privacy protection capabilities 
of the methods: FMRLB, FL+MetaRL and Vanilla FL. Renyi 
divergence (α = 2) was used as metric under differential 
privacy (DP) with ε = 0.5 and without DP. FMRLB exhibits 
the stronger privacy guarantees having Renyi divergence of 
0.12 with DP.  Without differential privacy Vanilla FL reaches 
the highest divergence at 2.5, FL+MetaRL at 2.3 and FMRLB 
at 2.1. These results highlight the superior ability of FMRLB 
in limiting privacy leakage.

The proposed algorithm integrates federated learning, 
meta-reinforcement learning, Byzantine filtering using Krum 
and LSTM for traffic prediction. Each module introduces a 

manageable computational overhead. Federated learning 
incurs a complexity of ( )O Bd . ‘B’ is the batch size and ‘d’ is the 
model size. Meta-RL adds minimal increase in computation. 
Since the Krum model needs pairwise distances among 
models, the complexity of ( )2O n d  per round. ‘n’ refers to 
the participant’s count.  The computational cost of LSTM 
model is characterized by ( )2Td . ‘T’ is the input size. ‘d’ is 
the hidden size. Though, FMRLB has a moderate increase  in 
computational requirement compared to standard FL and 
RL methods, It has significant gains in convergence speed, 
robustness against Byzantine attacks, and adaptive traffic 
handling makes the added cost justifiable. 

The FMRLB faces communication overhead from the 
periodic exchange of model updates during the federated 
learning process and the aggregation of LSTM parameters 
for traffic prediction. Each controller transmits locally 
updated model kè  of size d  to the aggregator. This results 
the uplink communication cost of ( )O nd . Here ‘n’ denotes the 
number of participating controllers. There is no additional 
cost from Byzantine resilient Krum aggregation. Also since 
meta-learning shares lightweight policy parameters, it 
introduces negligible additional communication cost. 
Since LSTM predictor is trained locally, there is no separate 
communication cost. Hence the communication cost tends 
to be  linear in both number of participants and model size. 

Conclusion
This research work titled “Distributed SDN Control 
for IoT Networks: A Federated Meta-Reinforcement 
Learning Solution for Load Balancing” is introduced for 
a distributed IoT-enabled SDN networks. This proposed 
method incorporates various modules namely, federated 
learning, meta reinforcement learning, Byzantine resilient 
aggregation and LSTM traffic prediction. Using these 
mechanisms the system achieves adaptive, secure and 
scalable load balancing. The system functions with 
collaborative policy learning without compromising local 
data privacy. Byzantine filtering makes the system realisable 
in adversarial environments. LSTM based traffic helps in 
forecasting and proactive resource allocation. Theoretical 
analysis shows that the computational and communicational 
overhead of the proposed method remains moderate and 
they are practical for real world SDN environments. FMRLB 
approach has good convergence speed, robustness and 
adaptability when comparing other conventional FL and RL 
based methods. FMRLB serves as a deployable solution for 
intelligent load balancing in IoT SDN environment.

The FMRLB can be enhanced with dynamic participation 
of the controllers as the future directions. The controllers 
may join or leave the federation because of poor network 
conditions.  Federated meta reinforcement can be 
added with asynchronous update. This further reduces 
communication delay and it improves responsiveness. 
Further, block chain assisted trust management can 
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strengthen the security by providing decentralized and 
tamper resistant way of verifying model updates. 
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