
Abstract
Skin Cancer is among the most serious medical conditions in the worldwide, and curative results are better when detected early. Some 
of the challenges with conventional skin cancer detection methods, such as genetic algorithms, particle swarm optimization, and 
U-net-based segmentation models, include selecting the appropriate characteristics and accurately identifying skin lesions. This paper 
proposes a unique method that combines a Hybrid Pigeon Optimization Algorithm (HPOA) for feature selection with a Modified Multi-
Class Semantic Segmentation (MMSS) model for lesion segmentation. The precise feature selection of the proposed HPOA improves 
the performance of the segmentation and classification models. Based on an enhanced U-Net architecture, the MMSS model uses skip 
connections and boundary detection techniques to improve segmentation accuracy. This approach integrates information from multiple 
feature spaces to produce a more informative structure for segmenting the skin lesions. The ISIC 2020 dataset counts considered are 
2000, 4000, 6000, 8000, and 10000 for testing the proposed methodology. The experimental results with segmentation accuracy (ranging 
from 91–96%), precision (ranging from 89–94%), and recall (ranging from 88–94%) show that the proposed methodology gives a strong 
foundation for detecting skin cancer automatically.
Keywords: Skin cancer detection,  Deep learning, hybrid pigeon optimization (HPOA),  Semantic segmentation, ISIC 2020 dataset.
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Introduction
Among the most widespread and deadly types of cancer 
worldwide, skin cancer has become more common in 
recent years. The early detection of skin cancer is essential 
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for decreasing the mortality rate in humans and reducing 
risks associated with treatment. Among the serious cancer 
types, Melanoma is considered a dangerous one, of about 
75% and only 30% of all skin cancer diagnoses (2017). This 
will be particularly helpful for dermatologists in detecting 
skin cancer using Computer-Aided Diagnosis (CAD). There 
are some parameters, such as skin texture, lesion size, and 
distribution of pigment color, which will face issues in the 
accurate segmentation and classification of lesions (2017). 
This becomes a more challenging factor for accurately 
identifying the exact boundary and extracting features from 
skin lesions due to the uneven distribution of boundaries 
and skin lesion features, which exhibit a variety of visual 
patterns in the skin. This will lead to a trouble stage for the 
automated diagnostic tools, which make the system less 
reliable.

Data Preprocessing
The essential stage is the preprocessing of data for diagnosing 
the skin cancer types. This stage ensures the accurate 
prediction of skin cancer and improves the standardization of 
input images for efficient model training. Model performance 
may be hampered by biases introduced by variations in 
dermoscopic picture brightness, contrast, and resolution. 
This enhances the feature extraction process by letting the 
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model focus on relevant lesion characteristics rather than 
noise or artifacts. Normalization is a preprocessing technique 
that helps to reduce variability and ensure consistent data 
input by scaling pixel values. The effectiveness of the 
preprocessing stage balances the classification stage and 
model generalization enhancement upon differentiating skin 
lesions by non-representative class enhancement. Finally, this 
helps in improving the performance metrics of the proposed 
methodology. Metrics, such as precision, robustness, and 
reliability, play a significant role in various types of skin cancer 
detection (2018).

Feature Selection
The improvement of the efficiency of the CAD system for 
detecting skin cancer by Feature selection and segmentation 
process. After removing unwanted information, the choice of 
efficient feature selection focuses on the most characteristic 
characteristics of skin lesions (2017). Additionally, accurate 
segmentation ensures that only the regions are analyzed for 
categorization, increasing the diagnosis’s precision (2018). 
The representation of a novel hybrid framework with the 
usage of the MMSS model for lesion segmentation, accurate 
prediction, and HPOA for predominant feature selection. 
Normalization technique is used for consistent scaling of 
input image features, which leads to the crucialness of the 
preprocessing stage. The proposed system aims to address 
current challenges in skin cancer detection and significantly 
enhance diagnostic findings by utilizing advanced feature 
selection and segmentation approaches (2017, 2018).

Segmentation
Regarding the analysis of medical images, especially in skin 
cancer prediction, segmentation is the most predominant 
stage. Skin tissue is covered by healthy tissue which have a 
relationship with the lesion. This is separated and detected 
by meticulous segmentation, which is considered as 
most critical stage in image processing. The accuracy of 
conventional segmentation techniques is reduced due to 
their inability to handle irregular lesion shapes, variations 
in skin tone, and unclear boundaries. Advanced methods, 
such as semantic segmentation models, have demonstrated 
promise in pixel-level classification, enabling the overcoming 
of these restrictions and ensuring that every pixel in an image 
is accurately classified into either skin  lesion or skin non-
lesion regions. Generally, the available methodologies 
utilize boundary-aware loss functions, encoding-decoding 
models, and a connection skipping accuracy enhancement 
factor for the segmentation stage, while considering the 
ISIC 2020 dataset, which exhibits significant variations in 
lesion characteristics. The improvement of classification 
performance and early detection of melanoma utilizing 
precise segmentation, which helps in the significant 
improvement of patient outcomes by reducing false 
negatives and false positives (2021).

Classifiers
The classification of lesions between benign and malignant 
types is done using Classifiers. This is an essential stage in the 
skin cancer detection process. Currently, the most prevalent 
deep learning classifier model is the convolutional neural 
network (CNN). Random Forest and Support Vector Machine 
classifiers are used in the diagnostic process for the keen 
extraction of construction features from dermatological 
photographs.

Convolutional Neural Network 
The significant classifier CNN, is used at the initial stage for 
image segmentation. Because CNN has the capability of 
automatically extracting spatial features from the imputed 
images by utilizing its different layers. CNN layers consist 
of convolution layers, pooling layers, hidden layers, and an 
activation function. Skin lesion type differentiation based on 
lesions, texture variation feature, shape, and color of skin. The 
CNN carefully extracts these features from the segmented 
lesion. Then, the normalised and segmented images are at 
usage for training the CNN models after splitting skin lesions 
into many groups. Achieving high accuracy in intricate pattern 
identification in input images is easily handled by CNN.

Support Vector Machine 
SVM is a supervised learning algorithm that effectively 
classifies using the hyperplane technique. SVM helps 
improve the accuracy metric by employing nonlinear 
separation management within skin lesion types. By 
following up the feature extraction process, it is considered 
a promising method for f ine-tuning the model for 
classification. SVM plays a role in handling high-dimensional 
feature spaces in input images. The overall accuracy, 
performance, and misclassification reduction are enhanced 
by SVM incorporated along with CNN’s learned features, 
especially when concluding the differentiation of similar 
visualizations of skin lesion types. 

Random Forest 
The decision tree methodology serves as the underlying 
framework for the random forest algorithm, enabling 
efficient classification and determining the significance 
of minute features in the classification process. That’s why 
random forest is considered the most complex ensemble 
learning algorithm. The skin features, such as skin tone, 
texture, and boundary characteristics, enhance the 
precision of skin cancer prediction by utilizing the random 
forest algorithm. Based on how often a feature occurs in 
the decision trees and the extent to which it enhances 
the model’s classification performance, the Random 
Forest algorithm gives each feature an importance score. 
Understanding how the model makes decisions and 
ensuring that the most relevant features are prioritized 
during classification depends on this step.
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Related work
Arshaghi et al. (2020) proposed a hybrid framework of 
feature selection methodology that combines SVM with the 
buzzard optimization algorithm (BUZO). The BUZO algorithm 
enhances the performance of the classification process and 
reduces dimensionality by selecting pertinent features from 
dermatology images. The accuracy of the classification 
process is 94.3%, attained by using the publicly available 
ISIC dataset. However, the accuracy was compromised; there 
is a limitation in handling multi-class skin cancer detection 
because of focusing on binary classification of images, i.e., 
benign vs. malignant. Moreover, the proposed model’s 
computational efficiency was not discussed, raising concerns 
about its practicality in real-time clinical environments.

Doma et al. (2021) highlighted the framework with 
the hybrid combination of    deep convolutional inverse 
graphics network (DCIGN), a hybrid deep Kohonen network 
(HDKN), and a pelican optimization algorithm (SPOA) 
for skin cancer diagnosis. This hybrid novelty framework 
contains a segmentation stage, a feature extraction stage, 
and a feature selection stage. The main focus of the model 
is on classification accuracy, with limited evaluation of the 
segmentation phase. This becomes particularly critical for 
the precise identification and classification of skin lesions.

Alazzam et al. (2020) proposed a Pigeon-Inspired 
Optimizer (PIO) for a feature selection algorithm for intrusion 
detection systems. The new method was introduced for 
binarizing a continuous PIO along with cosine similarity. 
This helps improve convergence speed compared to 
conventional sigmoid methods. The datasets, such as 
KDDCUP99, NLS-KDD, and UNSW-NB15, are used to assess 
the model’s performance. It achieves promising outcomes, 
including TPR, FPR, accuracy, and F-score, compared to 
traditional AI-driven methods. Although this method was 
initially specific to intrusion detection systems, it is also 
generalizable to other domains.​

Moradi et al. (2021) presented a model with superior 
results in segmenting various types of lesions. It becomes 
increasingly challenging for real-time clinical applications 
to overcome high computational complexity. Additionally, 
the study ignored feature selection, which could improve 
classification accuracy in favor of segmentation tasks.

A better binary version of the Pigeon-Inspired 
Optimization (PIO) algorithm was created by Pan et al. 
(2021) for feature selection tasks. The authors improved 
the speed update scheme and proposed novel transfer 
functions in four categories to enhance performance 
quality. The better classification performance is achieved 
with fewer features, as evaluated using UCI datasets. There 
is no investigation of multi-class classification, as it was only 
concentrated on binary classification methodology. Reddy 
and Gopinath (2022)proposed a CNN-based model for the 
enhancement of segmentation and skin lesion classification. 

The image quality enhancement and data augmentation 
strategy are implemented using preprocessing techniques 
and segmentation techniques. The achievement of 90.2% 
segmentation process accuracy and 88.7% classification 
process accuracy by the use of the ISIC 2018 dataset. 
However, the study lacked a robust feature selection 
technique that could improve classification performance. 
The absence of a multi-class classification framework was 
a significant drawback of the proposed model, which also 
led to overfitting due to the use of sparse data.

Baygin et al. (2022) proposed a hybrid model that 
combines textural features, such as Local Binary Patterns, 
with deep features from the DarkNet architecture. The 
model achieved a classification accuracy of 91.54% using 
a collection of colorful skin cancer images. This framework 
focuses on a binary classification model, but fails to 
validate the model with diverse datasets, thereby limiting 
its generalizability. The incorporation of neighborhood 
component analysis (NCA) is employed as a feature selection 
strategy to enhance accuracy and reduce computational 
cost.

To improve feature extraction capabilities and refine 
segmentation by optimizing the selection of pertinent 
features, Sarwar et al. (2024) proposed a framework for skin 
lesion segmentation that combines the Hybrid Residual 
U-Net (ResUNet) model with Ant Colony Optimization 
(ACO). The primary objective is to improve the accuracy and 
efficiency of the framework’s performance in diagnosing 
skin lesions. However, this methodology affects processing 
time when dealing with large datasets.

Taghizadeh and Mohammadi (2022) developed a two-
step pipeline using a fine-tuned YOLOv3 model for skin 
lesion detection and a SegNet model for segmentation. 
The study achieved a mean Average Precision (mAP) of 
96% on the ISIC 2018 dataset. Despite its high accuracy, 
the model was primarily focused on melanoma detection, 
which limited its utility for other skin cancer types. The 
computational cost of running two separate models also 
raised concerns about the framework’s efficiency in real-
time applications.

Liu et al. (2023) introduced a dual-path network to 
integrate local and global features for better skin lesion 
segmentation. The local path captured detailed lesion 
features, while the global path accounted for larger 
contextual information. The model was assessed on the PH2 
dataset, achieving an IoU of 89.6%. Despite its promising 
results, the study did not address multi-class classification, 
and the dataset used was relatively small and imbalanced, 
affecting the model’s generalizability.

Omneya Attallah (2024) proposes a hybrid model 
(HTDFFM) to enhance skin cancer classification in two types 
of images. By applying DCT, the image quality is enhanced, 
and CNNs are used for feature extraction. The approach 
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employs a three-stage fusion process to merge features 
from both original and DCT-enhanced images, resulting 
in a robust feature vector for classification. The method’s 
computational complexity due to multi-stage fusion and 
multiple CNNs could limit its real-time clinical applicability.

Zhao et al. (2023) proposed a lightweight segmentation 
model designed for real-time clinical applications. Depth-
wise separable convolutions were used in the model to 
speed up inference and lower computing costs. An accuracy 
achievement of 93.7% on the ISIC 2021 dataset. Despite 
its efficiency, the model showed limited performance on 
more complex lesion types, and the authors did not explore 
feature selection techniques, which could have further 
enhanced accuracy.

A deep learning framework called EOSA-Net for multi-
class skin cancer classification is proposed by Purni and 
Vedhapriyavadhana (2024). The ebola optimization search 
algorithm (EOSA) is used for model integration of the 
enhanced Canny Edge Detection technique, which optimizes 
preprocessing and hyperparameters. ISIC 2018 and ISIC 2019 
are the datasets used to train and evaluate the model for 
categorizing 8 types of skin cancer. A classification accuracy 
of 99% is achieved. While handling a smaller dataset, it 
faces overfitting problems, rather than dealing with large 
datasets, and is also in need of increased processing power. 
Additionally, the essential component for segmentation, 
which is necessary for the precise identification of lesion 
boundaries, is also lacking in this methodology. 

Imran et al. (2024) highlighted the methodology 
for identifying various inflammations in skin tissues 
and carcinomas using a transformer-based multi-class 
segmentation of immunohistochemistry images. A 
self-attention mechanism captures global and local 
interdependence in skin pictures. An average of 83.1% 
accuracy, 90.8% of F1 score, and 65.3% of mean IoU is achieved 
by using the publicly available ISIC 2016 dataset. Feature 
selection is absent is a limitation of this model for improving 
the classification task. It primarily focuses on histopathological 
images, which limits the model’s real-time applicability. 

Yaqoob et al. (2024) proposed a framework called 
HRDOXGB, which integrates random drift optimization 
(RDO) with the XGBoost algorithm. This hybrid approach 
attains enhancement in accuracy and efficiency by 
identifying a minimal subset of pertinent genes from high-
dimensional datasets. It only operates on microarray data, 
which is a major limitation of this approach, but it does not 
affect the system’s performance. Rather, it may not directly 
reflect on complexity of cancer genetics when compared 
with future technologies. 

Proposed Methodology
The combination of the MMSS model and HPOA model 
for exact lesion segmentation and feature selection, 

respectively, for accuracy improvement and robustness 
enhancement. The hybridization work model helps 
address current model issues, such as uneven feature 
selection, computational efficiency, and enhancement of 
segmentation phase accuracy. 

Normalization
Normalization is a crucial step in image preprocessing, 
as it involves converting pixel values to a standard range 
by handling the consistency of input data, which helps 
reduce image variability. Generally, there will be variation 
in image brightness, contrast, and distribution of color in 
Skin lesion images in dermoscopic image datasets due to 
the capturing conditions of pictures. The proposed HPO-
MMSS methodology combines batch normalization (BN) 
and instance normalization (IN) techniques to enhance 
robustness and accommodate image variations.

Instance Normalization 
To handle variations in the images, IN is used in the 

preprocessing stage to minimize brightness variations and 
contrast variations, and creates a relationship between the 
images through independent normalization. Uniformity 
enhancement of the input images facilitates pixel 
modification of intensity values with a mean of 0 and a 
standard deviation of 1. The mathematical formulation of 
IN can be given as follows,

x’ = 			   Eq.(1)	

Where,
x’ - normal pixel value
x - original pixel value
µ’ - mean 

- standard deviation 
Eq. (1) is applied to every pixel in the ISIC 2020 dataset 

images for image standardization. By adjusting the pixel 
values to have a 0 mean and 1 standard deviation to maintain 
a consistent factor in pixel intensity of the images. This 
leads to affecting the factors of variation in the image’s 
illumination and color factor throughout the whole dataset. 

Batch Normalization 
BN normalizes the network’s intermediate activation 
function after the modification of each output from each 
layer to have a mean value of 0 and a standard deviation 
value of 1. This BN is used to train the MMSS model for 
enhancement purposes. This method reduces the likelihood 
of overfitting while improving the model’s stability and 
convergence. The mathematical expression for Batch 
Normalization is:

		  y = γ.   + β		  Eq.(2)
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Where,
y - batch normalized output
x - input activation

 – mean average of the small batch’s activations
 - standard deviations of the activations in the mini 

batch
γ. β - Learnable settings to change and scale the output 

that has been standardized
Eq. (2) is applied to each mini-batch and improves the 

model’s generalization capability by ensuring that the 
activations remain stable throughout the training process.

Feature Selection Using Hybrid Pigeon Optimization 
Algorithm (HPOA)
The subsequent phase in the proposed initiative pertains 
to HPOA, a metaheuristic optimization algorithm derived 
from the navigational behavior of pigeons, specifically their 
remarkable ability to interpret environmental indicators. By 
selecting the most prominent features from dermoscopic 
images, the HPOA is used for feature selection in skin cancer 
diagnosis, reducing the dimensionality of the input data. 
The efficacy of feature selection is crucial for enhancing the 
machine learning model’s performance, as redundant or 
irrelevant features can significantly undermine classification 
accuracy. The HPOA optimizes the selection process by 
balancing exploration and exploitation during the search 
for the optimal feature subset. The result is a more compact 
feature set that retains the most relevant information for 
classification, thereby enhancing both classification accuracy 
and computational efficiency.

Pseudo Code for HPOA
Initialize pigeon population (positions and velocities)
Evaluate initial fitness for each pigeon
While (iteration < max iterations):
    If (iteration < max iterations / 2):
        Apply Map and Compass Operator
    Else:
        Apply Landmark Operator
    Update positions and velocities
    Evaluate fitness for each pigeon
End While
Select the best pigeon as the optimal feature subset
Initially, the hybrid pigeon optimization algorithm 

(HPOA) creates a population of pigeons, which in the feature 
space represent possible solutions. The pigeons’ starting 
locations and speeds are chosen at random. The Map and 
Compass Operator is the next step in the algorithm, which 
allows pigeons to systematically explore the feature space 
on a global scale by adjusting their placements based 
on their velocity, personal best position, and the global 
best position. Subsequently, in the subsequent phase, the 
Landmark Operator is implemented, whereby pigeons refine 
their positions towards the centroid of the population to 

engage in local exploitation. The best-performing pigeon is 
chosen as the ideal feature subset after its fitness is assessed 
using a classification accuracy score in each iteration. The 
ideal feature subset for skin cancer detection is returned 
when the algorithm reaches convergence or the maximum 
number of iterations has been reached. The location of each 
pigeon is updated in response to its velocity and direction:

 +  			   Eq.(3)

Where, - position of pigeon i at iteration t

  - velocity of pigeon i at iteration t
The pigeon’s best-known position and the population’s 

worldwide best position both affect velocity:

 + c1. r1. (Pbest  - ) + c 2. r2. (Gbest  - )      Eq.(4)

Where:
w - inertia weight,
c1 and c2 - learning factors,
r1 and r2 - random values between 0 and 1,
Pbest - personal best position,
Gbest  - global best position.
Each pigeon is a possible subset of features chosen 

from the dermoscopic images in the context of the ISIC 
2020 dataset. This dataset has a high-dimensional feature 
space with many features based on color, texture, and 
shape. During each iteration, Eq.(3) and Eq.(4), Pigeons adjust 
their velocity and position to explore the feature space, 
respectively. The personal best (P_best) position represents 
the best feature subset a pigeon has found so far based on 
classification accuracy, the global best (G_best) position is 
the best feature subset found by the entire population, and 
the updated position reflects a new combination of features 
for the next iteration. Landmark Operator Focuses on local 
exploitation to refine the feature selection process. In this 
phase, the pigeons’ positions are adjusted based on the 
average position of the population:

= 			   Eq.(5)

Where,
N  - No. of pigeons in the population.
Eq.(5) calculates the center position of the pigeon 

population by averaging the positions of all pigeons at 
a given iteration, and it represents the average position, 
indicating the consensus about promising features across 
all pigeons.

		  = 	 Eq.(6)

Eq. (6) updates the position of each pigeon by moving 
it closer to the center point, and it adjusts the pigeon’s 
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position by averaging its current position. With the 
calculated center position,  Refining the feature 
selection process.

Modified Multi-Class Semantic Segmentation 
(MMSS)
The third step in the proposed work is the MMSS model is 
an enhanced encoder-decoder architecture designed to 
perform pixel-wise segmentation of dermoscopic images 
into melanoma, basal cell carcinoma, and benign keratosis. 
Traditional segmentation models often face challenges 
in accurately detecting irregular lesion boundaries and 
handling class imbalance in multi-class datasets, particularly 
in ISIC 2020. The proposed MMSS model addresses the above 
challenges through the following modifications.

Pseudo code for MMSS
Initialize the encoder-decoder network
For each image in the training set:
    Extract feature maps using the encoder
    Apply skip connections to preserve spatial details
    Perform upsampling in the decoder to reconstruct the 

segmentation mask
    Apply class balancing using weighted loss functions
    Enhance boundary detection using edge filters
    Calculate total loss (Dice Loss + Boundary Loss)
    Update model weights using backpropagation
End For
Evaluate the model on the validation set
Use the trained model for final prediction on test images

Encoder-Decoder Architecture with Skip Connections
The segmentation map is reconstructed by the decoder 
after the encoder has extracted hierarchical features from 
the input images. The use of skip connections ensures that 
spatial details are preserved during the decoding process, 
improving the accuracy of segmentation, especially 
for lesions with irregular borders. Mathematically, skip 
connections can be represented as:

	 Fdecoder   =  Fdecoder  +  Fencoder   			  Eq. (7)

The Eq. (7) allows the decoder to receive feature maps 
directly from the encoder, bypassing the downsampling 
process. This skip connection helps the decoder to retain 
the exact shape, size, and boundaries of lesions in the ISIC 
2020 dataset.

Class Balancing Techniques
To solve the problem of imbalanced datasets, where specific 
skin lesion types are underrepresented, the MMSS model 
integrates class-balancing techniques. Dice loss function 
or weighted cross-entropy loss can be used to address class 
imbalance in multi-class segmentation. Depending on how 

frequently each class appears in the dataset, the weighted 
cross-entropy loss gives it a different weight:

LWCE    =  - 		   Eq.(8)

Where:
•	 C  - No. of classes,
•	 yc   - actual classification for class C,
•	 ŷc   - anticipated likelihood for class C.
•	 wc   - weight assigned to class C.
The Eq. (8) assigns higher penalties to underrepresented 

classes in the ISIC 2020 dataset and ensures that the MMSS 
model pays equal attention to all classes. An increased 
accuracy of the segmentation phase for uneven skin lesion 
types leads to a dependable nature of the model while 
dealing with multi-class skin cancer detection. 

Boundary Detection Enhancements
The combination of boundary detection filter mechanism 
and boundary-aware loss function in the MMSS model is 
used for skin lesion border segmentation enhancement. 
For classifying the differentiation between benign and 
malignant lesions, the important characteristics such as 
form and lesion texture are considered. The mathematical 
formulation of the Dice loss function is represented as 
follows: 

Ldice   =  1 - 			    Eq.(9)

Where:
P - segmentation mask for predicted
G - segmentation mask for ground truth 
Increasing the overlapping factor between the 

segmentation mask of ground truth and the segmentation 
mask for the predicted image is the primary duty of the 
Dice loss function. The value of  Ldice = 1 when there is no 
overlapping, else Ldice = 0. It shows that the MMSS model 
shows more interest in overlapping optimization between 
predicted mask and ground truth mask, which results in 
accuracy enhancement in skin lesion segmentation while 
using the ISIC 2020 dataset images. 

Boundary-aware loss functions and edge detection 
filters can improve boundary detection. For edge detection, 
the Sobel operator is frequently employed and is expressed 
as follows:

Gx   =  * I ,   Gy   =  	 * I	  Eq.(10)

Where:
Gx  and  Gy  - the gradients in the horizontal and vertical 

directions,
I - input image
*denotes the convolution operation
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The combined gradient magnitude is computed 
as:

		  G = 		  Eq.(11)

Eqs. (10), (11), and (12), which apply convolution filters 
to the input image, highlight regions with sharp changes 
in intensity that correspond to lesion boundaries and 
detect edges in the vertical as well as horizontal directions. 
Inaccurate boundary predictions can be penalised using 
boundary-aware loss functions. 

LBoundary IoU = 1 - 	 Eq.(12)

Where:
- predicted boundary,

- ground truth boundary.

The  Eq. (12) measures the overlapping factor between 
predicted and ground truth boundaries, penalizing incorrect 
boundary predictions to ensure sharp and accurate 
segmentation of skin lesions.

Experimental Setup
The experimental setup involves training and testing 
the proposed HPOA combined with the MMSS model 
on the publicly available skin cancer dataset ISIC 2020. 
The dataset images are normalized to ensure uniformity 
across input data. The experiments are conducted on a 
high-performance computing system to accelerate deep 
learning computations. Accuracy, Recall, Dice Coefficient, 
Precision, and IoU are the evaluation measures that analyze 
the performance of the model. The proposed model is 
compared against baseline methods like YOLOv3, SegNet, 
and Vision Transformers to demonstrate its superior 
performance in multi-class skin lesion detection and image 
segmentation.

Dataset Description
The data set used is the International Skin Imaging 
Collaboration (ISIC) 2020, which is used to train the proposed 
framework. This dataset is considered as most predominant, 
which has a large collection of derma images of skin lesions. 
The dataset contains 33,126 images with both benign and 
malignant skin lesions. The ISIC 2020 dataset includes 
a wide range of skin lesions, such as vascular lesions, 
benign keratosis, basal cell carcinoma, actinic keratosis, 
and melanoma. It also contains the metadata inclusion of 
lesion diagnosis and patient demographics, which leads 
to an efficient path for multiclass classification and image 
segmentation process. A 70:30 ratio is used to partition 
the ISIC 2020 dataset. 30% of the data is divided as 15:15 
and utilized for testing and validation, respectively, while 
70% of the data is used for model training. To preserve the 

class distribution across all sets, stratified sampling is used 
for the splitting process. The model is trained using 70% 
of the information to identify the underlying patterns and 
characteristics of various skin lesions (training set). The ratio 
of 15 % dataset is used for validation, and 15% dataset is 
used for testing the model, respectively. Validation helps to 
improve the model’s performance and prevent overfitting 
by utilizing the input given during the training process. 
The generalizability of the model is assessed throughout 
the testing phase.

Implementation Tools and Libraries
Python is used as the primary language for implementation. 
Libraries such as TensorFlow and Keras are used for building 
and training the AI-driven model. For data manipulation 
NumPy and Pandas packages are used. Image processing 
tasks like augmentation and segmentation, OpenCV is used. 
Data visualization is done using Seaborn and Matplotlib. 
Scikit-learn is for accessing the performance metrics like 
Accuracy, Recall, Dice Coefficient, Precision, and IoU.

Results and Discussion
The proposed methodology is the combination of HPOA 
and MMSS models that provides better working for skin 
cancer detection when compared to other available 
models. By considering various sizes of datasets, the 
proposed framework outperforms the related models, 
such as YOLOv3, SegNet, and Vision Transformers, in terms 
of accuracy, precision, recall, dice coefficient, and IoU. The 
robustness of the HPO-MMSS methodology is also efficient 
in managing multi-class lesion classification and image 
segmentation. The discussion section demonstrates that 
the proposed framework improves accuracy in clinical 
applications by focusing on boundary detection and 
feature selection of skin lesions, outperforming previous 
related methodologies. 

Performance Metrics
The performance metrics are considered as Accuracy, Recall, 
Dice Coefficient, Precision, and IoU. The performance of 
the suggested model is assessed using these metrics. 
It provides a thorough evaluation of segmentation and 
skin lesion categorization. The proposed framework’s 
performance is compared with the related works such as 
ESCCHOA[7], SLSACO[13], HTDFFM[16], and HRDOXGB[20]. 
This comparison depicts the outperformance of the hybrid 
integration of HPOA-MMSS methodology for multi-class 
segmentation and feature selection. Table 1 describes the 
accuracy metric result of the proposed framework and the 
previous related works. It demonstrates that the HPO-MMSS 
model achieves accuracy enhancement through feature 
selection and the segmentation phase, identifying relevant 
features that differentiate skin lesion types. Figure 1. Shows 
the data visualization of the accuracy obtained. 
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consistent feature extraction, IN helps stabilize the model’s 
performance across a variety of lesion images, particularly 
when lesions are unclear and difficult to distinguish. Figure 2 
represents the graphical representation of the comparative 
analysis of HPO-MMS with other models.

Table 3 compares the recall value to the existing works. 
The MMSS framework’s boundary detection capability 
helps the recall metric by precisely segmenting lesions with 
asymmetrical shapes and hazy borders. To reduce false 
negatives and improve the detection of malignant lesions 
in the ISIC datasets, IN makes sure the model captures 
fine-grained details. Figure 3 represents the graphical 
representation of recall comparison.

Table 4 illustrates the extent to which the MMSS method 
improves the dice coefficient (Figure 3). The model’s ability 
to accurately describe lesion borders is enhanced by this 
technique, especially when lesions have overlapping areas 
or unusual shapes. To improve this metric, the refined 

Figure 1: Accuracy (%) of HPO-MMSS and related works
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Table 1: Accuracy Comparison of HPO-MMSS(%)

DATASET ESCCHOA SLSACO HTDFFM HRDOXGB HPO-
MMSS 

2000 85.2 88.5 86.1 89.3 91.1
4000 87.5 89.9 87.4 90.5 92.6
6000 89.1 91.2 89.0 91.8 94.0
8000 90.4 92.4 90.7 93.0 95.3
10000 91.8 93.1 92.0 94.2 96.7

Table 2: Precision Comparison of HPO-MMSS(%)

DATASET ESCCHOA SLSACO HTDFFM HRDOXGB HPO-
MMSS 

2000 83.9 85.6 84.3 86.7 89.0
4000 85.4 87.1 85.8 88.2 90.5
6000 87.0 88.6 87.3 89.8 91.9
8000 88.3 89.9 88.6 91.3 93.3
10000 89.5 91.3 90.0 92.7 94.7
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Figure 2: Precision comparison (%)

Table 2 illustrates the extent to which incorporating 
HPOA for feature selection and Instance Normalization 
(IN) improves the precision metric. By ensuring that 
discriminative features are chosen, HPOA lowers the 
number of false positives in classification. By ensuring 

Table 3: Comparison of the Recall metric of HPO-MMSS (%)

DATASET ESCCHOA SLSACO HTDFFM HRDOXGB HPO-
MMSS 

2000 84.7 86.3 85.2 87.6 88.4
4000 86.2 87.8 86.7 89.1 89.9
6000 87.7 89.2 88.2 90.5 91.3
8000 89.0 90.5 89.5 92.0 92.7
10000 90.4 91.9 90.9 93.4 94.1

2000                4000               6000              8000           10000

Figure 3: Comparison of recall(%)

Table 4: Dice Coefficient Comparison of HPO-MMSS(%)

DATASET ESCCHOA SLSACO HTDFFM HRDOXGB HPO-
MMSS 

2000 86.2 87.5 86.9 88.7 89.5
4000 87.8 89.0 88.4 90.2 91.0
6000 89.3 90.5 89.9 91.7 92.5
8000 90.7 91.9 91.2 93.2 93.9
10000 92.0 93.3 92.6 94.6 95.3
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segmentation process minimizes under-segmentation 
errors.

The overlap between the anticipated ground truth and 
predicted segmentation mask is explained by the metric 
called IoU is represented in Table 5. It depicts that the 
proposed framework outstrips with superior IoU results 
when compared to other works. IN is responsible for this 
because it confirms that small lesion patterns do not overlap 
when dealing with different skin lesions. The suggested 
framework’s relative comparison representation with other 
studies is displayed in Figure 5. 

The proposed HPO-MMSS methodology shows the 
incredible performance even when dealing with multi-

class skin cancer detection and segmentation in the ISIC 
2020 data images. And the metrics percentage shows that 
it outperforms the related works such as MSCDN, HDEF, 
HAVT, and ViTMCS in terms of accuracy, precision, recall, 
Dice coefficient, and IoU. HPOA is mainly responsible for 
noise reduction and classification boosting for the relevant 
features. Boundary details are maintained seamlessly, 
which is essential in differentiating the types of skin lesions, 
which leads to segmentation factor enhancement. When 
increasing the count of dataset images, there is a consistent 
increase in performance gain. It shows that HPO-MMSS 
acts efficiently in dealing with large datasets. Irregular 
boundaries are segmented precisely, as understood by the 
outperformance of recall and IoU metrics. It results conclude 
that the proposed framework is more scalable, dependable, 
reliable, and accurate for multi-class skin cancer detection 
in a real-world scenario.

Conclusion
The proposed HPO-MMSS framework offers a fresh and 
practical perspective on multi-class skin cancer detection 
and segmentation by comparing it with current related 
techniques. The improvement in diagnostic accuracy while 
dealing with the increase in dataset size is outperformed. 
The combination of HPOA for feature selection and MMSS 
for boundary segmentation is carried out in a novel manner, 
proving excellent outperformance in detecting skin cancer 
efficiently. The experimental results, considering the ISIC 
2020 dataset, show a consistent increase in dataset count, 
indicating the seamless enhancement of the system’s 
performance. The framework also outperforms, with a 
superior increase in performance, when the dataset size 
is consistently increased. Compared to existing models 
that suffer from irregular lesion borders and multi-class 
classification, the HPO-MMSS framework is more efficient 
and scalable, achieving higher accuracy (96.7%) and a higher 
Dice coefficient (95.3%) on larger datasets. The experimental 
results on the ISIC 2020 dataset demonstrate consistent 
performance improvements, particularly in challenging 
metrics such as the Dice coefficient and IoU, which are crucial 
for precise lesion boundary detection.

In real-world clinical applications, the framework’s 
outstanding performance paves the way for early diagnosis 
of skin cancer, which will become an increasingly essential 
part of the medical field. The future consideration primarily 
focuses on enhancing real-time capabilities and applying 
the current scenario-based augmentation methodology 
to expedite the diagnosis process in the dermatology 
field. Future enhancements of the HPO-MMSS framework 
concentrate on advanced data augmentation techniques 
to enhance real-time usability, addressing class imbalance 
and improving model generalization. The efficacy of the 
framework is enhanced by Self-supervised learning, which 
reduces its reliance on large labeled datasets.
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Figure 4: Comparison of dice coefficient (%)

Table 5: Intersection over union comparison of HPO-MMSS(%)

DATASET ESCCHOA SLSACO HTDFFM HRDOXGB HPO-
MMSS 

2000 82.4 84.0 83.6 85.3 86.5
4000 84.2 85.6 85.2 86.9 88.1
6000 85.5 87.1 86.7 88.4 89.6
8000 86.9 88.5 88.1 89.9 91.1
10000 88.2 89.9 89.4 91.3 92.5

Figure 5: Comparison of IoU(%)
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