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Abstract

Skin Cancer is among the most serious medical conditions in the worldwide, and curative results are better when detected early. Some
of the challenges with conventional skin cancer detection methods, such as genetic algorithms, particle swarm optimization, and
U-net-based segmentation models, include selecting the appropriate characteristics and accurately identifying skin lesions. This paper
proposes a unique method that combines a Hybrid Pigeon Optimization Algorithm (HPOA) for feature selection with a Modified Multi-
Class Semantic Segmentation (MMSS) model for lesion segmentation. The precise feature selection of the proposed HPOA improves
the performance of the segmentation and classification models. Based on an enhanced U-Net architecture, the MMSS model uses skip
connections and boundary detection techniques to improve segmentation accuracy. This approach integrates information from multiple
feature spaces to produce a more informative structure for segmenting the skin lesions. The ISIC 2020 dataset counts considered are
2000, 4000, 6000, 8000, and 10000 for testing the proposed methodology. The experimental results with segmentation accuracy (ranging
from 91-96%), precision (ranging from 89-94%), and recall (ranging from 88-94%) show that the proposed methodology gives a strong

foundation for detecting skin cancer automatically.
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Introduction

Among the most widespread and deadly types of cancer
worldwide, skin cancer has become more common in
recent years. The early detection of skin cancer is essential
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for decreasing the mortality rate in humans and reducing
risks associated with treatment. Among the serious cancer
types, Melanoma is considered a dangerous one, of about
75% and only 30% of all skin cancer diagnoses (2017). This
will be particularly helpful for dermatologists in detecting
skin cancer using Computer-Aided Diagnosis (CAD). There
are some parameters, such as skin texture, lesion size, and
distribution of pigment color, which will face issues in the
accurate segmentation and classification of lesions (2017).
This becomes a more challenging factor for accurately
identifying the exact boundary and extracting features from
skin lesions due to the uneven distribution of boundaries
and skin lesion features, which exhibit a variety of visual
patterns in the skin. This will lead to a trouble stage for the
automated diagnostic tools, which make the system less
reliable.

Data Preprocessing

The essential stage is the preprocessing of data for diagnosing
the skin cancer types. This stage ensures the accurate
prediction of skin cancer and improves the standardization of
inputimages for efficient model training. Model performance
may be hampered by biases introduced by variations in
dermoscopic picture brightness, contrast, and resolution.
This enhances the feature extraction process by letting the
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model focus on relevant lesion characteristics rather than
noise or artifacts. Normalization is a preprocessing technique
that helps to reduce variability and ensure consistent data
input by scaling pixel values. The effectiveness of the
preprocessing stage balances the classification stage and
model generalization enhancement upon differentiating skin
lesions by non-representative class enhancement. Finally, this
helpsinimproving the performance metrics of the proposed
methodology. Metrics, such as precision, robustness, and
reliability, play a significant role in various types of skin cancer
detection (2018).

Feature Selection

The improvement of the efficiency of the CAD system for
detecting skin cancer by Feature selection and segmentation
process. After removing unwanted information, the choice of
efficient feature selection focuses on the most characteristic
characteristics of skin lesions (2017). Additionally, accurate
segmentation ensures that only the regions are analyzed for
categorization, increasing the diagnosis’s precision (2018).
The representation of a novel hybrid framework with the
usage of the MMSS model for lesion segmentation, accurate
prediction, and HPOA for predominant feature selection.
Normalization technique is used for consistent scaling of
input image features, which leads to the crucialness of the
preprocessing stage. The proposed system aims to address
current challenges in skin cancer detection and significantly
enhance diagnostic findings by utilizing advanced feature
selection and segmentation approaches (2017, 2018).

Segmentation

Regarding the analysis of medical images, especially in skin
cancer prediction, segmentation is the most predominant
stage. Skin tissue is covered by healthy tissue which have a
relationship with the lesion. This is separated and detected
by meticulous segmentation, which is considered as
most critical stage in image processing. The accuracy of
conventional segmentation techniques is reduced due to
their inability to handle irregular lesion shapes, variations
in skin tone, and unclear boundaries. Advanced methods,
such as semantic segmentation models, have demonstrated
promisein pixel-level classification, enabling the overcoming
of these restrictions and ensuring that every pixelinanimage
is accurately classified into either skin lesion or skin non-
lesion regions. Generally, the available methodologies
utilize boundary-aware loss functions, encoding-decoding
models, and a connection skipping accuracy enhancement
factor for the segmentation stage, while considering the
ISIC 2020 dataset, which exhibits significant variations in
lesion characteristics. The improvement of classification
performance and early detection of melanoma utilizing
precise segmentation, which helps in the significant
improvement of patient outcomes by reducing false
negatives and false positives (2021).

Classifiers

The classification of lesions between benign and malignant
typesis done using Classifiers. This is an essential stage in the
skin cancer detection process. Currently, the most prevalent
deep learning classifier model is the convolutional neural
network (CNN). Random Forest and Support Vector Machine
classifiers are used in the diagnostic process for the keen
extraction of construction features from dermatological
photographs.

Convolutional Neural Network

The significant classifier CNN, is used at the initial stage for
image segmentation. Because CNN has the capability of
automatically extracting spatial features from the imputed
images by utilizing its different layers. CNN layers consist
of convolution layers, pooling layers, hidden layers, and an
activation function. Skin lesion type differentiation based on
lesions, texture variation feature, shape, and color of skin. The
CNN carefully extracts these features from the segmented
lesion. Then, the normalised and segmented images are at
usage for training the CNN models after splitting skin lesions
into many groups. Achieving high accuracy in intricate pattern
identification in input images is easily handled by CNN.

Support Vector Machine

SVM is a supervised learning algorithm that effectively
classifies using the hyperplane technique. SVM helps
improve the accuracy metric by employing nonlinear
separation management within skin lesion types. By
following up the feature extraction process, it is considered
a promising method for fine-tuning the model for
classification. SVM plays a role in handling high-dimensional
feature spaces in input images. The overall accuracy,
performance, and misclassification reduction are enhanced
by SVM incorporated along with CNN'’s learned features,
especially when concluding the differentiation of similar
visualizations of skin lesion types.

Random Forest

The decision tree methodology serves as the underlying
framework for the random forest algorithm, enabling
efficient classification and determining the significance
of minute features in the classification process. That's why
random forest is considered the most complex ensemble
learning algorithm. The skin features, such as skin tone,
texture, and boundary characteristics, enhance the
precision of skin cancer prediction by utilizing the random
forest algorithm. Based on how often a feature occurs in
the decision trees and the extent to which it enhances
the model’s classification performance, the Random
Forest algorithm gives each feature an importance score.
Understanding how the model makes decisions and
ensuring that the most relevant features are prioritized
during classification depends on this step.
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Related work

Arshaghi et al. (2020) proposed a hybrid framework of
feature selection methodology that combines SVM with the
buzzard optimization algorithm (BUZO). The BUZO algorithm
enhances the performance of the classification process and
reduces dimensionality by selecting pertinent features from
dermatology images. The accuracy of the classification
process is 94.3%, attained by using the publicly available
ISIC dataset. However, the accuracy was compromised; there
is a limitation in handling multi-class skin cancer detection
because of focusing on binary classification of images, i.e.,
benign vs. malignant. Moreover, the proposed model’s
computational efficiency was not discussed, raising concerns
about its practicality in real-time clinical environments.

Doma et al. (2021) highlighted the framework with
the hybrid combination of deep convolutional inverse
graphics network (DCIGN), a hybrid deep Kohonen network
(HDKN), and a pelican optimization algorithm (SPOA)
for skin cancer diagnosis. This hybrid novelty framework
contains a segmentation stage, a feature extraction stage,
and a feature selection stage. The main focus of the model
is on classification accuracy, with limited evaluation of the
segmentation phase. This becomes particularly critical for
the precise identification and classification of skin lesions.

Alazzam et al. (2020) proposed a Pigeon-Inspired
Optimizer (PIO) for a feature selection algorithm for intrusion
detection systems. The new method was introduced for
binarizing a continuous PIO along with cosine similarity.
This helps improve convergence speed compared to
conventional sigmoid methods. The datasets, such as
KDDCUP99, NLS-KDD, and UNSW-NB15, are used to assess
the model’s performance. It achieves promising outcomes,
including TPR, FPR, accuracy, and F-score, compared to
traditional Al-driven methods. Although this method was
initially specific to intrusion detection systems, it is also
generalizable to other domains.

Moradi et al. (2021) presented a model with superior
results in segmenting various types of lesions. It becomes
increasingly challenging for real-time clinical applications
to overcome high computational complexity. Additionally,
the study ignored feature selection, which could improve
classification accuracy in favor of segmentation tasks.

A better binary version of the Pigeon-Inspired
Optimization (PIO) algorithm was created by Pan et al.
(2021) for feature selection tasks. The authors improved
the speed update scheme and proposed novel transfer
functions in four categories to enhance performance
quality. The better classification performance is achieved
with fewer features, as evaluated using UCl datasets. There
is no investigation of multi-class classification, as it was only
concentrated on binary classification methodology. Reddy
and Gopinath (2022)proposed a CNN-based model for the
enhancement of segmentation and skin lesion classification.

The image quality enhancement and data augmentation
strategy are implemented using preprocessing techniques
and segmentation techniques. The achievement of 90.2%
segmentation process accuracy and 88.7% classification
process accuracy by the use of the ISIC 2018 dataset.
However, the study lacked a robust feature selection
technique that could improve classification performance.
The absence of a multi-class classification framework was
a significant drawback of the proposed model, which also
led to overfitting due to the use of sparse data.

Baygin et al. (2022) proposed a hybrid model that
combines textural features, such as Local Binary Patterns,
with deep features from the DarkNet architecture. The
model achieved a classification accuracy of 91.54% using
a collection of colorful skin cancer images. This framework
focuses on a binary classification model, but fails to
validate the model with diverse datasets, thereby limiting
its generalizability. The incorporation of neighborhood
componentanalysis (NCA) isemployed as a feature selection
strategy to enhance accuracy and reduce computational
cost.

To improve feature extraction capabilities and refine
segmentation by optimizing the selection of pertinent
features, Sarwar et al. (2024) proposed a framework for skin
lesion segmentation that combines the Hybrid Residual
U-Net (ResUNet) model with Ant Colony Optimization
(ACO). The primary objective is to improve the accuracy and
efficiency of the framework's performance in diagnosing
skin lesions. However, this methodology affects processing
time when dealing with large datasets.

Taghizadeh and Mohammadi (2022) developed a two-
step pipeline using a fine-tuned YOLOv3 model for skin
lesion detection and a SegNet model for segmentation.
The study achieved a mean Average Precision (mAP) of
96% on the ISIC 2018 dataset. Despite its high accuracy,
the model was primarily focused on melanoma detection,
which limited its utility for other skin cancer types. The
computational cost of running two separate models also
raised concerns about the framework’s efficiency in real-
time applications.

Liu et al. (2023) introduced a dual-path network to
integrate local and global features for better skin lesion
segmentation. The local path captured detailed lesion
features, while the global path accounted for larger
contextual information. The model was assessed on the PH2
dataset, achieving an loU of 89.6%. Despite its promising
results, the study did not address multi-class classification,
and the dataset used was relatively small and imbalanced,
affecting the model’s generalizability.

Omneya Attallah (2024) proposes a hybrid model
(HTDFFM) to enhance skin cancer classification in two types
of images. By applying DCT, the image quality is enhanced,
and CNNs are used for feature extraction. The approach
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employs a three-stage fusion process to merge features
from both original and DCT-enhanced images, resulting
in a robust feature vector for classification. The method’s
computational complexity due to multi-stage fusion and
multiple CNNs could limit its real-time clinical applicability.

Zhao et al. (2023) proposed a lightweight segmentation
model designed for real-time clinical applications. Depth-
wise separable convolutions were used in the model to
speed up inference and lower computing costs. An accuracy
achievement of 93.7% on the ISIC 2021 dataset. Despite
its efficiency, the model showed limited performance on
more complex lesion types, and the authors did not explore
feature selection techniques, which could have further
enhanced accuracy.

A deep learning framework called EOSA-Net for multi-
class skin cancer classification is proposed by Purni and
Vedhapriyavadhana (2024). The ebola optimization search
algorithm (EOSA) is used for model integration of the
enhanced Canny Edge Detection technique, which optimizes
preprocessing and hyperparameters. ISIC 2018 and ISIC 2019
are the datasets used to train and evaluate the model for
categorizing 8 types of skin cancer. A classification accuracy
of 99% is achieved. While handling a smaller dataset, it
faces overfitting problems, rather than dealing with large
datasets, and is also in need of increased processing power.
Additionally, the essential component for segmentation,
which is necessary for the precise identification of lesion
boundaries, is also lacking in this methodology.

Imran et al. (2024) highlighted the methodology
for identifying various inflammations in skin tissues
and carcinomas using a transformer-based multi-class
segmentation of immunohistochemistry images. A
self-attention mechanism captures global and local
interdependence in skin pictures. An average of 83.1%
accuracy, 90.8% of F1 score, and 65.3% of mean loU is achieved
by using the publicly available ISIC 2016 dataset. Feature
selection is absent is a limitation of this model for improving
the classification task. It primarily focuses on histopathological
images, which limits the model’s real-time applicability.

Yaqoob et al. (2024) proposed a framework called
HRDOXGB, which integrates random drift optimization
(RDO) with the XGBoost algorithm. This hybrid approach
attains enhancement in accuracy and efficiency by
identifying a minimal subset of pertinent genes from high-
dimensional datasets. It only operates on microarray data,
which is a major limitation of this approach, but it does not
affect the system’s performance. Rather, it may not directly
reflect on complexity of cancer genetics when compared
with future technologies.

Proposed Methodology

The combination of the MMSS model and HPOA model
for exact lesion segmentation and feature selection,

respectively, for accuracy improvement and robustness
enhancement. The hybridization work model helps
address current model issues, such as uneven feature
selection, computational efficiency, and enhancement of
segmentation phase accuracy.

Normalization

Normalization is a crucial step in image preprocessing,
as it involves converting pixel values to a standard range
by handling the consistency of input data, which helps
reduce image variability. Generally, there will be variation
in image brightness, contrast, and distribution of color in
Skin lesion images in dermoscopic image datasets due to
the capturing conditions of pictures. The proposed HPO-
MMSS methodology combines batch normalization (BN)
and instance normalization (IN) techniques to enhance
robustness and accommodate image variations.

Instance Normalization

To handle variations in the images, IN is used in the
preprocessing stage to minimize brightness variations and
contrast variations, and creates a relationship between the
images through independent normalization. Uniformity
enhancement of the input images facilitates pixel
modification of intensity values with a mean of 0 and a
standard deviation of 1. The mathematical formulation of
IN can be given as follows,

P

X = Eq.(1)

T

Where,

X" - normal pixel value

x - original pixel value

K - mean

o'- standard deviation

Eq. (1) is applied to every pixel in the ISIC 2020 dataset
images for image standardization. By adjusting the pixel
values to have a0 mean and 1 standard deviation to maintain
a consistent factor in pixel intensity of the images. This
leads to affecting the factors of variation in the image’s
illumination and color factor throughout the whole dataset.

Batch Normalization

BN normalizes the network’s intermediate activation
function after the modification of each output from each
layer to have a mean value of 0 and a standard deviation
value of 1. This BN is used to train the MMSS model for
enhancement purposes. This method reduces the likelihood
of overfitting while improving the model’s stability and
convergence. The mathematical expression for Batch
Normalization is:

x —

y=VY. + B Eq.(2)
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Where,

y - batch normalized output

X - input activation

u — mean average of the small batch’s activations

@ - standard deviations of the activations in the mini
batch

Y. B - Learnable settings to change and scale the output
that has been standardized

Eq. (2) is applied to each mini-batch and improves the
model’s generalization capability by ensuring that the
activations remain stable throughout the training process.

Feature Selection Using Hybrid Pigeon Optimization
Algorithm (HPOA)

The subsequent phase in the proposed initiative pertains
to HPOA, a metaheuristic optimization algorithm derived
from the navigational behavior of pigeons, specifically their
remarkable ability to interpret environmental indicators. By
selecting the most prominent features from dermoscopic
images, the HPOA is used for feature selection in skin cancer
diagnosis, reducing the dimensionality of the input data.
The efficacy of feature selection is crucial for enhancing the
machine learning model’s performance, as redundant or
irrelevant features can significantly undermine classification
accuracy. The HPOA optimizes the selection process by
balancing exploration and exploitation during the search
for the optimal feature subset. The result is a more compact
feature set that retains the most relevant information for
classification, thereby enhancing both classification accuracy
and computational efficiency.

Pseudo Code for HPOA
Initialize pigeon population (positions and velocities)
Evaluate initial fitness for each pigeon
While (iteration < max iterations):
If (iteration < max iterations / 2):
Apply Map and Compass Operator
Else:
Apply Landmark Operator
Update positions and velocities
Evaluate fitness for each pigeon
End While
Select the best pigeon as the optimal feature subset
Initially, the hybrid pigeon optimization algorithm
(HPOA) creates a population of pigeons, which in the feature
space represent possible solutions. The pigeons’ starting
locations and speeds are chosen at random. The Map and
Compass Operator is the next step in the algorithm, which
allows pigeons to systematically explore the feature space
on a global scale by adjusting their placements based
on their velocity, personal best position, and the global
best position. Subsequently, in the subsequent phase, the
Landmark Operator isimplemented, whereby pigeons refine
their positions towards the centroid of the population to

engage in local exploitation. The best-performing pigeon is
chosen as the ideal feature subset after its fitness is assessed
using a classification accuracy score in each iteration. The
ideal feature subset for skin cancer detection is returned
when the algorithm reaches convergence or the maximum
number of iterations has been reached. The location of each
pigeon is updated in response to its velocity and direction:

X+t =X+ vt Eq.(3)

Where, Xf - position of pigeon i at iteration t

Vf - velocity of pigeon i at iteration t

The pigeon’s best-known position and the population’s
worldwide best position both affect velocity:

Lr:_f""l = W_V§+C1'F1'(P 'X't)+cz_r2.(G

best i

best_X!ft ) Eq(4)

Where:

w - inertia weight,

q and c2 - learning factors,

r, and r,- random values between 0 and 1,

P, ... - personal best position,

G,.., - global best position.

Each pigeon is a possible subset of features chosen
from the dermoscopic images in the context of the ISIC
2020 dataset. This dataset has a high-dimensional feature
space with many features based on color, texture, and
shape. During eachiteration, £q.(3) and Eq.(4), Pigeons adjust
their velocity and position to explore the feature space,
respectively. The personal best (P_best) position represents
the best feature subset a pigeon has found so far based on
classification accuracy, the global best (G_best) position is
the best feature subset found by the entire population, and
the updated position reflects a new combination of features
for the next iteration. Landmark Operator Focuses on local
exploitation to refine the feature selection process. In this
phase, the pigeons’ positions are adjusted based on the
average position of the population:

1 N t
]{t +1 X
i = JT:]__ Jf

Eq.(5,
N q.5)

Where,
N - No. of pigeons in the population.

Eqg.(5) calculates the center position of the pigeon
population by averaging the positions of all pigeons at
a given iteration, and it represents the average position,
indicating the consensus about promising features across
all pigeons.

£
Xt + 1 &+ &center
; =

5 Eq.(6)

Eg. (6) updates the position of each pigeon by moving
it closer to the center point, and it adjusts the pigeon’s
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position by averaging its current position. X{ With the

calculated center position, X._,.;er Refining the feature
selection process.

Modified Multi-Class Semantic Segmentation
(MMSS)

The third step in the proposed work is the MMSS model is
an enhanced encoder-decoder architecture designed to
perform pixel-wise segmentation of dermoscopic images
into melanoma, basal cell carcinoma, and benign keratosis.
Traditional segmentation models often face challenges
in accurately detecting irregular lesion boundaries and
handling classimbalance in multi-class datasets, particularly
in ISIC 2020. The proposed MMSS model addresses the above
challenges through the following modifications.

Pseudo code for MMSS
Initialize the encoder-decoder network
For each image in the training set:
Extract feature maps using the encoder
Apply skip connections to preserve spatial details
Perform upsampling in the decoder to reconstruct the
segmentation mask
Apply class balancing using weighted loss functions
Enhance boundary detection using edge filters
Calculate total loss (Dice Loss + Boundary Loss)
Update model weights using backpropagation
End For
Evaluate the model on the validation set
Use the trained model for final prediction on testimages

Encoder-Decoder Architecture with Skip Connections
The segmentation map is reconstructed by the decoder
after the encoder has extracted hierarchical features from
the input images. The use of skip connections ensures that
spatial details are preserved during the decoding process,
improving the accuracy of segmentation, especially
for lesions with irregular borders. Mathematically, skip
connections can be represented as:

decoder = * decoder + * encoder Eq (7)

The Eq. (7) allows the decoder to receive feature maps
directly from the encoder, bypassing the downsampling
process. This skip connection helps the decoder to retain
the exact shape, size, and boundaries of lesions in the ISIC
2020 dataset.

Class Balancing Techniques

To solve the problem of imbalanced datasets, where specific
skin lesion types are underrepresented, the MMSS model
integrates class-balancing techniques. Dice loss function
or weighted cross-entropy loss can be used to address class
imbalance in multi-class segmentation. Depending on how

frequently each class appears in the dataset, the weighted
cross-entropy loss gives it a different weight:

LWCE = _EE='I W..-Urlc'g (j}r] Eq(g)

Where:

« C -No.of classes,

A actual classification for class C,

+ ¥_ -anticipated likelihood for class C.

+ w_-weight assigned to class C.

The Eq. (8) assigns higher penalties to underrepresented
classes in the ISIC 2020 dataset and ensures that the MMSS
model pays equal attention to all classes. An increased
accuracy of the segmentation phase for uneven skin lesion
types leads to a dependable nature of the model while
dealing with multi-class skin cancer detection.

Boundary Detection Enhancements

The combination of boundary detection filter mechanism
and boundary-aware loss function in the MMSS model is
used for skin lesion border segmentation enhancement.
For classifying the differentiation between benign and
malignant lesions, the important characteristics such as
form and lesion texture are considered. The mathematical
formulation of the Dice loss function is represented as
follows:

2X|P NG|

dice = - I-Pl + |G| Eq(g)

Where:

P - segmentation mask for predicted

G - segmentation mask for ground truth

Increasing the overlapping factor between the
segmentation mask of ground truth and the segmentation
mask for the predicted image is the primary duty of the
Dice loss function. The value of L, =1 when there is no
overlapping, else L, . = 0. It shows that the MMSS model
shows more interest in overlapping optimization between
predicted mask and ground truth mask, which results in
accuracy enhancement in skin lesion segmentation while
using the ISIC 2020 dataset images.

Boundary-aware loss functions and edge detection
filters can improve boundary detection. For edge detection,
the Sobel operator is frequently employed and is expressed
as follows:

-1 0 1 -1 0 1

G=-2 0 2*¥I,G=-2 0 2*I Eq.(10)
-1 0 1 -1 0 1

Where:

G, and G, - the gradients in the horizontal and vertical
directions,

[ -inputimage

*denotes the convolution operation
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The combined gradient magnitude is computed
as:

G=,/GI + G: Eq.(11)

Egs. (10), (11), and (12), which apply convolution filters
to the input image, highlight regions with sharp changes
in intensity that correspond to lesion boundaries and
detect edges in the vertical as well as horizontal directions.
Inaccurate boundary predictions can be penalised using
boundary-aware loss functions.

|Epred | N 1Btryel

L loU=1

Boundary

Eq.(12)
|Bpreal Y [Btruel

Where:

B, ,zq- predicted boundary,

B, .- ground truth boundary.

The Eq. (12) measures the overlapping factor between
predicted and ground truth boundaries, penalizing incorrect
boundary predictions to ensure sharp and accurate
segmentation of skin lesions.

Experimental Setup

The experimental setup involves training and testing
the proposed HPOA combined with the MMSS model
on the publicly available skin cancer dataset ISIC 2020.
The dataset images are normalized to ensure uniformity
across input data. The experiments are conducted on a
high-performance computing system to accelerate deep
learning computations. Accuracy, Recall, Dice Coefficient,
Precision, and loU are the evaluation measures that analyze
the performance of the model. The proposed model is
compared against baseline methods like YOLOv3, SegNet,
and Vision Transformers to demonstrate its superior
performance in multi-class skin lesion detection and image
segmentation.

Dataset Description

The data set used is the International Skin Imaging
Collaboration (ISIC) 2020, which is used to train the proposed
framework. This dataset is considered as most predominant,
which has a large collection of derma images of skin lesions.
The dataset contains 33,126 images with both benign and
malignant skin lesions. The ISIC 2020 dataset includes
a wide range of skin lesions, such as vascular lesions,
benign keratosis, basal cell carcinoma, actinic keratosis,
and melanoma. It also contains the metadata inclusion of
lesion diagnosis and patient demographics, which leads
to an efficient path for multiclass classification and image
segmentation process. A 70:30 ratio is used to partition
the ISIC 2020 dataset. 30% of the data is divided as 15:15
and utilized for testing and validation, respectively, while
70% of the data is used for model training. To preserve the

class distribution across all sets, stratified sampling is used
for the splitting process. The model is trained using 70%
of the information to identify the underlying patterns and
characteristics of various skin lesions (training set). The ratio
of 15 % dataset is used for validation, and 15% dataset is
used for testing the model, respectively. Validation helps to
improve the model’s performance and prevent overfitting
by utilizing the input given during the training process.
The generalizability of the model is assessed throughout
the testing phase.

Implementation Tools and Libraries

Python is used as the primary language forimplementation.
Libraries such as TensorFlow and Keras are used for building
and training the Al-driven model. For data manipulation
NumPy and Pandas packages are used. Image processing
tasks like augmentation and segmentation, OpenCV is used.
Data visualization is done using Seaborn and Matplotlib.
Scikit-learn is for accessing the performance metrics like
Accuracy, Recall, Dice Coefficient, Precision, and loU.

Results and Discussion

The proposed methodology is the combination of HPOA
and MMSS models that provides better working for skin
cancer detection when compared to other available
models. By considering various sizes of datasets, the
proposed framework outperforms the related models,
such as YOLOv3, SegNet, and Vision Transformers, in terms
of accuracy, precision, recall, dice coefficient, and loU. The
robustness of the HPO-MMSS methodology is also efficient
in managing multi-class lesion classification and image
segmentation. The discussion section demonstrates that
the proposed framework improves accuracy in clinical
applications by focusing on boundary detection and
feature selection of skin lesions, outperforming previous
related methodologies.

Performance Metrics

The performance metrics are considered as Accuracy, Recall,
Dice Coefficient, Precision, and loU. The performance of
the suggested model is assessed using these metrics.
It provides a thorough evaluation of segmentation and
skin lesion categorization. The proposed framework's
performance is compared with the related works such as
ESCCHOA[7], SLSACOI[13], HTDFFM[16], and HRDOXGB[20].
This comparison depicts the outperformance of the hybrid
integration of HPOA-MMSS methodology for multi-class
segmentation and feature selection. Table 1 describes the
accuracy metric result of the proposed framework and the
previous related works. It demonstrates that the HPO-MMSS
model achieves accuracy enhancement through feature
selection and the segmentation phase, identifying relevant
features that differentiate skin lesion types. Figure 1. Shows
the data visualization of the accuracy obtained.
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Table 1: Accuracy Comparison of HPO-MMSS(%)

DATASET ESCCHOA SLSACO HTDFFM  HRDOXGB /I-\jIF/’V(I)S-S
2000 85.2 88.5 86.1 89.3 91.1
4000 87.5 89.9 87.4 90.5 92,6
6000 89.1 91.2 89.0 91.8 94.0
8000 90.4 924 90.7 93.0 953
10000 91.8 93.1 92.0 94.2 96.7

consistent feature extraction, IN helps stabilize the model’s
performance across a variety of lesion images, particularly
when lesions are unclear and difficult to distinguish. Figure 2
represents the graphical representation of the comparative
analysis of HPO-MMS with other models.

Table 3 compares the recall value to the existing works.
The MMSS framework’s boundary detection capability
helps the recall metric by precisely segmenting lesions with
asymmetrical shapes and hazy borders. To reduce false
negatives and improve the detection of malignant lesions
in the ISIC datasets, IN makes sure the model captures
fine-grained details. Figure 3 represents the graphical
representation of recall comparison.

Table 4illustrates the extent to which the MMSS method
improves the dice coefficient (Figure 3). The model’s ability
to accurately describe lesion borders is enhanced by this
technique, especially when lesions have overlapping areas
or unusual shapes. To improve this metric, the refined

Table 3: Comparison of the Recall metric of HPO-MMSS (%)

DATASET ~ ESCCHOA SLSACO HTDFFM HRDOXGB 7/’,;%-5
2000 84.7 86.3 85.2 87.6 88.4
4000 86.2 87.8 86.7 89.1 89.9
6000 87.7 89.2 88.2 90.5 91.3
8000 89.0 90.5 89.5 92.0 92.7
10000 90.4 91.9 90.9 93.4 94.1

HPO-MMSS RECALL COMPARISON
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Figure 1: Accuracy (%) of HPO-MMSS and related works
Table 2: Precision Comparison of HPO-MMSS(%)
DATASET ~ ESCCHOA  SLSACO  HTDFFM  HRDOXGB 7/’[;/%5
2000 83.9 85.6 84.3 86.7 89.0
4000 85.4 87.1 85.8 88.2 90.5
6000 87.0 88.6 87.3 89.8 91.9
8000 88.3 89.9 88.6 91.3 93.3
10000 89.5 91.3 90.0 92.7 94.7
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Figure 2: Precision comparison (%)

Table 2 illustrates the extent to which incorporating
HPOA for feature selection and Instance Normalization
(IN) improves the precision metric. By ensuring that
discriminative features are chosen, HPOA lowers the
number of false positives in classification. By ensuring

RECALL (%)
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Figure 3: Comparison of recall(%)

Table 4: Dice Coefficient Comparison of HPO-MMSS (%)

DATASET ~ ESCCHOA  SLSACO  HTDFFM  HRDOXGB /‘I-;’F/:/%S
2000 86.2 87.5 86.9 88.7 89.5
4000 87.8 89.0 88.4 90.2 91.0
6000 89.3 90.5 89.9 91.7 92.5
8000 90.7 91.9 91.2 93.2 93.9
10000 92.0 93.3 92.6 94.6 95.3
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Figure 4: Comparison of dice coefficient (%)

Table 5: Intersection over union comparison of HPO-MMSS(%)

DATASET ~ ESCCHOA  SLSACO  HTDFFM  HRDOXGB /I\-I/’I;/%S
2000 824 84.0 83.6 85.3 86.5
4000 84.2 85.6 85.2 86.9 88.1
6000 85.5 87.1 86.7 88.4 89.6
8000 86.9 88.5 88.1 89.9 91.1
10000 88.2 89.9 89.4 91.3 92.5
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Figure 5: Comparison of loU(%)

segmentation process minimizes under-segmentation
errors.

The overlap between the anticipated ground truth and
predicted segmentation mask is explained by the metric
called loU is represented in Table 5. It depicts that the
proposed framework outstrips with superior loU results
when compared to other works. IN is responsible for this
because it confirms that small lesion patterns do not overlap
when dealing with different skin lesions. The suggested
framework’s relative comparison representation with other
studies is displayed in Figure 5.

The proposed HPO-MMSS methodology shows the
incredible performance even when dealing with multi-

class skin cancer detection and segmentation in the ISIC
2020 data images. And the metrics percentage shows that
it outperforms the related works such as MSCDN, HDEF,
HAVT, and ViTMCS in terms of accuracy, precision, recall,
Dice coefficient, and loU. HPOA is mainly responsible for
noise reduction and classification boosting for the relevant
features. Boundary details are maintained seamlessly,
which is essential in differentiating the types of skin lesions,
which leads to segmentation factor enhancement. When
increasing the count of datasetimages, there is a consistent
increase in performance gain. It shows that HPO-MMSS
acts efficiently in dealing with large datasets. Irregular
boundaries are segmented precisely, as understood by the
outperformance of recall and loU metrics. It results conclude
that the proposed framework is more scalable, dependable,
reliable, and accurate for multi-class skin cancer detection
in a real-world scenario.

Conclusion

The proposed HPO-MMSS framework offers a fresh and
practical perspective on multi-class skin cancer detection
and segmentation by comparing it with current related
techniques. The improvement in diagnostic accuracy while
dealing with the increase in dataset size is outperformed.
The combination of HPOA for feature selection and MMSS
for boundary segmentation is carried out in a novel manner,
proving excellent outperformance in detecting skin cancer
efficiently. The experimental results, considering the ISIC
2020 dataset, show a consistent increase in dataset count,
indicating the seamless enhancement of the system’s
performance. The framework also outperforms, with a
superior increase in performance, when the dataset size
is consistently increased. Compared to existing models
that suffer from irregular lesion borders and multi-class
classification, the HPO-MMSS framework is more efficient
and scalable, achieving higher accuracy (96.7%) and a higher
Dice coefficient (95.3%) on larger datasets. The experimental
results on the ISIC 2020 dataset demonstrate consistent
performance improvements, particularly in challenging
metrics such as the Dice coefficient and loU, which are crucial
for precise lesion boundary detection.

In real-world clinical applications, the framework’s
outstanding performance paves the way for early diagnosis
of skin cancer, which will become an increasingly essential
part of the medical field. The future consideration primarily
focuses on enhancing real-time capabilities and applying
the current scenario-based augmentation methodology
to expedite the diagnosis process in the dermatology
field. Future enhancements of the HPO-MMSS framework
concentrate on advanced data augmentation techniques
to enhance real-time usability, addressing class imbalance
and improving model generalization. The efficacy of the
framework is enhanced by Self-supervised learning, which
reduces its reliance on large labeled datasets.
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