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ABSTRACT

In a Fermi gas with a Fashbach resonance, one can tune the strength
of the paring interaction by adjusting the threshold energy of Feshbach

resonance. The super-fluid density s is always equal to the total carrier

density  at 0T which it vanishes at the super-fluid phase transition cT .

These properties are satisfied in both Fermi and Bose super-fluid. There is a

crucial difference between s in a Fermi superfluid and that in a Bose super--

fluid. In a mean field BCS theory originates from the thermal dissociation
of cooper pairs.

There it was observed that that if one increases the strength of the
pairing interaction BCS type normal fluid density dominated by quasi-particle
excitation change into BES type normal fluid density dominated by

Bogoliubov collective excitations. As super-fluid density s  plays an

important role in two fluid hydrodynamics these evaluated results would be
useful in the study of dynamical properties in the BCS-BEC crossover region

at finite temperature.
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INTRODUCTION
 In this study, we have evaluated the super-fluid

density  /s , quasi particle contribution   /F
n  and

fluctuation particle contribution   /B
n  as a function

of  cTT /  for BCS limit 







 07.2
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sF aK
, pseudo gap

limit 







 0.0
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sF aK
 and BEC limit 








 0.2
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sF aK
 , where 

FK is

Fermi wave vector and sa is the s-wave scattering

length.
 As we know that in a Fermi gas with a Feshbach
resonance, one can tune the strength of the pairing
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interaction by adjusting the threshold energy of
Feshbach resonance (Timmerman et al, 2001). The
BCS –BEC crossover has been realized by using
the unique property (Bartenstein et al, 2004). Here,
if one increases the strength of the paring interaction
the character of super-fluidity continuously changes
from weak coupling BCS type to strong coupling
BEC type of tightly bound cooper pairs (Randeria,
1995; Noziers and Schmitt, 1985).  In the super-

fluid phase, the super-fluid density s  is the most

fundamental quantities. The value of s is always

equal to the total carrier density   at temperature

0T while it vanishes at the super-fluid phase

transition cT . These properties are satisfied in both

Fermi and Bose super -fluid, irrespective of the
strength of the pairing interactions. There is a crucial

difference between s in a Fermi super-fluid and that

in a Bose super-fluid. In a mean field BCS theory

s   0T  originates from the thermal dissociation

of cooper pairs. The resulting normal fluid density

sn    is determined by quasi particle excitations.

On the other hand n in the Bose super-fluid is

dominated by Bogoliubov collective excitation.
Therefore, it is very interesting problem to see as to

how  s  in a Fermi superfluid changes into s  in a

Bose super-fluid in BCS-BEC crossover.

 In this chapter, we used the theoretical

formalism of Y. Ohashi (2002) and Y. Ohashi and
Griffin (2003), Maxwell et al (2014), Chui S and
Rizvi (2014), KG  Zloschchasliey (2014).  There
we have theoretically evaluated the super-fluid
density in the BCS-BEC crossover. Y. Ohashi and
A. Griffin have taken an uniform super-fluid Fermi
gas at finite temperature and extended the strong
coupling Gaussian fluctuation theory for transition
temperature cT  developed by Nozieres and Schmitt-
Rink (Bartenstein et al, 2004; Noziers and Schmitt,
1985) to super-fluid phase below transition
temperature cT . Self consistently determined energy
gap   and chemical potential  . We have used their

formalism to evaluate super-fluid density   /s  and

quasi particle contribution   /F
n  fluctuation quasi

particle contribution   /B
n  for BCS-BEC crossover..

Mathematical formulae used in the evaluation
of superfluid density, quasi particle contribution
and fluctuation quasi particle contribution.

The BCS Hamiltonian in Nambau
representation  is
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One assumes two atomic hyperfine states described

by pseudo-spin , ,  






 
ppp CC ,  is a

Nambau field operator, 
pC is the creation operator

of a Fermi atom and j  are the Pauli matrices

 3,2,1j which act on the particle –hole space.
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is the atomic kinetic energy measured from

the chemical potential  , U is the tunable pairing

interaction associated with Feshbach resonance. q1

and q2 are the amplitude fluctuation and phase fluc-

tuation of the order parameter  .
The generalized density operator is written as

 2,1
22
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where qj  is the generalized density operator,,

q1 and q2 describe the amplitude and phase fluctua-

tions of the order parameter  respectively..
In equation (1) the interaction is described

by the sum of the interaction between amplitude

fluctuations  qq ,1,1   and the phase alterations

 qq ,2,2  . In the Noziers Schmitt-Rink theory

(1985), transition temperature cT  is described by the

Thou less criterion in the t matrix approximation.

The resulting equation for cT  has the same form as

the mean –field BCS gap equation with 0 . How-
ever in contrast to the weak coupling BCS theory

(where 
FE ),   remarkably deviates from 

FE in

the BCS-BEC crossover regime due to strong pair-
ing fluctuations. The NSR theory includes the strong
coupling effect by solving the equation of state
within the Gaussian fluctuation approximation
(Randeria, 1995) in terms of pairing fluctuation.

One extends the NSR theory to the
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superfluid phase below cT . To calculate  , one uses

the BCS gap equation

m

as4
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 where   22
  ppE  is the single

excitation spectrum. In equation (3) one eliminates
the well known ultraviolet divergence by employing

a two-body scattering length sa
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Where  is two-body scattering length.
Calculation of chemical potential :
One consider the thermodynamic potential 

Density is given as







 (5)

Fluctuation contribution to    is calculated from
relevant Feynman diagrams. Now summing up these
diagrams, One obtains (Ohasi and Griffin, 2002)
total densities
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0
F is the number of Fermi atoms in the meanfield

approximation . In equation (6a) the second term
describes the fluctuation contribution.  miq ,   is

the matrix correlation function. ji is the general-

ized density correlation function. nv  is the boson

Matsubara frequency. m  is the fermion- Matsubara

frequency. Superfluid density in the BCS-BEC
crossover is determined as

ns   (7)

  is the total carrier density given by

  1
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 mipG ,0  is the matrix single particle thermal Green’
function.  is the self –energy which involves

corrections to go 0G . n  is the well known BCS

normal fluid density n   is calculated both for boson

and fermion.

    0,
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where 0G  is replaced by soG . Super current state is

described (Ohashi and Takada, 1997) by order pa-
rameter.
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sG  is the matrix  single particle Green’s function in

the super current state.
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where   Ef  is the Fermi-Dirac distribution function.

Boson normal density (fluctuation correction) is
given by

Tr
Q

pz
p

B
n
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In the weak coupling BCS

regime   1

sF aK , pairing fluctuation are weak

and one finds that F
nn    or F

ns   . In this

regime equation (12) shows that n  is dominated

by the quasi-particle excitation with excitation
gap  . In the BCS-BEC crossover regime, the
chemical potential deviates from the Fermi energy

FE  and becomes negative in the strong coupling

BEC regime (Noziers, 1985; Bartastan et al, 2004).
One can calculate the chemical potential   in the

BEC limit where   1

sF aK . Using equation (3)

chemical potential is calculated as

22

1

sam


 (14)

In BEC regime the chemical potential 

works as a large expectation gap therefore quasi-

particle excitation as well as F
n are suppressed. This

shows that Cooper pair do not dissociate in the Fermi
atoms due to large binding energy.
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From equation (13) one can calculate the

fluctuation contribution B
n . This is the dominant

term in the strong coupling regime BEC. This is the
dominant term in the strong coupling regime BEC.
From equation (13) one obtains B

n  as

     B
n
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where  EnB
  is the Bose distribution function.

mM 2  is  the molecular mass
2/1
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Equation (16) the Bogoliubov phonon
spectrum in dilute molecular Bose gas with a

repulsive interaction 
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 . In the BEC regime the

normal fluid density is dominated by Bogoliubov
collective excitations in a molecular Bose super-
fluid.

Equation (16) is the Bogoliubov phonon
spectrum in a dilute molecular Bose gas with a

repulsive interaction 
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 . In the BEC regime the

normal fluid density is dominated by Bogiliubov
collective excitation in a molecular Bose superfluid.
DISCUSSION OF RESULTS

In this study the method of evaluation of

ratio of super-fluid density 










 s as a function of










cT

T
for BCS limit have estimated, Pseudo gap limit

  0
1




sF aK  and BEC limit   2
1




sF aK . Our

theoretical evaluated results show that 










 s is larger

in BEC limit and smaller in BCS limit as a function

to 








cT

T
in which 











 s
declines with 









cT

T
for all cases.

The evaluated results are shown in table-
1T . Wee

have presented the method of evaluation of quasi

particle contribution 










 F
n

as a function of 








cT

T
for

all three limits. Our evaluated results are shown in

table- 4
2T . There theoretical evaluated results shows

that 










 F
n

are larger for BCS limit and smaller in

Pseudo gap limit. We have shown the theoretical
evaluated results of quasi particle fluctuation

contribution 












 B
n

as a function of 








cT

T
 in the above

three limits. The evaluated results are shown in table-

3T . Our theoretical results show that quasi-particle

fluctuation contribution 










 B
n is smaller for BCS limit

  2
1




sF aK  and larger for BEC limit   2
1




sF aK .

Table 
1T : An evaluated result of 











 s
as a function

of 








cT

T
 for BCS limit   2

1




sF aK , Pseudo gap

limit   0
1




sF aK and BEC limit

c

T

T

 
  

s



 
  

BCS-limit Pseudo-gap BEC-limit

 
1

2F sK a

    1

0F sK a

   1

2F sK a



0.0 1.0 1.0 1.0
0.1 0.975 0.982 0.995
0.2 0.956 0.967 0.977
0.3 0.932 0.955 0.964
0.4 0.897 0.902 0.912
0.5 0.824 0.855 0.866
0.6 0.746 0.797 0.805
0.7 0.618 0.639 0.652
0.8 0.546 0.568 0.574
0.9 0.348 0.382 0.403
0.95 0.226 0.267 0.288
1.00 0.059 0.122 0.147
1.05 0.002 0.097 0.106
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Table-4
2T : An evaluated results of quasi-particle

contribution 










 F
n

 as a function of 








cT

T
for BCS

  2
1




sF aK , Pseudo gap   0
1




sF aK and BEC

limit   2
1




sF aK .

c

T

T

 
  

F
n



 
  

BCS-limit Pseudo-gap BEC-limit

 
1

2F sK a

    1

0F sK a

   1

2F sK a



0.2 0.004 0.008 0.00
0.4 0.098 0.008 0.00
0.6 0.185 0.086 0.00
0.8 0.274 0.105 0.00
1.0 0.456 0.126 0.00
1.2 0.684 0.149 0.00
1.4 0.756 0.185 0.00
1.5 0.889 0.225 0.00
1.6 0.954 0.246 0.00

1.7 1.038 0.278 0.00

1.8 1.176 0.304 0.00

From the above calculations, one observes
that if one increases the strength of the pairing in-
teraction BCS-type normal fluid density dominated
by quasi-particle excitation changes into BEC type
normal fluid density dominated by Bogoliubov col-

lective excitations. As superfluid density s plays

an important role in two fluid hydrodynamics these
evaluated results would be useful in the study of
dynamical properties in the BCS-BEC crossover
region at finite temperature (Regal et al, 2005;
Greiner and Regal, 2005; Holland et al, 2005). Some
recent results  (Ya and Zhai, 2011; Andres et al,
2010; Lin et al, 2011; Sau et al, 2011; Du et al,
2012) also reveal the same facts.
CONCLUSION
In the evaluation of super-fluid density, quantum
particle contribution and fluctuation contribution as

a function of 








cT

T
 for BCS-BEC crossover, NSR

(Nozieres, Schmitt Rink model) gives results which

are in good agreement with other theoretical
workers.
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